
Packet Reordering, High Speed Networks and
Transport Protocol Performance

Ladan Gharai
University of Southern California

Information Sciences Institute
Email: ladan@isi.edu

Colin Perkins
University of Glasgow

Department of Computing Science
Email: csp@csperkins.org

Tom Lehman
University of Southern California

Information Sciences Institute
Email: tlehman@isi.edu

Abstract— We performed end-to-end measurements of UDP/IP
flows across an Internet backbone network. Using this data,
we characterized the packet reordering processes seen in the
network. Our results demonstrate the high prevalence of packet
reordering relative to packet loss, and show a strong correlation
between packet rate and reordering on the network we studied.
We conclude that, given the increased parallelism in modern
networks and the demands of high performance applications, new
application and protocol designs should treat packet reordering
on an equal footing to packet loss, and must be robust and
resilient to both in order to achieve high performance.

I. INTRODUCTION

The presence of packet reordering in IP networks has long
been known. Until recently though, it was thought of as patho-
logical behavior rather than a normal part of the network’s
dynamics [2]. Accordingly, many protocols and applications
have been designed assuming in-order packet delivery or,
at best, with a very low tolerance to out-of-order delivery.
For example, transport protocols such as TCP routinely treat
certain instances of out of order packet delivery as a congestion
signal.

It is now recognized that this behavior is not ideal, and
that transport protocols should be designed to be tolerant of
packet reordering. Despite this, there has been little research
undertaken to determine when reordering is likely to occur.
This makes it difficult to decide the relative importance of
tolerance to packet reordering compared with tolerance to
other network events.

In this paper we study the occurrence of packet reordering
on a commercial IP backbone network, reporting on the
variation in reordering rate dependent on the packet size and
inter-arrival times. We discuss the likely future development
of high speed network infrastructure, and explore how these
developments will affect the rate of packet reordering, and
hence transport protocol performance.

The paper is organized as follows: in Section II we outline
our motivation in conducting these experiments and describe,
in more detail, the problem we address. In Section III, we de-
scribe our experimental methodology, followed by the empiri-
cal results in Section IV. Section V discusses the implications
of these results for application and protocol designers. Finally,
we conclude in Section VI.

II. MOTIVATION

Previously, we have developed a prototype teleconferencing
system that uses High-Definition TV (HDTV) equipment to
deliver very high quality video over IP networks [15]. The
system uses RTP over UDP/IP as its network transport [9,
16] and contains a preliminary TCP friendly rate control
(TFRC) implementation [7, 10] to adapt its native data rate,
approximately one gigabit per second, to the network capacity.

While performing experiments to test the throughput and
congestion response of this system we were confronted with
an interesting phenomenon: the system was sending at a lower
rate than expected, given the degree of packet loss observed.
Further investigation [8] determined this was due to packet
reordering within the network, with the rate control algorithm
inferring spurious congestion events due to the presence of
significantly out of order packets. These spurious congestion
events appeared to occur most often when the system was
transmitting at high rate, and caused a precipitous decline in
sending rate.

Such a response to packet reordering is dictated by the
TFRC congestion control mechanism, which ensures fairness
and compatibility with TCP flows by mimicking TCP’s in-
terpretation of certain patterns of reordering as a congestion
signal. While the merits of this reaction to reordering for mul-
timedia applications are certainly questionable, and provide an
interesting area of research, the point that caught our attention
was the possible existence of a correlation between packet
reordering and data rate.

This leads us to the following question: does an increase in
data rate, which is achieved by maintaining a constant packet
size and increasing the packet rate, thereby reducing packet
inter-arrival time, result in an increased rate of occurrence of
packet reordering? And, if so, what are the implications of this
in the design of network transport protocols?

III. METHODOLOGY

The aim of our experiments is to observe and characterize
the sequenced behavior of end-to-end flows across an IP
backbone network as a means to evaluate the effects of packet
reordering on multimedia and TCP/IP based applications. To
this end we: (1) setup a measurement testbed; (2) generated
UDP flows with a range of data rates and different packet sizes
over three different paths on the testbed; and (3) evaluated each

Optical
Splitter

Performance Host

Monitoring Host�LA Router

DC

Pittsburgh

ATL

Houston

LA

Kansas City

Chicago

Dallas

Tampa

New York

Boston

SunnyvaleGigE Switch
Newark

Site 3
Los Angeles

Site 2
Washington DC

Site 1
Pittsburgh

Fig. 1. Testbed configuration

flow for occurrences of loss and reordering. In the following,
we describe the components of our experimental methodology
in more detail.

A. Measurement Testbed

The configuration of our testbed is shown in Figure 1. We
installed traffic generation and monitoring systems at three
sites – the USC/ISI-East laboratory in the Washington DC
metro area, CMU in Pittsburgh and the network operations
center at One Wilshire Boulevard in Los Angeles. These
sites were the peering points for three DARPA SuperNet
partners [5], chosen because they maintained direct peerings
with the ISP at OC-48 rate, and because we were allowed to
connect our equipment directly behind the access router, hence
eliminating the effects of the edge network.

For the traffic generation systems, we used PCs with dual
1.8 GHz Xeon processors running Linux 2.4.19, equipped with
SysKonnect SK-9843 gigabit Ethernet cards. The monitoring
hosts were uniprocessor 1.8 GHz Xeon PCs, with 4 gigabytes
of memory, UDMA-100 disks, dual SysKonnect SK-9843
gigabit Ethernet cards and a fast Ethernet interface, running
FreeBSD 4.5. These were chosen after local tests demonstrated
that the traffic generation hosts could saturate the gigabit
Ethernet with traffic, and could sustain this without packet loss
or reordering with packet sizes of at least 1500 octets (with
a packet size of 500 octets, rates up to 500 Mbps could be
sustained), and that the monitoring hosts could record packet
headers at matching rates.

The traffic generation hosts were connected to the core
router at each site via a single gigabit Ethernet switch. An
optical splitter was used on the fiber connecting the traffic
generation host to the switch, directing a copy of all outgoing
traffic to the receive port of the first gigabit interface on the
monitoring host, and a copy of all incoming traffic to the
receive port of the second gigabit interface on the monitoring
host. Since the transmit lines of the gigabit Ethernet ports on
the monitoring host are not connected, this provides a non-
intrusive optical network tap, used to capture all traffic on
the link. The switch ensures that only traffic sourced by, or
destined for, the traffic generation host is seen by the monitor,
ensuring the privacy of other users of the network.

The monitoring hosts were based on the Self Configuring
Network Monitoring [1] systems developed by Lawrence

Berkeley National Laboratory Data Intensive Distributed Com-
puting Research group. These machines run a modified version
of FreeBSD 4.5 that allows bonding of two network interfaces
such that a single Berkeley packet filter can receive packets
from multiple interfaces. Other kernel and driver modifications
included changes to reduce interrupt load and provide more
accurate timestamps. The result was a system which could
listen to the receive ports of two gigabit Ethernet network
interface cards, and capture all packet headers along with a
small amount of payload data at gigabit rates. Data is captured
using a version of tcpdump modified to limit disk access
by buffering data in memory until each test is complete.
Each traffic generation host has an associated monitoring host,
enabling us to record complete packet traces of all IP traffic
at the sender and receiver.

At each site, the role of the traffic generation system was
to actively introduce UDP/IP flows into the network, while
the monitoring hosts at the source and destination recorded
the traffic for later analysis. In addition, we logged the route
taken, values of tuning parameters for the host network stack,
and throughput and packet loss rates.

B. Test Flows

We gathered pairwise measurements of UDP/IP packet
flows, generated with iperf v1.1.1 [18], between all three
sites. Test flows were one minute duration, at rates of 1 Mbps,
10 Mbps, 100 Mbps and at 100 Mbps intervals up to and
including 900 Mbps. We repeated each test with packet sizes
of 500, 1500 and 4500 octets.

To describe a particular test flow, we henceforth use the
following notation: Fb(s → d,m). Where s and d refer to the
source and destination of the flow, and m indicates the packet
size. Each flow is also subscripted by the rate at which they
were generated. For example, to describe a 300 Mbps flow
between from DC to LA with an MTU of 1500, we use the
notation: F300(DC→LA, 1500).

We conducted our analysis of packet reordering using UDP
flows because this allows us to probe the network in a
controlled manner. The sending rate of a UDP flow, unlike that
of a TCP flow, is entirely under application control allowing
us to generate UDP flows with fixed known packet size and
spacing, whereas the transmission rate of a TCP flow varies
according to a complex congestion control algorithm. This lets
us conduct controlled experiments to determine the influence
of packet size and inter-arrival times on packet reordering.
Clearly controlling packet spacing and data rate is not possible
with TCP, as a TCP sender’s prime concern is maintaining
fairness with other flows, while seeking available bandwidth.

C. Metrics

Each flow is analyzed for both packet loss and reordering
(since we conduct offline analysis of complete packet traces,
we are able to distinguish loss from reordering in all cases). We
evaluate packet reordering according to two different metrics,
one based on monotonic increase of sequence numbers, the
other more TCP-like.

Monotonic Increase: An often used metric of reordering is
the notion of monotonic increase of packet sequence numbers:
provided the sequence numbers increase in a continuous and
monotonic sequence, packets are deemed to be in order.
Otherwise, all packets are deemed out of order, until a packet
with sequence number greater than the last recorded in-order
packet arrives. The monotonic increase metric, O1, denotes a
packet as out of order if Equation 1 is satisfied:

∀i, j, k : i < j < k and Sj > Si and Sk < Sj

⇒ Pk is out of order
(1)

Where i, j and k index the arrival timeline of packets Pi, Pj

and Pk at the receiver (such that Pi arrives prior Pj and Pj

arrives prior to Pk). Previous studies of packet reordering
[11, 14] have utilized monotonic increase as a means of
quantifying orderliness. Accordingly, this metric forms a basis
for comparison with some previously published data.

TCP-Like: The TCP-like packet reordering metric, O2,
counts reordering events that would cause a TCP connection to
see a spurious congestion signal. A TCP connection uses an
acknowledgment mechanism to report the highest sequence
number received, and generates a duplicate ACK if packets
arrive out of order. A triple-duplicate ACKs is interpreted as a
congestion signal. The TCP-like metric, O2, therefore counts
reordering events that would cause a triple-duplicate ACK to
be generated. These events are defined to occur when Equation
2 is satisfied:

∀i : (Si < Si−1) and (Si < Si−2) and (Si < Si−3)
⇒ Pi is out of order

(2)

For the monotonic metric, O1, we measure and report the
number of reordering events as a percentage of the total
number of packets in a flow. For metric O2, we list the total
number of reordering events that occur during the duration of
each flow, since TCP is affected by the number of congestion
signals, rather than the ratio of congestion signals to total
segments.

IV. RESULTS

In Table I we list the results from the application of the
reordering metrics O1 and O2 to UDP flows generated on the
three paths in our testbed: Pittsburgh⇔LA, Pittsburgh⇔DC
and LA⇔DC. Entries marked ‘-’ reflect tests in which the
monitoring hosts could not capture all the packets in the flow,
as detected by gaps in the packet trace recorded at the source.
A total of 155 complete UDP flows were analyzed, comprising
approximately 60 million packets, over three different bidirec-
tional network paths.

We used the traceroute utility to record the route
traversed by each flow. It was verified that all flows on a
particular route traversed the same links, and that the forward
and reverse paths differed by at most one hop. Despite
this, measurements of the forward and reverse paths exhibit
asymmetrical properties. This effect has been noted by other
researchers, and could be due to the effects of cross traffic.

We observe that packet loss rates are negligible, as expected
on a modern IP backbone network. Packet loss occurred in
only two flows: one packet was lost in F600(DC→ Pitt, 1500),
and 21 packets lost in F400(Pitt→ DC,500). In total, 22 packets
were lost in the network, from a total of approximately 60
million sent. The absence of packet loss leads us to believe
that capacity is available, and that a TCP flow should be able
to sustain high throughput in this environment.

A. Prevalence of Reordering

Of the 155 flows we analyzed, 73 flows (47%) contained
at least one out of order packet. Of those, 48 flows saw more
than 0.01% of packets reordered according to metric O1. The
largest amount of reordering we observed was 1.65% accord-
ing to this metric, in F500(Pitt→LA, 500) and F400(Pitt→LA,
500). These results compare well with other recent studies of
reordering in IP backbone networks. For example Jaiswal et
al [11] report reordering of 0.02% to 0.5% of packets.

For a given packet size, M , and sending rate, b, the degree
of reordering measured according to metric O1 is relatively
consistent on the different paths, Fb(src→dst, M). The ex-
ception to this is the DC→LA path, which also experiences
disproportionally high values of reordering measured by metric
O2. While we can speculate as to why the DC→LA path
experiences higher values of reordering (i.e., an awry router)
unfortunately at this point we cannot further diagnose this
path.

In terms of consistency between values of metric O1 in
Table I (with the exception of the DC→LA path), we observe
that a majority of flows with 500 octet packets experience
reordering at data rates of 200 Mbps and higher, while flows
with 1500 octet packets experience reordering at data rates of
600 Mbps and above. There appears to be a clear threshold,
coinciding with a difference in inter-packet arrival times of
approximately 0.02ms, beyond which packet reordering will
occur increasingly often. None of the flows with 4500 octet
packets, which have inter-packet arrival times greater than
0.04ms at the data rates we tested, experience reordering.

B. Packet reordering and inter-arrival time

To investigate the relationship between packet timing and
the likelihood of reordering, we compared the inter-packet
delay at the source with the corresponding inter-packet arrival
times at the destination.

Flows were initially generated with constant inter-packet
timing, depending on packet size and required data rate.
The inter-packet arrival time, as measured at the receiver,
varies depending on the effects of the network. In Figure
2, we show two examples of the timing variation that is
induced by the network: F800(Pitt→ DC, 1500) and F300(LA→
Pitt, 500). For packets delivered in-order, the figure shows
the expected dispersion in inter-packet timing due to effects
of jitter (for example, cross-traffic and queuing in routers).
Packets delivered out-of-order, however, are more likely to
arrive immediately after a previously delivered packet. We
consistently noted this pattern of smaller inter-arrival times

TABLE I

SUMMARY OF REORDERING METRICS.

Path Size Metric Rate (Mbps)
1 10 100 200 300 400 500 600 700 800 900

O1% 0 0 0 0.07 0.45 1.26
500 O2 (events) 0 0 0 0 0 0 - - - - -

O1% 0 0 0 0 0 0 0 0.01 0.02 0.05
LA→DC 1500 O2 (events) 0 0 0 0 0 0 0 0 0 0 -

O1% 0 0 0 0 0 0 0 0 0 0 0
4500 O2 (events) 0 0 0 0 0 0 0 0 0 0 0

O1% 0 0 0.05 0.16 0.81
500 O2 (events) 0 0 15 191 783 - - - - - -

O1% 0 0 0 0.01 0.03 0.06 0.12 0.38 0.55
DC→LA 1500 O2 (events) 0 0 0 0 2 21 88 3299 1049 - -

O1% 0 0 0 0 0 0 0 0.01 0.02 0.06 0.13
4500 O2 (events) 0 0 0 0 0 0 0 0 0 4 12

O1% 0 0 0 0.01 0.41 0.57
500 O2 (events) 0 0 0 1 4 30 - - - - -

O1% 0 0 0 0 0 0 0 0.01 0.01 0.02 0.03
Pitt→DC 1500 O2 (events) 0 0 0 0 0 0 0 0 0 2 8

O1% 0 0 0 0 0 0 0 0 0 0 0
4500 O2 (events) 0 0 0 0 0 0 0 0 0 0 0

O1% 0 0 0.02 0.04
500 O2 (events) 0 0 1 22 - - - - - - -

O1% 0 0 0 0 0 0 0.01 0.01 0.01
DC→Pitt 1500 O2 (events) 0 0 0 0 0 0 0 2 0 - -

O1% 0 0 0 0 0 0 0 0 0 0 0
4500 O2 (events) 0 0 0 0 0 0 0 0 0 0 0

O1% 0 0 0 0.02 0.87 1.28 1.65
500 O2 (events) 0 0 0 8 41 67 122 - - - -

O1% 0 0 0 0 0 0 0 0.02 0.04 0.07
Pitt→LA 1500 O2 (events) 0 0 0 0 0 0 2 9 30 30 -

O1% 0 0 0 0 0 0 0 0 0 0 0
4500 O2 (events) 0 0 0 0 0 0 0 0 0 0 0

O1% 0 0 0 0.09 0.59 1.65
500 O2 (events) 0 0 0 0 0 3 - - - - -

O1% 0 0 0 0 0 0 0 0.01 0.04
LA→Pitt 1500 O2 (events) 0 0 0 0 0 0 0 0 0 - -

O1% 0 0 0 0 0 0 0 0
4500 O2 (events) 0 0 0 0 0 0 0 0 - - -

for all out-of-order packet arrivals across all flows: it seems
likely that parallelism at the link layer will allow some packets
to “catch-up” with those sent earlier but queued on a parallel
link, causing this behavior.

C. Packet Reordering and TCP

The data in Table I illustrates that the relationship between
the fraction of reordered packets according to metric O1 and
the number of packet reordering events that would affect a
TCP flow, metric O2, is non-linear. It does not appear to
be possible to predict the reaction of a TCP flow to packet
reordering using a simple metric based on the fraction of
packets reordered, unless that metric also includes the effects
of the pattern of reordering.

Consider the data sets which have the same fraction of
reordered packets, but report different numbers of reordering
events that would affect TCP. For example, F700(LA→Pitt,
1500) contains 0.04% out of order packets according to metric
O1, but none of these events would affect a TCP flow (i.e.
O2 = 0). However, the same flow on the reverse path,
F700(Pitt→ LA, 1500), experiences O2 = 30 reordering events
that would affect TCP, even though O1 measures the same
fraction of out of order packets. Likewise, a comparison
between F300(LA→ Pitt, 500) and F300(Pitt→ LA, 500) shows
similar behavior: the two flows have approximately the same

amount of reordering measured by metric O1 (0.6%), yet yield
vastly different numbers of reordering events when measured
using the TCP-like metric (O2 = 0 vs. O2 = 41).

To further demonstrate the difference between the two met-
rics, we plot histograms of the frequency of packets delivered
out-of-order by N places (where N reflects the difference
in sequence number of the expected packet and the packet
which did arrive at the destination). We chose two cases,
illustrated in Figure 3: F600(DC→LA, 1500) which contains
significant packet reordering of adjacent packets only, with no
reordering events that would affect TCP flows, and F300(LA→
Pitt, 500) where many packets were delivered dozens of places
out-of-order, in a way which would significantly impact the
performance of a TCP flow.

It is clear that there are different reordering processes in
operation for these two flows, and that these differences are
not captured by the simple metric, O1. This demonstrates
the importance of choosing the correct metric to quantify
packet reordering, particularly in terms of relevance to both
the application and transport protocols used. It also makes it
clear that, if one wishes to compare results of studies taken on
different networks, or with different transport protocols, that
a standard metric is needed. The IETF has ongoing work in
this area [13] and our work serves to highlight the importance
of this effort.

1

10

100

1000

10000

100000

1e+06

0 5e-05 0.0001 0.00015 0.0002

F
re

qu
en

cy

Time(sec)

"In order"
"Out of order"

F800(Pitt→ DC, 1500)

1

10

100

1000

10000

100000

1e+06

0 5e-05 0.0001 0.00015 0.0002

F
re

qu
en

cy

Time(sec)

"In order"
"Out of order"

F300(LA→ Pitt, 500)

Fig. 2. Packet inter-arrival times: In-order versus out-of-order

D. Discussion of Results

Our measurements have confirmed our initial hypothesis:
the relative frequency of packet reordering increases as the
inter-packet arrival time in the network core is reduced, so
flows with high packet rates, or flows with closely spaced
packets, will be more affected by reordering than low-rate
flows.

As was shown in Table I and discussed in section IV-A,
the raw rate of packet packet reordering in the networks we
studied follows a pattern much like that seen in Figure 4.
Clearly the particulars depend on network characteristics such
as the type of infrastructure, routers and cross traffic, however
as we discuss in the following, we do not believe it to be an
uncommon pattern.

V. IMPLICATIONS FOR TRANSPORT PROTOCOLS AND

NETWORKS

It seems likely that future high-performance networks will
be implemented in a manner that allows packet reordering
to occur and likely increase. The technical, economic and
performance benefits of introducing parallelism into the net-
work, be it through multipath IP routing, load balancing
across layer 2 (and lower layer) paths, or striping packets
across switch/router fabrics are too great to ignore. This will

1

10

100

1000

10000

100000

-100 -50 0 50 100

P
ac

ke
ts

 O
ut

 o
f O

rd
er

Degree of reordering: Strict Sequencing

’754_ooohst.dat’

F300(UDP, LA→ Pitt, 500): O1 = 0.59, O2 = 0

1

10

100

1000

10000

100000

-100 -50 0 50 100

P
ac

ke
ts

 O
ut

 o
f O

rd
er

Degree of reordering: Strict Sequencing

’368_ooohst.dat’

F600(UDP, DC→LA, 1500): O1 = 0.71, O2 = 3299

Fig. 3. Degree of packet reordering

be further encouraged by the next generation of network
performance evolution which is expected to be characterized
by the introduction of parallel 10 Gbps links as opposed to
an immediate jump to 40 Gbps technology. Parallelism is
expected to be introduced at multiple levels of the network
(layer 3, layer 2, optical), and points to a potential increase
in packet reordering and an environment where the observed
packet reordering is greatly effected by individual network
architectures and transient traffic profiles.

These advances in network architectures and infrastructure
are enabling high-performance applications from the scientific
community such as high-energy physics, astronomy, geology

R
eo

rd
er

in
g

packet rate

Fig. 4. Packet reordering versus inter-arrival times

and meteorology. In turn, these applications are initiating the
need for Layer 4 transport protocols with features such as real-
time reliable data delivery, multi-homing and multi-streaming,
plug-in congestion control, etc.

This has resulted in the design of new transport protocols
such as the Stream Control Transmission Protocol (SCTP)
[17], the current work on the Datagram Congestion Control
Protocol (DCCP) [12], and a number of modifications to TCP
for improved performance. Suggested modifications to TCP
range from making TCP more tolerant to packet reordering at
the expense of reduced congestion response [3], modifying the
TCP congestion response function for high speed connections
that require large congestion windows [6] and variants of TCP
such as FAST [4].

Until now packet loss has been treated as the main detriment
to transport, and packet reordering as rare anomaly. Our data
seem to indicate that reordering is on par, if not a larger
issue, than packet loss on some classes of networks. Therefore
protocols that treat a reordered packet equivalent to a lost
packet will suffer performance consequences in such networks.

The prime example of this is TCP. Reordering affects the
performance of a TCP flow because it treats certain patterns
of reordered packets as a congestion signal. This problem
permeates through the entire class of TCP-friendly protocols
(DCCP and SCTP) and algorithms (TFRC) because, to be
fair to TCP, they must emulate this behavior. Therefore, even
moderate percentages of reordering make it difficult to sustain
high data rates on modern networks. Indeed, on the network
we tested, the limiting factor in TCP performance would have
been spurious congestion signals caused by packet reordering,
rather than actual packet loss. Therefore, for a TCP flow to
sustain a high rate it must be able to tolerate the degree of
steady state reordering we observed in our experiments.

We believe that there are many reasons to expect that
reordering will remain prevalent and likely increase in future
networks. Our results indicate that, in an environment such as
this, transport protocol designers will need to explicitly con-
sider the limits of performance caused by packet reordering.
Reordering may have a direct impact on transport, as in the
case of TCP, or indirectly, as is the case for FAST TCP, where
packet reordering will vary round trip time computations and
the congestion response.

We conclude that new protocol designs must pay heed to
packet reordering, perhaps on equal footing to those caused
by packet loss, in order to achieve high performance in future
heterogenous networks.

VI. SUMMARY AND CONCLUSIONS

We conducted measurements of UDP/IP flows to study the
occurrence of packet reordering. Our results demonstrate the
high prevalence of packet reordering relative to packet loss and
a strong correlation between packet rate and reordering on the
network we studied. While we can speculate on the reasons
for this, we note that in general reordering can happen due
to a multitude of reasons. Our expectation is that the degree
and probability for packet reordering will increase as modern

networks continue to incorporate parallelism into network
elements and architectures. Additionally, the advent of high
bandwidth applications (such as HDTV and large e-science
applications) will increase the instance of reordered packets
on a per flow basis. New application and protocol design
should treat packet reordering on equal footing as packet loss
and be robust and resilient to both in order to achieve high
performance.

VII. ACKNOWLEDGMENTS

The authors would like to thank Nikhil Mittal for setting
up the SCNM hosts and conducting many of the experiments.
Our thanks also goes to Craig Leres, Brian Tierney, and
Jason Lee of Lawrence Berkeley Laboratory for providing
specification and configuration information for the monitoring
hosts. This paper is based upon work supported by the DARPA
Information Processing Technology Office and the National
Transport Optical Network Consortium (NTONC). The opin-
ions, findings, conclusions and recommendations expressed in
this paper are those of the authors, and do not necessarily
reflect the views of DARPA or NTONC.

REFERENCES

[1] D. Agarwal and B. Tierney. Self-configuring network monitor project.
http://www-itg.lbl.gov/Net-Mon/Self-Config.html.

[2] J. C. R. Bennett, C. Partridge, and N. Shectman. Packet reordering
is not pathological network behaviour. IEEE/ACM Trans. Networking,
7(6):789–798, December 1999.

[3] E. Blanton and M. Allman. On making TCP more robust to packet
reordering. ACM Computer Communication Review, January 2002.

[4] Jin C., Wei X. D., and Low H. S. FAST TCP: Motivation, architecture,
algorithms, performance. In Proc. IEEE Infocomm, March 2004.

[5] DARPA. The NGI SuperNet testbed. http://www.ngi-supernet.org/.
[6] S. Floyd. High speed TCP for large congestion windows. IETF, August

2003. Work in Progress.
[7] S. Floyd, M. Handley, J. Padhye, and J. Widmer. Equation-based

congestion control for unicast applications. In Proc. of ACM SIGCOMM
2000, Stockholm, Sweden, August 2000.

[8] L. Gharai and C. S. Perkins. Implementing congestion control in the
real world. In Proc. IEEE Intl. Conference on Multimedia and Expo,
Lausanne, Switzerland, August 2002.

[9] L. Gharai, C. S. Perkins, G. Goncher, and A. Mankin. RTP Payload
Format for SMPTE 292M Video. IETF, March 2003. RFC 3497.

[10] M. Handley, J. Padhye, S. Floyd, and J. Widmer. TCP Friendly Rate
Control (TFRC): Protocol Specification. IETF, January 2003. RFC 3448.

[11] S. Jaiswal, G. Iannaccone, C. Diot, J. Kurose, and D. Towsley. Mea-
surement and classification of out-of-sequence packets in a Tier-1 IP
backbone. In Proc. ACM SIGCOMM Internet Measurement workshop,
Marseille, France, November 2002.

[12] E. Kohler, M. Handley, S. Floyd, and J. Padhye. Datagram congestion
control protocol (DCCP). IETF, July 2004. Work in Progress.

[13] A. Morton, L. Ciavattone, G. Ramachandran, S. Shalunov, and J. Perser.
Packet reordering metric for IPPM. IETF, Sept. 2003. Work in Progress.

[14] V. Paxson. End-to-end internet packet dynamics. IEEE/ACM Trans.
Networking, 7(3):277–292, June 1999.

[15] C. S. Perkins, L. Gharai, T. Lehman, and A. Mankin. Experiments with
delivery of HDTV over IP networks. In Proc. 12th Intl. Packet Video
Workshop, Pittsburgh, April 2002.

[16] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson. RTP: A
transport protocol for real-time applications. IETF, July 2003. RFC3550.

[17] R. Stewart, Q. Xie, K. Morneault, C. Sharp, H. Schwarzbauer, T. Taylor,
I. Rytina, M. Kalla, L. Zhang, and V. Paxson. Stream control transmis-
sion protocol. IETF, October 2000. RFC2960.

[18] A. Tirumala, F. Qin, J. Dugan, J. Ferguson, and K. Gibbs. iperf. Software
available online, October 2002. http://dast.nlanr.net/Projects/Iperf/.

