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Abstract— This paper presents Orta, a new peer-to-peer net-
work overlay protocol intended for use with interactive real-
time conferencing applications. The implementation is presented
as a reusable software library, that is not tied to any existing
application. One application, the UCL Robust-Audio Tool, is
modified to use this library rather than IP multicast as a proof-
of-concept implementation. We present the protocol design, along
with evaluation results describing the performance of the overlay,
with focus on its usefulness for real-time applications.

I. I NTRODUCTION

Given the peer-to-peer nature of the Internet, and increases
in network and host capacity in recent years, it might be
expected that group conferencing applications would become
widespread. There are, however, many problems in designing
real-time group conferencing applications, not least of which
is the issue of scalable many-to-many data dissemination
between members of the group.

The original design for the IP layer saw it as a stateless
unicast packet delivery mechanism, with no direct support
for multiparty applications. The IP multicast extensions [1]
added direct support for many-to-many applications, with the
network replicating packets as required. These extensionsadd
complexity, in the form of per-group state, to the network, but
allow peer-to-peer conferencing applications to be built with
ease. Indeed, multicast was initially targeted at applications
such as audio conferencing, video conferencing, electronic
whiteboards, or indeed any application which involves par-
ticipation between many/all participants.

Unfortunately, IP multicast is currently not as widespread
as anticipated. Aside from economic factors preventing its
widespread use, there are also concerns about the scalability
due to the router state needed to support many small groups
[2], and security of content/authorisation of users. Due tothese
concerns, various approaches to providing application level
multicast have been developed [2]–[18], each of which tackles
a slightly different intended application. These systems build
some form of overlay multicast distribution network, which
is almost always much more efficient than using IP unicast
alone, but less efficient than IP multicast; the overlay multicast
incurs duplication of packets at hosts where IP multicast would
duplicate at the routers between the source and the recipients,
but requires that far less than the one packet per recipient be
sent per cycle when using IP unicast.

While some previous work attempts to directly address
multi-source multicast using an overlay structure [2], [4], [8],

[15], there is no published data relating to the performance
of the systems when running in the multi-sender case, as they
would be when running a real-time interactive videoconferenc-
ing application. Given the lack of numerical results in the area
of group communication applications over overlay multicast,
it is difficult to discuss the performance of overlay multicast
in the setting for which IP multicast was originally designed.

We know, however, that such systems are possible to build.
Indeed, the popular Skype1 group communication tool builds
some form of overlay multicast to send/receive data. Skype
is, unfortunately, closed-source commercial software andno
technical discussion on what techniques were used to build
the underlying data structures is provided (what little is
known about the Skype protocol [19] was obtained by reverse
engineering of packet traces, and is not sufficient to understand
the overlay multicast algorithms used).

In this paper, we present Orta, an overlay multicast protocol
designed to cater for interactive applications, such as real-time
multiparty audio conferencing. We describe the Orta protocol,
and evaluate the performance of an initial implementation on
a range of scenarios.

The contributions of our work are: (1) An improvement of
an existing protocol designed to cater for interactive applica-
tions with many participants; (2) An open implementation of
the Orta protocol, which can be freely used in applications as
an alternative to IP multicast.

The remainder of this paper is organised as follows: Section
II discusses certain constraints which have to be met to support
interactive applications and, in particular, audio conferencing
applications. Section III covers related work in the area, while
Section IV covers the existing work on which Orta was based.
Section V provides detailed information on the Orta protocol,
with evaluation results and discussion of the behaviour of the
protocol in Section VI. We conclude the paper with some
possible future directions in Section VII, and conclude in
Section VIII.

II. GROUPCONFERENCING& CONSTRAINTS

Interactive applications such as group conferences place
some requirements on any overlay over which they might
run. In the following, we briefly review these constraints, to
motivate the development of the Orta protocol.

1http://www.skype.com/



An interactive application requires swift reorganisationof
the overlay in the face of changing network conditions to
ensure all participants are fully aware of each other at all times.
For example, members departing the group; members who rely
on the leaving group member for packet delivery require that
the overlay restructure as quickly as possible, with as little
disruption to the packet stream as possible. Likewise, a new
member must be able to interact with the rest of a group upon
joining that group. In particular, a break in a distributiontree
means that some participants may be disconnected to others
leading to a break in conversation and loss of information.

Similar to that above, low packet loss rates would be desir-
able, so reorganising the overlay structure must be performed
in a timely manner. Zero packet loss due to reconfiguration
of the network is preferred, though occasional packet loss is
acceptable when compared to longer bursts of packet loss.

Further, for conversational audio to be feasible, 400ms is
considered to be an approximate upper bound on the round trip
time of audio packets in a communication [20]. The 400ms
‘limit’ should not only consider raw RTT values, however.
If we are to consider real-time audio as the data the overlay
shall be carrying, there are additional constraints to meeting
that 400ms upper bound. The sender waits for around 20ms
to grab an audio frame, and may take a few milliseconds to
encode that frame. The receiver may buffer this packet for a
few milliseconds to take into account jitter on the input stream
of packets, and again for the decoding. With all these factors
taken into account, the additional delay may be anywhere
between approximately 50ms and 70ms, and therefore the raw
RTT to be met must be less than 350ms or 330ms respectively.
Clearly the overlay must be able to organise itself to try and
minimise latencies between hosts, and therefore must react
quickly to new information regarding shorter routes between
peers.

For a network overlay to be able to cater for an audio
conferencing application, these factors must be considered in
the design of the protocol.

III. R ELATED WORK

The most interesting and closely related work to multi-
source multicast using peer-to-peer overlays is generallysplit
between two approaches for achieving this end-goal: tree-
based approaches, and mesh-based approaches. Tree-based
approaches (e.g. [4], [9], [15]) involve directly constructing
distribution trees from any source to all other group members,
with members explicitly choosing their parents from the other
hosts in the system of which they are aware. Mesh-based
approaches instead have nodes build up a richer mesh structure
consisting of many connections between different nodes, on
top of which distribution trees are constructed. The use of
multiple connections allows some level of redundancy when
nodes fail or leave the group; further, redundant connections
require that a routing protocol be run in the application to
construct loop-free forwarding paths between group members
[21]. This robustness makes mesh-based overlays suitable
for interactive conferencing applications, whereas tree-based

overlays cannot meet the constraints for reconfiguration time
and robustness.

Of the mesh-based overlay multicast protcols published,
perhaps the most developed is the End System Multicast
(ESM) architecture using the Narada protocol [8], [22], [23],
developed at Carnegie Mellon University. Narada was the
primary inspiration for Orta, and is discussed in detail in
section IV.

In addition to Narada, there are other approaches to forming
a mesh structure over which to route data. Of note is the
protocol described in [2], in that it creates the basic mesh
structure, but does not go on to generate distribution trees
within that mesh. This presents the possibility of a more na¨ıve,
brute-force implementation of connecting multiple participants
in a conference, and is limited to group sizes of around 10
members.

Scattercast, [7], uses a protocol called Gossamer, based on
the ESM work, which attempts to cut down control overhead,
to expand to larger multicast groups. The purpose of Scatter-
cast is to provide a large multicast infrastructure which uses
SCXs (ScatterCast proXies) at known locations; these SCXs
are application-level software components, often replicated to
allow load balancing and redundancy, which form an overlay
network over IP unicast links. Clients can then connect to
SCXs using IP multicast if it’s locally available, or by using
normal unicast links if not.

Work presented in [24] offers another method of deploying
a mesh-based overlay multicast solution, by generating a
hierarchy of meshes. The aim of the work was to allow for
self-organising overlay networks to scale to the order of tens of
thousands of hosts, but does not look at the possibility of mas-
sive conferencing applications where all of those thousands are
entitled to be sources of data. The hierarchy formed generates
a mesh of lead nodes, those lead nodes being elected within
a cluster of nodes, also organised into a mesh. This form of
organisation reduces the amount of control overhead required
to maintain connectivity across all group members from that
of the case where we have one single mesh encompassing all
nodes.

HyperCast, [14], is one other system which tackles overlay
multicast groups with many-to-many semantics. HyperCast
forms a hypercube from group members, group members
becoming vertices in the hypercube. Spanning trees are em-
bedded into the hypercube easily, while control traffic is
transmitted along the edges of the hypercube.

Skype on the other hand, is an example of a peer-to-
peer conferencing and messaging system currently in use on
the Internet, which also offers lookup capabilities on users
within the system. An analysis of the protocols Skype uses are
presented in [19]. One interesting point to note on the analysis
of the Skype system is that hosts forwarding separate data
streams onto other hosts further down the overlay structure
will mix together data streams, thus reducing packets which
have to be sent to nodes further from sources of a distribution
tree. Much of the previous overlay multicast work discussed
already works on the idea of replicating a packet as and when



necessary for it to reach all endpoints on the overlay, but audio
applications do offer this opportunity to combine data streams
together, thus combining two or more packets of data into one.

Of these, it is the Narada protocol which we feel closest
suits our goal of providing an overlay to be used by interactive
applications, and so what follows largely centres on what
improvements can be made to Narada to suit our needs.

IV. T HE NARADA PROTOCOL

In the following we introduce the Narada protocol, from
which Orta is derived. A more detailed description of Narada
is available in [8].

Narada is a fully distributed peer-to-peer data distribution
protocol, designed to be self-organising and self-improving. It
relies on peers in the network observing certain performance
metrics, which are used to gradually improve the state of
the overlay. The metrics observed are application specific:
for real-time communications, latency is typically used asthe
metric, due to the timing constraints mentioned in Section II.
Available bandwidth is also an issue once transmission quality,
the potential audience (and their potentially varied connection
types), and the size of the group are taken into consideration.

Narada employs a two step process to building distribution
trees. Firstly, a rich graph, termed amesh, is constructed
between members of the group (more fully connected than
a tree, less so than a fully connected graph); then a routing
protocol is run over the mesh to construct spanning trees for
distributing data, each tree rooted at a source within the group,
thus allowing for the possibility of group communication. The
following observations motivate this approach:

• The construction of one tree is prone to failure, as it only
takes one node failure to disrupt the tree structure.

• A single tree cannot be optimised for all participants.
The two-step approach allows the mesh layer to handle

group membership, along with problems such as how to opti-
mise the mesh or how to repair a partitioned mesh structure,
with the routing protocol running independently on top of this
layer. Multiple links between peers allows for alternate routes
on members leaving the group. The additional links between
nodes also allow for each distribution tree to potentially be of
a higher quality for the host to which it belongs than a single,
shared spanning tree would be.

Narada peers constantly probe existing links to ensure
that they remain suitable for the application after addition
to the mesh. This is done by sending regular ping packets
to neighbours to measure latency between peers. Key to the
protocol is its ability to probe existing and potential links in
the mesh structure, and the mechanisms to add or remove links
from that structure, all with the goal of improving the set of
links included in the mesh.

Of note is that the mechanisms for adding or removing links
from the mesh are different, and evaluate the utility of a link
differently.

Narada runs a distance vector algorithm over the mesh, and
calculates the distribution tree for each source using reverse
shortest path between each recipient for each source, as is

done in DVMRP [25]. The distance metric advertised via the
distance vector algorithm is that of the weight of the link
derived by whatever application specifics are required (e.g.
latency), rather than simply the number of hops from source
to destination. While conceptually the routing algorithm could
be viewed and implemented as an entirely separate entity from
the mesh structure upon which it runs, it makes sense for
the distance vector information required to be passed between
peers to be sent as part of the regular refresh packets Narada
defines. Thus, the process of propagating routing information,
as per the distance vector algorithm, is also the process by
which members are able to monitor the liveliness of the other
members.

V. THE ORTA PROTOCOL

While Narada was designed to support real-time appli-
cations such as video conferencing, it has primarily been
used with one-to-many non-interactive streaming applications.
Streaming media applications have relatively long media play-
out buffers (in the order of seconds) and can tolerate brief
disruptions in delivery; the relatively slow convergence time
of Narada after a change in group membership is not a
problem for these applications. When considering interactive
conferencing applications, however, it becomes clear thatrapid
convergence is important. Interactive applications buffer only
a small amount of data, and need a protocol that can rapidly
adapt to changes in network conditions and group membership.
In the following we describe a new protocol,Orta, which we
have developed to improve the performance of interactive real-
time applications.

Like Narada, Orta is a fully distributed, self-organising peer-
to-peer data distribution protocol which attempts to improve
overlay quality during the lifetime of a session. Orta is based
on Narada, but distributes the control information in a different
manner, to inform the entire group of state changes as quickly
as possible and improve convergence times after a change in
group memberhsip.

As discussed in Section IV, a key feature of the Narada
protocol is that links can be added and removed over the life-
time of a group, so that performance of the mesh is improved.
Narada uses a distance vector routing algorithm to embed
distribution trees within the mesh. While this is simple to
implement and not computationally expensive, such algorithms
do not allow for quick propagation of information relating
to network state changes and are slow to converge. Orta
replaces the distance vector algorithm with link-state routing to
maintain link state at each peer, over which Dijkstra’s shortest
path algorithm can be run. By changing to a link-state routing
mechanism, state changes at any group member are flooded
to the entire group, so all group members are informed as
quickly as possible about the state change. This improves the
convergence time of Orta, an important feature for a protocol
designed for use with interactive teleconferences.

While the change to link state routing requires more com-
putation at each peer compared to what is required in Narada,
the rate of propagation of information provides much more



recent information for each node which can then be used to
provide a more robust network structure for the carrying of
multicast data. The flooding nature of the protocol means that
peers will be less likely to arrive at differing states capable of
creating loops in the network.

This rather major modification to how peers interact also
allows for the algorithm responsible for dropping links to be
changed, to mirror that of the algorithm designed to allow
Narada to add links. Measuring the utility of a link by the
same mechanism on both adding and dropping a link allows
for the same threshold calculation to be used, and should offer
more reliable decisions made by the link dropping mechanism.

In the following, we now describe the operation of the Orta
protocol in detail.

A. Overlay Construction and Group Membership

Much as specified for Narada, Orta uses a two-stage process
to build the overlay structures required to route data from any
source in the group to all receivers: the initial stage builds
a control mesh, then a link-state routing algorithm is run to
construct spanning trees from each source for data distribution
purposes.

No single Orta peer is solely responsible for maintaining
group membership data; this responsibility falls onto all peers
in the group. Sharing this burden limits group sizes by
requiring that membership state be maintained and distributed
to all peers, but allows for a high level of redundancy, and
enables a new member to join by contacting any peer. Link
state data information flooded on arrival of a new member, on
a member leaving, on the addition of a new link, and on the
removal of a link.

Each member regularly signals to its neighbours within
the mesh that it is still alive by means of a refresh packet,
which contains a sequence number. These refresh packets are
also used to carry the routing information needed for data
delivery, as described in Section V-D, with each peer flooding
information regarding significant link weight variation (i.e.
delay variation) between it and its neighbours on a regular
basis (every 30 seconds, say).

On receipt of any of these flood packets, a peer runs
Dijkstra’s shortest path algorithm using the link state it has
to generate a shortest path spanning tree from each group
member to generate the routing table at each peer. This can
clearly lead to a lot of computation being performed at each
peer, though ideally network conditions would not change all
too frequently; if no state has changed, no computation is
required.

B. Overlay Maintenance

Orta requires that each member monitor its own links, and
flood information to the rest of the group regarding those links.
Each group member collects information about the state of
each link in the mesh on receipt of floods from other members.
As in Narada, the burden of maintaining group membership
data falls on each member of the group; in addition Orta peers
must store link-state information.

Orta peers send information relating to links to local neigh-
bours to the entire group by flooding the information (as
opposed to Narada peers, who send known information about
the whole group only to neighbours). Thus, the peer respon-
sible for probing an existing link in the mesh is always able
to provide the group with the current information regarding
the state of that link. This method of propagating control
information allows for: 1) Dijkstra’s shortest path algorithm
to be calculated over the link state to derive routing tablesat
each member, covered in Section V-D; and 2) faster reactions
to changes in network conditions, owing to the nature of the
propagation mechanism.

If the weight of a link has not changed since the last
cycle, a peer may opt to not send information regarding that
link. Members must still send a refresh packet containing a
sequence number as normal, and so it might be the case that on
many refresh cycles, little more than the sequence number is
flooded for any given group member. Each member must still
forward information on each link it owns, even if at a reduced
rate, for the same reasons as mentioned above: to allow for a
gradual repair to take place if the mesh becomes partitioned
and link state changes at any point during that partition.

Looping of flooded packets is avoided by having said pack-
ets carry the incremented sequence number from its source.
This simplifies the handling of flooded packets somewhat, even
though all operations over control state should be idempotent;
for example, receiving two copies of a packet to add a link
from member A to member B should not result in two link
entries for A→ B.

To reduce the amount of information flooded relating to
each link in the group, the Orta protocol requires that a dis-
tinction be made between the actual weight, and the advertised
weight, of a link. The actual weight of a link is the current
latency observed over a link, while the advertised weight
is a recently observed latency on that link. The advertised
latency need only change when the difference between the
actual latency and the advertised latency is sufficiently large.
This should also help reduce computational load at each peer,
assuming network conditions are stable enough so as to not
force an update on the advertised weight.

1) Members Joining:Orta, like Narada, does not concern
itself with lookup mechanisms to locate an existing group
member. Location of a group member is assumed to take
place via some other mechanism. Any Orta peer is capable
of admitting entry of a new peer to the group.

On entry to the group, information on the new member
and new link is flooded to the entire group, thus allowing for
distribution trees to immediately take into account the new
member, even though the initial link chosen might not be the
best possible for the group. Once a new member is admitted,
mechanisms for improving the quality of the mesh take over.

On a successful join the existing member should send the
new host both member information and link-state information;
this information should allow for quick integration into the
mesh network structure.

These methods allow for a substantially faster integration



into the group than the distance-vector mechanism Narada
employs, which will require some time for the group to learn
about the new member, and also for the member to learn about
the rest of the group.

2) Members Leaving:On leaving, a member informs the
group of their departure and also of any links which will
be dropped by this. Again, this allows for the peers to
immediately be able to restructure their distribution trees such
that the new mesh topology immediately comes into effect.
Orta peers may leave immediately after informing the group of
their departure, in contrast to Narada peers which are required
to forward data until such a time as the routing protocol has
routed around the leaving host (by means of introducing a
“transient forward” value, guaranteed to be higher than any
weight achievable by a real link yet also lower than the infinite
cost which signifies no link is in place).

Unlike Narada, Orta does not specify a transient forward
state for a link, nor is a peer required to continue to forward
packets along a link for some reasonable length of time. Pro-
vided the mechanisms which deal with adding and removing
links have created a well-connected mesh, the departure of a
peer will not cause problems.

3) Member Failure:In the event of a member failure, state
relating to that member will linger in each other member’s
local state. This can lead to data loss due to incorrect routing
tables. Orta employs the same mechanism as Narada for
detecting and repairing partitions in the mesh structure, as
detailed in Algorithm 1, and relies on peers regularly sending
sequence numbers to the rest of the group.

Orta requires that a peer who discovers a failed member
flood to the rest of the group that both the failed member and
any links to or from that member are to be removed, by making
use of the link-state information held locally. This should
naturally happen on both sides of a partition, thus clearing
any state relating to the failed member at all remaining peers.

Orta peers must be able to incorporate into their local state
information relating to unknown members or links carried in
a refresh packet, as state changes on one side of a partition
will not be observed by members on the other.

C. Improving the Quality of the Mesh

Key to the Orta protocol is that links are added and removed
in a bid to improve the quality of the mesh based on some
metric. The mechanism employed in Orta for dropping links
is entirely different to that of Narada, and is shown in Section
V-C.2.

1) Adding Links: Orta peers add mesh links in exactly
the same way as defined by Narada, and require that peers
attempt to seek out links between each other which offer some
significant improvement for the data trees, or alternatively add
links to help ensure that a partition in the mesh structure is
less likely to occur.

Group members randomly select peers within the mesh
to which they are not connected, and probes those peers to
determine the properties of the links between them. If latency
is the metric the protocol is concerned with, this is achieved by

Algorithm 1 Algorithm used by peeri to detect and repair
partitions in the mesh structure.

Let Q be a queue of members for whichi has stopped
receiving sequence number updates for at leastTmin time.
Let Tmax be maximum time an entry may remain inQ.
while true do

UpdateQ

while !Empty(Q) and Head(Q) is present inQ for ≥

Tmax time do
j = Dequeue(Q)
Initiate probe cycle to determine ifj is dead, or to add
a link to it.

end while
if !Empty(Q) then

prob = Length(Q)
GroupSize

with probabilityprob do
j = Dequeue(Q);
Initiate probe cycle to determine ifj is dead, or to
add a link to it.

end
end if
sleep(P) // Sleep for time P seconds.

end while

sending them a ping packet. An Orta peer, by holding all link
state for the group, and receiving a ping packet for a potential
neighbour, uses Algorithm 2 to determine whether a link to
another group member should be added. The utility of a link
is essentially a measure of how much that link improves the
quality of the mesh; the utility of a link lies in the range0..1,
with 1 being the highest attainable utility.

On adding a link after receiving a favourable turnaround
time to a ping packet, the round trip time on that packet is
advertised as the latency for the new link, which the normal
mechanisms used to monitor the weights of links to neighbours
can then modify over time.

Algorithm 2 Evaluate Utility of link L

utility = 0
for each member,M , such thatM 6= localhost do

Ln = new latency toM , with L in place
Lc = current latency toM , without L in place
if Ln < Lc then

utility+= (Lc−Ln)
Lc

end if
end for
if utility > threshold then

add link L

end if

2) Removing Links:Orta benefits from having all link state
available at each peer by being able to mirror Algorithm 2 to
evaluate a link by the same measure when dropping links.

The requirement on such an algorithm is that the utility
lost on dropping a link is the same as if the link were to be



added again immediately, given all other network conditions
remaining stable.

Given that Orta peers store complete link-state information
for the peer group, there is enough information available
locally at each peer to calculate the utility of a link by running
a modified version of the algorithm used to add links.

Algorithm 3 Drop Links
utility ⇐ 0
L ⇐ link L to randomly selected neighbour
for each member,M , such thatM 6= localhost do

Ln ⇐ new latency toM , without L in place
Lc ⇐ current latency toM , with L in place
if Ln = ∞ then

return
else if Ln > Lc then

utility ⇐ utility + (Ln−Lc)
Ln

end if
end for
if utility < threshold then

drop link L

end if

Algorithm 3 outlines the actions Orta takes to determine the
usefulness of a link. Given unchanging network conditions,the
utility of a dropped link would be exactly the same as if it were
to be added again. For this to work, the threshold for dropping
a link must be calculated as if that link were not in place (as
the utility if the link were being added would be compared to
the threshold before the addition of the link).

Little has to be changed from the Algorithm 2 for adding
links; it is simply a reverse of the link addition. New overlay
distances are those without the link being evaluated while
current overlays distances are those with the link in place;
if the utility of a link is below a given threshold – rather than
above – the link will be dropped.

In normal circumstances, the dropping of a link will not
create a partition in the mesh, provided that when checking
the latencies, the observation of any infinite length links is
enough to determine that the link should not be dropped.

By introducing this altered mechanism for dropping links,
an Orta peer can judge the adding or removal of links against
the same threshold calculation.

3) Calculation of the Threshold:The threshold on which
the adding and removing links in both Narada and Orta is
difficult to specify for all network conditions. The threshold
must be dependent on the size of the group, the number of
neighbours a peer has, and also the number of neighbours the
peer at the other end of the link has. Multiplying by these
numbers alone would give a threshold value far too high to be
able to add any links, though the whole lot can be multiplied
by some small constant to deliver a useful threshold value.

It makes sense for the threshold to increase sharply once
a peer has achieved a handful of links; the idea behind the
threshold is that a peer should be able to achieve some links

relatively easily, and after attaining those it shouldn’t be able
to add further poor quality links, only higher quality links.

Given the factors that the threshold must rely on, and a
peer A with its neighbours B, the threshold might be easily
calculated as:

n = no. of neighbours(A)∗no. of neighbours(B)
m = number of members

threshold = const ∗ n ∗ m

The calculation of this threshold value is covered further in
Section VII.

D. Data Delivery

Routing tables are re-calculated on any link-state change
using Dijkstra’s shortest path algorithm. The routing tables
stored reflect the nature of the peer group being one-to-many:
rather than having a lookup table ofdestinationagainstnext
hopas might be seen in a conventional IP router, here it makes
more sense to storesourceagainstnext hop(s).

To calculate the routing table then, Dijkstra’s algorithm is
run for each source in the peer group. The local peer can then
simply trace its own location in the spanning tree created, and
store the outgoing links on this tree, if any, in the routing table
against the source. If the local peer is a leaf-node on the tree,
no entry need be added to the routing table for this source.

Using link-state flooding, however, more computation is
required to arrive at the same result, though the outcome of this
computation should be more up-to-date, and therefore precise.
The worst case complexity of Dijkstra’s inO(mlogn), where
m is the number of links in the network, andn is the number
of nodes. Consider that at each peer, the algorithm will run
once for each member in the group; with this in mind, the
computational complexity of recalculating routing tablesusing
this scheme is actuallyO(mnlogn).

Once the routing tables have been calculated, they can
simply be used for lookup purposes on the receipt of any data
packet. The routing code must then both send data up toward
the application layer, while also duplicating the packet for any
outgoing links dictated by the routing table.

The routing table can only be affected by control traffic
when link-state changes, at which point the routing table
must be recomputed. Given that transmission times on control
information packets are bound primarily by latency between
hosts in the system, there will be short periods of time whereby
the system is yet to converge on the same solution. Due to this
fact, and that the fact that the system will constantly attempt to
improve the quality of the links in the mesh, it is entirely likely
that some packets may be lost or duplicated during transition
periods. Further, routing tables at peers might allow looping
of data packets during a transition period. These transition
periods should not last long, however, due to the nature of
the flooding mechanism used to distribute the control traffic.
Data packets carry a time-to-live field, which would prevent
looping packets from flooding the overlay until the group is
destroyed.



The increased frequency of state changes with a larger group
precludes this protocol from being used for larger groups
beyond the order of a few dozen members, due to the amount
of computation taking place. The combination of increased
computation, and more frequent state changes suggests thatas
group size increases, the time taken to reconfigure all routing
tables in the group will take longer.

Orta uses UDP for data transport, leaving congestion control
to the protocol being carried through the Orta links. This
simplifies the design of Orta, and allows for a great deal
of flexibility. Conferencing applications would typicallyuse
RTP as their transport; RTP profiles for different types of data
provide their own method of offering congestion control, so
to force an assumption at a lower level would no doubt affect
the performance of the RTP transport.

E. Summary

As in Narada, Orta uses a two-step process to construct the
spanning trees it uses for multicasting of data, the first step
involving the construction of a richer graph between nodes
called a mesh, and the second being to create spanning trees
rooted at each source in the group via some routing protocol.

Orta utilises link state routing rather than distance vector
routing, which offers some very important benefits:

• Members are brought up to date with all state changes
much faster.

• Owing to the storage of link state, link removal is more
accurate.

• Also owing to the storage of link state, Dijkstra’s shortest
path algorithm can be used at each peer to calculate
spanning trees from each source, and can do so to have
the group arrive at a set of distribution trees which all
‘agree’, due to the flooding process.

These changes alone should suit Orta to real-time applica-
tions such as audio conferencing.

VI. EVALUATION

The goals of our evaluation are to demonstrate that the Orta
protocol generates robust, well connected, overlay networks
and reacts rapidly to changes in membership. As described in
section II, these properties are required for effective interactive
conferencing applications. In the following, we show that Orta
works as specified, providing good performance characteris-
tics for interactive real-time applications. Full detailsof the
performance evaluation are available in [26].

One key aspect of the evaluation is that as this overlay
is designed for multi-source multicasting of data between
all group members, all experiments dealing with application
layer data will send data from each source simultaneously,
unless otherwise stated. This differs from much of the other
work in the area of network overlays to provide multicast to
applications, which generally deal with one source of data.

We begin with a discussion of the testing environment, then
demonstrate that the protocol produces appropriate overlays,
and evaluate the worst case link stress, adaptability of the
protocol, and volume of control traffic generated. For all tests,

30ms

5ms

3ms3ms

Inverness

Glasgow

Manchester

Leeds

LondonExeter

22ms

(a) UK Dummynet.

Glasgow

London

Massachusetts

California

Paris Berlin

50ms

40ms

25ms

5ms 5ms

(b) Cross-Atlantic Dummynet.

Fig. 1. Testing environments. Boxes containing numbers represent the one-
way delay on links, shaded boxes represent switches, empty circles hosts.

the threshold for addition or removal of links was calculated as
described in Section V-C.3, with the constant value being set
to 0.02. The importance of the threshold is discussed further
in Section VII.

A. Testing Environments

The Orta protocol was tested in the following environments:

1) Varying sized groups of machines on a LAN, with group
sizes between 4 and 36 peers. These machines were all
1GHz Pentium IIIs running Linux 2.4.21.

2) A small network of systems linked together by transpar-
ent bridges running FreeBSD with Dummynet function-
ality enabled to impose latencies on links. This network
consists six 450MHz Pentium IIIs running Linux 2.6.11,
to act as end-hosts on the network, and five machines
running FreeBSD 4.11 capable of functioning as trans-
parent bridges, or perhaps act as additional end-hosts.

The first environment is useful for observing how the
protocol behaves at different group sizes; the second simulates
a more realistic setting where peers are sited at different
geographic locations, imposing real latencies on packet trans-
mission.

Details of the dummynet networks constructed can be seen
in Figures 1(a)2 and 1(b)3. The topologies were chosen to offer
real-world latencies given group members at different locations
around the world, as might be expected in typical group
conferencing applications; place names are simply useful to
get a rough idea of the physical geography emulated.

B. Overview of Protocol Behaviour

Figures 2 and 3 show the typical overlay structure and
distribution trees for the networks presented in Figures 1(a)
and 1(b), using the threshold defined earlier. In each, subfigure
(a) shows the mesh superimposed over the physical topol-
ogy, while subfigure (b) shows the logical network structure.

2Measured from Glasgow; Inverness: uhi.ac.uk (60ms); Manchester:
www.mbs.ac.uk (45ms); Leeds: www.leeds.ac.uk (45ms); London:
scary.cs.ucl.ac.uk (50ms); Exeter: www.ex.ac.uk (50ms).Ping times are
approximate to average ping time logged at start of evaluation.

3Measured from Glasgow; California: kame.isi.edu (175ms);Mas-
sachusetts: mit.edu (110ms); London: scary.cs.ucl.ac.uk(50ms); Paris:
www.univ-paris3.fr (50ms); Berlin: ping www.tu-berlin.de (60ms). Ping times
are approximate to average ping time logged at start of evaluation.
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Fig. 2. The resulting mesh over the UK dummynet, and the distribution trees
rooted at each source.

Subfigures (c) through (h) show the distribution trees rooted
at each source, identifying recipients by abbreviated location
names.

Figure 2 shows a typical mesh structure formed on the UK
network. The mesh is well connected with a relatively low link
stress, and is generally robust to failures. It exhibits a higher
degree of dependence on centrally located and well connected
hosts than might be desired (e.g. a failure in Manchester would
partition the mesh), but this largely matches the topology of
the underlying network.

Orta has created few connections over the longer physical
links, instead creating many connections over the shorter
links. This is expected, since Algorithm 2 will favour shorter
links due to the desire to minimise communication latency.
Connectivity to distant peers could be increased by lowering
the threshold for adding links. This would make the network
more robust to failure, at the expense of additional link stress
and (potentially) end-to-end latency.

The mesh structure Orta forms over the Cross-Atlantic
network, as seen in Figure 3, has similar properties to the UK
network. Again, connectivity of the mesh could be improved
by lowering the threshold required for adding links. The worry
is that a departing group member can partition the mesh, which
should be avoided if at all possible by the Orta peers.

These results demonstrate that Orta generates appropriate
topologies for the intended applications. Real-time interactive
conferences are expected to be formed from members inter-
ested in the topic of conversation, who can be expected to
remain in the group over its lifetime. Unlike other classes of
peer-to-peer application, group membership dynamics are not
expected to be relatively limited, and the key point is to deal
with network failures and topology changes. Accordingly, we
do not view the dependence on some well connected central
peers to be a problem.
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Fig. 3. The resulting mesh over the Cross-Atlantic dummynet, and the
distribution trees rooted at each source.

C. Worst Case Stress

The very nature of the overlay means that individual hosts
are sending and receiving more data packets than the appli-
cation layer is aware of. The number of packets duplicated is
determined by how many links the protocol creates to or from
each host for a given network setup. This duplication raises
two concerns:

1) Additional bandwidth usage over links to end-hosts.
While the discussion of the protocol has not consid-
ered bandwidth, it would require serious consideration
if connection types varied considerably. Clearly, many
connections to be carrying data over a modem link is not
as desirable as the same number of connections through
an ADSL link, or an Ethernet link.

2) The increase in packets to be processed at each host
leads to increased processing costs in the overlay code
executing at the application layer, and puts additional
pressure on the networking subsystem of the host oper-
ating system.

The stress of a link is simply defined as the number of
identical copies of a packet carried by a physical link to
deliver that packet to the rest of the peer group. Worst Case
Stress is then the maximum stress value observed on any
physical link in the group. In comparison, all links in a
properly configured IP multicast group have a stress of 1,
while a naı̈ve conferencing overlay which created a connection
between every pair of members over which the members copy
packets directly to all recipients would have a physical link
stress ofn on access links (n = number of recipients). Orta
should attempt to minimise the stress of links throughout the
group by spreading the duplication of packets throughout the
distribution trees created from each source in the group.

A goal of Orta is to keep link stress low if possible,
spreading the packet replication load across the group. This
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is countered by the desire for a well connected mesh that is
robust to failures and prefers low latency links, both factors
that may lead to an increase in the worse case link stress.

The physical topologies designed specifically for testing the
worst case stress of a link are shown in Figures 4(a) and 5(a),
and were designed to observe how Orta behaves in smaller,
more artificial, environments. The resulting mesh structures
are shown in Figures 4(b) and 5(b).

The quality of the overlay in Figure 4(b) suffers by not
creating enough connections between peers. This is, in part,
due to the highly artificial nature of the overlay; if node E
was behind an access link with an additional latency of a
few milliseconds, the peers on the periphery of the network
would be more likely to create connections between each other,
since routing data through E would be more expensive. The
distribution trees for this network all route through E, andE
duplicates packets to all other group members. The worst case
stress for the network is 4.

In Figure 5(b), however, Orta has created many more links
between peers. Peers A and F bridge the two halves of the
group because they are the closest together of the two halves.
The worst case stress in this example is 3, and occurs on
the links from A to its connecting switch, and from F to its
connecting switch. The stress of the high latency link is 1.
Orta, having partitioned this group into the two distant groups
with a connection in the middle, has avoided the potential
worst case stress of 5, in this case.

These network are highly artificial, but demonstrate that
Orta is behaving in an appropriate manner, producing an
overlay with acceptable worst case stress whilst avoiding links
that would excessively induce latency.

Considering the UK network in Figure 2 for less artificial
results, we can see that the worst case stress on any physical
link is 4 at Manchester. A link that appears heavily loaded
is that from Exeter, however despite carrying three TCP
connections, this physical link is not used as much as it may
seem. While the highest stress level it sees is 3, this stresslevel
is only actually met by considering the distribution tree rooted
at itself; by considering the other distribution trees, Exeter’s

stress level is only 1.
The Cross-Atlantic network in Figure 3 exhibits a worst

case stress of 3 at both London and Paris, but in this scenario,
those stress levels are met for numerous distribution trees. The
worst case stress is clearly affected by the number of links that
the protocol creates for the peer group.

In summary, we believe the worst case stress results for
Orta are acceptable. It is clear that overlay topologies could
be generated that would cause less link stress, but these come
at the expense of additional latency and are not appropriate
for the application.

D. Adaptability of Mesh to Changing Network Conditions

Since the intention of the mesh approach to building distri-
bution trees for carrying data is that the quality of the mesh
gradually improves over time, it’s worthwhile observing how
Orta behaves when the network conditions change during the
lifetime of a peer group.

The following alterations to the dummynets were chosen
to observe the behaviour of the protocol under different
conditions during the operation of the overlay; some ‘long’
links have been shortened, and some ‘short’ links have been
lengthened.

• On the UK dummynet network, the latency on the bridge
between Inverness and Glasgow was reduced from 30ms
to 5ms, thus removing that long link to try and prompt
more links to be formed up to Inverness. Further, the
latency on the bridge separating London and the switch
to which is is attached was increased from 3ms to 100ms,
providing a longer link which Orta should try to avoid.

• On the Cross-Atlantic dummynet network, the latency
on the bridge between California and Massachusetts was
reduced from 50ms to 5ms; the latency on the bridge
separating Paris and Berlin from the rest of the network
was increased from 5ms to 100ms; finally, the latency on
the final bridge before Berlin was increased from 5ms to
50ms.

The behaviour of Orta with these changing conditions over
the UK Dummynet can be seen in Figures 2(b) and 6(a). The
reduction of latency to Inverness has allowed more links to be
added, though the removal of links to Glasgow is surprising.
The assumption is, again, that without additional weights on
access links, the difference in distance from Manchester to
Inverness (via Glasgow or not), for example, is negligible.
Orta has reduced the number of links to the London host,
having had the latency to it increased considerably. On recon-
figuration, Orta is still placing too few links to some nodes.

The variation observed in the Cross-Atlantic dummynet,
Figures 3(b) and 6(b), is minimal. Reducing the latency to
California has allowed Orta to create one further link in
the mesh, connecting California to Glasgow. No addition of
links has occurred elsewhere. For the London/Paris/Berlin
peers, this is understandble, due to the similar increase inthe
latencies observed on those links; by reducing the latency to
California, it should be expected that a new link be formed to
that peer.
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Observation of the round trip time (RTT) between peers over
the lifetime of overlays on both networks, and in particular
while the overlays are reorganising, show that delays between
pairs of hosts peak directly after the latencies on links have
been altered, after which the overlay adds and removes links.
The overlays manages to reduce the modified RTT between
any pair of hosts (as described in Section II) to beneath 400ms
within 30 seconds, without disrupting data flows.

The behaviour of the mesh in these situations shows that
Orta can provide reasonable overlays for use in carrying real-
time data, and also that the mesh is capable of reacting to
changes in the network topology quickly enough to avoid
unacceptable delays for extended periods of time between
peers when routing through the overlay.

E. Time Taken to Repair a Partitioned Mesh

While it is possible to have the mesh disrupted by a member
leaving, the trickiest situation to deal with is that of a member
failure. Group members must determine that this member has
failed as per Algorithm 1, and attempt to clean up state.

In order that the overlay could be partitioned with ease,
the code responsible for attempting to add links during the
normal operation of the overlay was disabled, and timer
variables chosen to demonstrate how the mesh repartitions
itself. We assume that the mesh is partitioned on a peer dying
unexpectedly, leaving all physical links in place.

To demonstrate the repairing of an overlay partition, a chain
of seven peers was constructed, as per Figure 7(a). Group
member D was stopped abruptly (‘kill -9’), the other peers left
to repair the partition created as part of their normal running
cycle.

In this test implementation, refresh packets are sent every
30 seconds, and sequence numbers checked at peers every 15
seconds. With these values, it took 43 seconds before the first
connection was formed from one side of the partition to the
other.

With new links in place, flooding of any control information
could reach all group members, thus allowing normal protocol
mechanisms to bring peers up to date. The implementation
set the upper bound for silence from a peer to an arbitrary
70 seconds; after 72 seconds member D is declared to have
failed, and removed from the local state of all peers.

A B C D E F G

(a) The initial logical network
topology.

A B C E F G

(b) The logical shape of the net-
work after repairing the partition.

Fig. 7. Logical view of a peer group both before and after a partition.

In the time that the group is partitioned, state changes on
one side of the partition are not observed on the other; in all,
it took a further 118 seconds for the link-state stored at all
peers to match again. The delay for this part of the process
is borne out of peers waiting for refresh packets to arrive in
order to update the link-state, and as defined in Section V-B,
peers are not required to send information on all links at each
refresh cycle.

These delays are affected greatly by the implementation of
the protocol; a more frequent refresh cycle would be used
in an interactive conferencing environment. More frequent
refresh packets or checking of stored sequence numbers from
other peers would allow for a faster detection of silent peers;
a reduction on the upper bound used to determine when a
peer has failed would have seen group member D declared
as having failed earlier than it was. These timer variables
would naturally be reduced for real-world use, and serve as an
example of where the real delay exists in not only partitioning
a mesh, but also repairing link-state at all peers.

It is also worth noting that under normal operation a
partition formed in the mesh, perhaps from a member failing,
may be repaired before the code dedicated to fixing a partition
is initiated. The mechanism to randomly ping peers for the
purposes of evaluating new links is likely to ping a member
on the other side of the partition. It is clear, however, thatthe
algorithm provided by Narada for purpose of partition repair
is not ideal for real-time applications.

F. Volumes of Control Traffic Sent

This is an interesting metric due to the very different way
that control traffic is handled in the Orta protocol comparedto
the Narada protocol. Values presented are from running each
group size for 5 minutes.

In the implementation of Orta, most control traffic is carried
over TCP connections; the only exception to this being the
pinging mechanism, which uses UDP as a carrier. The average
volume of control traffic sent by each group member over TCP,
as shown in Figure 8(a), appears to rise linearly. This makes
sense, in that provided link state remains reasonably constant,
then most TCP traffic being sent is the regular refresh packets
from each peer. The average volume of UDP traffic sent over
the lifetime of the group appears to remain constant at different
group sizes, presumably due to the number of neighbours each
peer has in the mesh does not vary significantly. As group
sizes increase, so too does variation in the maximum volume
of data sent on each type of connection, suggesting that even
though the average number of neighbours a peer has in a group
remains constant, larger groups do see some peers with larger
neighbour sets than others.
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Fig. 8. Variation in volumes of control traffic sent during the lifetime of the
mesh at various group sizes.

Plotting the total control traffic sent over the whole peer
group in Figure 8(b), we see that the total volume of control
data required to maintain the group rises linearly with group
size. This is a useful property in that the limiting factor for
larger group sizes is not the volume of control data, but may
actually the amount of computation involved at each peer.
Further testing would be required to determine if this was
the case.

G. Summary

Orta provides many desirable properties for real-time appli-
cations. The volume of control traffic sent during the lifetime
of a peer group is reasonably predictable, based on group size.
Round trip times achieved on the test networks are within the
limits required for conversational audio to take place, andthe
protocol proves to be capable of adapting to changing network
conditions. Orta achieves worst case stress of substantially less
than that of a naı̈ve unicast application. The mechanism used

to fix mesh partition is not ideal for the target application area,
but there are potential improvements which can be made here,
covered in brief in Section VII.

While more testing over a larger variety of networks would
be required to boost confidence in the new protocol, these
results are promising.

VII. F UTURE DIRECTIONS

Performance of the mechanism to deal with a partition in the
mesh structure is highly dependent on the choice of parameter
values in certain scenarios, and does not make full use of the
available information in others. There are two situations where
a partition would have to be repaired: on a member exiting,
and failure of either physical links or of a group member.

For the former case, it is reasonable for peers process-
ing leave notifications to spot members who are no longer
reachable, and to preemptively attempt to add links to those
members until all members can be reached once again. Our
current implementation does not do this, and must therefore
wait for the random probing to repair the mesh, causing
additional latency when a departing peer partitions the mesh.

Considering failures of links or group members, a peer
could monitor ping packets not yet returned from neighbours
and having a peer assign some large link weight (less than
infinity) to a neighbour which has not yet returned a packet.
This would allow for the mesh to route around a failure via
normal means before it might even be declared as having
failed by Algorithm 1. With a well-formed mesh, the routing
changes would happen swiftly; if the peer formed the only
route between two halves of the mesh, normal link discovery
mechanisms would quickly allow for new links to route over.
In either eventuality, it appears that it should be possibleto
repair the mesh in a matter of seconds, rather than minutes.

Neither issue is significant in the usual case: the mesh is
generally well connected, and will not usually be partitioned
by a departing member, and failures of members or links are
assumed to be rare. The changes suggested above are useful
for robustness in rare cases, not in the general case. A future
implementation of Orta will incorporate these alterationsto
cater for rare cases.

Another issue is choice of the threshold used to determine
whether or not a link should be included in the mesh. Thresh-
old value calculation currently has to be almost hardcoded to
the type of network that the overlay will be running across.
This is certainly not ideal, and is an area that might require
considerable effort to derive a proper solution.

Further difficulty in choosing the threshold value is that it
causes the overlay to behave differently in different typesof
environments. It might be beneficial to have different thresh-
olds ‘hardwired’ for different environments, so a threshold
might be more appropriate for conferencing between home
users over ADSL links, while another might be better for
groups of users on the same LAN. Adaptation of the thresh-
old calculation during the lifetime of the overlay could be
achievable, perhaps based on group size, number of sources,
variability of link types, latencies between group members, to



name a few. Evolutionary algorithms could perhaps be of use
here, to allow the system itself to decide what threshold to use
based on results from past attempts at threshold values. This
approach would require substantial testing before real-world
usage.

Other potential enhancements might be analysis of the
benefit of mixing multiple audio streams to minimise the
amount of duplicated traffic sent through the overlay, and
analysis of the suitability of clustering techniques [24] to
enable larger groups. These are outside the scope of the present
protocol, but would form the basis of interesting extensions.

VIII. C ONCLUSIONS

By altering the mechanism the Narada protocol used for the
distribution of control state to group members, Orta allows
forms a more responsive peer-to-peer overlay, geared toward
the transport of real-time audio between many recipients. This
change brings with it slightly increased computational loads
at all peers, but allows a more accurate mechanism to be
developed for the purpose of dropping links, and removes
the requirement on peers to continue to forward data for
some time after leaving the group. In addition, the immediate
advertisement of a new member to the group allows the new
member to participate with the group immediately.

As a proof of concept we have also integrated Orta with
an existing multicast audio conferencing application [27],
demonstrating that it can replace IP multicast in real-world
conferencing applications. An implementation of the Orta
protocol is available fromhttp://orta.sf.net/ under
an open source license.

Orta is a new protocol, derived from the Narada proto-
col, appropriate for the carrying of real-time data to small
or medium-sized conference groups in the order of 10s of
members. The protocol offers distribution trees optimisedfor
each source, and will reconfigure in light of changing network
conditions, offering ideal conditions for the carrying of real-
time data in the absence of IP multicast.
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