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Abstract—Packet loss is a major problem for real-time Internet
applications. Markov models of packet loss are often used to
develop and evaluate the performance of these applications.
Despite their wide use, these models have not been validated in
terms of how well they capture the loss conditions experienced by
residential Internet users. We evaluate the accuracy of common
packet loss models using traces of IPTV-like traffic measured on
residential ADSL and Cable links, and find that these models
are insufficient to capture the observed packet loss patterns.
We introduce a new type of model, incorporating packet delay
information, and show improved accuracy over previous models.

I. INTRODUCTION

Packet loss in residential broadband networks can be highly
variable, and disrupts the user experience for real-time network
applications such as Internet video and conferencing. Using
models that capture the packet loss processes allows analytic
and simulation studies to evaluate the performance of new
applications and services, before full-scale deployment.

Previous studies have used Markov-chain models, such as the
classical Gilbert model [3], to generate packet loss processes
for evaluation of video streaming applications [15] and error
repair [6]. More complex Markov-chain models [16], [5], and
Hidden Markov Models (HMMs) [10], [11] have been proposed
to describe packet loss on academic networks. However, the
accuracy of these models for characterising packet loss on
residential broadband networks remains unstudied. There is
evidence that packet loss characteristics of residential networks
differs from those of academic networks [2], so it is important
to study if existing models are applicable in this context.

In this paper, we fit well-known Markov models to meas-
urements of packet loss from residential Internet links [2]. We
show that these models capture the measured loss conditions
in many cases, but there are times when behaviour that they
cannot capture is present. We introduce a new two-level model
that uses both packet loss and delay information to better
understand the state of the network, and show that this new
model captures packet loss processes seen on residential ADSL
and Cable links more accurately than previous models.

II. MODELLING RESIDENTIAL PACKET LOSS

We use the packet loss traces described in [2], taken from
end-to-end measurements of streaming synthetic RTP traffic
between 1–8.5Mb/s from a well-connected server to residential
ADSL and Cable hosts. The dataset captures a range of different
loss characteristics, with ∼3800 traces varying between one and
ten minutes in duration (between 6 × 103 and 6 × 105 packets

per trace). Sequence numbers and timestamps are attached to
each packet, giving an observation sequence of packet losses,
Zi (Zi = 0 for received packets, Zi = 1 for lost) and queueing
delay (DQ) estimates, that can be used as input to the models.

The first model we study is a two-state Markov chain, which
we refer to as the Simple Gilbert Model (SGM) [3]. The states
in the SGM, GOOD and BAD, directly represent Zi (BAD
always produces packet loss; GOOD never does). The SGM
has been widely used to evaluate application performance since
early work used it to model loss processes seen on academic
networks [16]. Recent evaluations of video streaming [15] and
video quality estimation tools [13] have used SGM models.

Since the SGM does not capture packet loss burstiness,
the Extended Gilbert Model (EGM) was proposed [12]. Here,
m states are used to represent losses, modelling loss bursts
of up to m packets. State i (i < m) represents a loss burst
of i packets, while state m represents a burst of at least m.
Received packets are represented by state 0. We use m = 5,
since > 99% of loss bursts in the traces are ≤ 5 packets [2].

The Gilbert-Elliott model [1] lets both states produce errors:
GOOD representing isolated loss events; BAD modelling
loss bursts. This is implemented as an HMM, using loss
observations without knowing the state of the model. In
HMMs, transition probabilities between hidden states and
loss probabilities for each are estimated from observed data
using Expectation-Maximisation algorithms [9]. HMMs can
have more states, improving accuracy, but this is limited by
estimation complexity. We focus on two- and three-state HMMs,
as they are computationally feasible, and the states have a
physical interpretation (i.e., network congestion state). In [10],
HMMs of varying numbers of states were applied to loss traces,
finding two- or three-state HMMs sufficient in most cases.

III. EVALUATING MODELS USING LOSS TRACES

We evaluate the SGM and EGM, which are widely used to
model Internet packet loss [5]; and two- and three-state HMMs
(2HMM and 3HMM), which aim to capture state changes,
suggesting they are well-suited to model the variable loss
patterns seen on residential links. To assess model accuracy,
we test how well they capture the original data. We first estimate
model parameters from each trace, using the process described
in [5] for the SGM and EGM, and the R package hmm.discnp
for the HMMs. Then, we use these parameters to simulate
1000 synthetic sequences, and compare these with the original
data to assess goodness-of-fit. For each sequence, we calculate



a set of statistics, Si, producing a distribution, Ssynth
i , that is

compared to Sraw
i (the value of Si obtained from the raw data).

As this technique generates new sequences using parameterised
models, we refer to it as parametric bootstrap, in contrast to
traditional bootstrap, which involves resampling within existing
data. We then test the null hypothesis H0 that the observed
value of Sraw

i is a typical draw from the distribution Ssynth
i , by

calculating a central 95% confidence interval and checking if
Sraw
i falls into that interval. If H0 is not rejected, this suggests

the model offers a good fit to the data, since realisations of the
fitted model are similar to the observed data (in terms of Si).

The performance metrics (Si) we study are mean packet loss
fraction, which describes the level of loss experienced in the
traces, and the loss and receive run-length distributions which
describe the loss patterns. We calculate the 5th, 25th, 50th,
75th, and 95th percentiles of the receive run-lengths (across
the range of the distribution), and the mean, median, and max
loss run-lengths (since these are less variable).

IV. PERFORMANCE OF SGM, EGM, AND HMMS

A. Examples of Loss Behaviour

Initial examination of the loss traces shows they can be
divided into three categories: i) zero or very low loss; ii) non-
bursty loss, or iii) bursty loss. Separating low loss traces allows
further analysis to be more meaningful, focusing on bursty or
non-bursty loss patterns that do not make sense with very low
rate packet loss. Over 90% of traces which visually show very
low loss had 15 or fewer lost packets, so we set the threshold
at ≤ 15 losses. Traces with higher loss were classified by
whether the loss is spread out in the trace, as in the top panel
of Figure 1a; or confined in bursts separated by longer receive
runs (Figure 1b). Here, we study 486 non-bursty and 433 bursty
traces; of the rest, 1211 are very low loss, 1679 are loss free.

Figure 1 shows representative example traces of “non-bursty”
and “bursty” loss behaviour. The top panel of each plot shows
a measured loss trace, and the lower panels show example
synthetic sequences generated by the models. Figure 1a shows
that the synthetic sequences are comparable to the non-bursty
loss in the trace, indicating that these models are suitable for
non-bursty loss behaviour. Figure 1b shows a trace with bursty
loss periods, separated by long receive runs. In this case, the
SGM, EGM, and HMMs generate sequences that are quite
different to the original data.

B. Parametric Bootstrap

Goodness-of-fit results from applying parametric bootstrap
to the SGM, EGM, and HMMs are shown in Figure 2. These
show, for each statistic Si (y-axis), the number of traces where
the model had “good fit”, in terms of Si; visually, longer bars
mean that the model fits more traces. All models capture the
mean loss rate, for both bursty and non-bursty traces. In terms
of receive run-lengths, the SGM, EGM, and HMMs perform
poorly for bursty traces, and a little better for non-bursty traces.
Recall from Figure 1b that bursty loss was not well captured
by these models. The HMMs aim to capture the changes in
loss states and perform slightly better in bursty traces; this
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Figure 1. Original / synthetic loss sequences (loss models)

extra complexity does not help when the loss is not bursty.
Patterns in loss run-length results are similar for both types of
traces (with better performance on non-bursty traces). However,
receive run-length statistics are not, leading to loss patterns
that are quite different to the bursty traces (e.g., Figure 1b).

To summarise, these results show that although the SGM,
EGM, and HMMs perform adequately in certain cases, they
do not accurately capture the loss patterns of the most bursty
traces (as demonstrated in Figure 1b). Since over 10% of traces
were classified as bursty, and this has an impact on video
performance, it must be accurately captured by the models.

V. A NEW TWO-LEVEL MODEL FOR PACKET LOSS

Bursty loss is often associated with congestion. We propose
a new model that explicitly considers network load (similar to
[14]), by incorporating measured queuing delay information [2].
We derive a two-level hierarchical model, with “outer” states
representing network congestion state, and “inner” models to
capture packet loss. The trace being modelled is split into fixed
windows of one second, and the outer state for each window,
Ω, is explicitly chosen using a simple classifier on loss and
delay data. The Zi observations from all windows classified as
Ω are used to calculate the parameters of the inner packet loss
model for Ω. Transitions between outer states are modelled
as a Markov chain, with transition probabilities estimated by
counting the transitions between windows of each outer state.
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Figure 2. Parametric bootstrap results (loss models)

A. Pre-Classifying Network State

Figure 3 shows an example of the two-level model. Here,
we chose three outer states, corresponding to different sources
of packet loss along the measured end-to-end path [2]:
• electrical noise on access links causing higher-layer loss;
• edge congestion, where queue overflows at the ISP edge

(i.e., DSLAM or CMTS) cause packet loss, and;
• congestive queue overflow within “core” networks.

Access link noise will cause low levels of uncongested loss,
regardless of the levels of delay. Edge congestion causes higher
levels of loss, associated with higher delay (since the building
queues at edge routers will noticeably increase queueing
delay DQ). Finally, core congestion also causes higher loss,
but without noticeable effect in DQ (since higher statistical
multiplexing at core routers means that the effects of queueing
on DQ will be less obvious at the receiver). The outer states
of the model correspond to these network conditions, modelled
as a three-state Markov chain. In each outer state, packet loss
is modelled by either the SGM or 2HMM as described in
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Figure 3. Two-Level Model, SGM/2HMM/2HMM configuration
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Section II. The two configurations used for the inner models
are SGM/SGM/SGM, where packet loss is modelled by an
SGM in each outer state, and SGM/2HMM/2HMM, where the
“congested” states are modelled by a 2HMM. Since Section IV
showed that non-bursty loss is well-modelled by the SGM, it
is suitable for uncongested loss due to access link noise.

B. A Threshold-Based Classification Scheme

We use a simple classification scheme (ld), based on loss
and delay thresholds. This considers one-second time windows,
examining the number of losses (N ), number of loss bursts (M ),
and median DQ (D̃Q) in each window. We use thresholds
for N and M to identify periods of high loss (indicating
congestion), and another threshold for D̃Q to distinguish “core”
and “edge” congestion. The choice of loss thresholds (N > 2
or M > 2 indicating congestion) is based on the assumption
that non-congestive loss is unlikely to create more than two
separate loss events with a one second window, and that loss
bursts longer than two packets are likely due to congestion. The
D̃Q threshold (5ms) is also based on examination of the trace
data; traces with non-bursty loss typically exhibit DQ < 5ms.
These thresholds are based on the dataset in [2]; further study
is needed to confirm their generality.

VI. PERFORMANCE OF THE TWO-LEVEL MODEL

Figure 4 shows results from the two-level model on the
loss trace from Figure 1b. This shows that the sequences
generated by the new model are closer to the original data than
those from the previous models. Figure 5 shows the results
of applying parametric bootstrap to the non-bursty and bursty
traces identified earlier. The two-level model has consistently
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better performance for both classes, showing good fit for more
traces than Figure 2. As before, the performance of the models
on the non-bursty traces is better than for the bursty traces.

The SGM/SGM/SGM configuration improves slightly on the
SGM, EGM, and HMMs using only loss data, but with receive
run-length distributions still not well-modelled in many cases.
However, the SGM/2HMM/2HMM configuration shows much
improved performance over the previous models, with most
traces being well-modelled in terms under every metric. This
accurately captures the different modes of packet loss, using
the most appropriate model for each.

These results show that the two-level models (using the
SGM/2HMM/2HMM configuration) are more accurate than the
previous SGM, EGM, or HMMs. For the non-bursty traces, the
two-level models with the SGM/2HMM/2HMM configuration
are suitable in almost all cases. In terms of the bursty traces,
most of which were poorly modelled by the previous models,
the two-level models show a clear improvement, as illustrated
in Figure 4.

VII. RELATED WORK

Related models have been used for errors in wireless
networks. These include a four-state Markov chain model,
with separate states for long and short loss and receive run-
lengths [17]; run-length thresholds were defined in terms of
physical-layer characteristics of the channel, so the approach is
not applicable to Internet losses. Markov-based trace analysis
(MTA) [7] uses a data-preconditioning approach, similar to our
pre-classification, classifying traces from GSM networks into
lossy or loss-free sub-traces, then modelling these separately.

MTA and other Markov models were evaluated against a new
alternative in [4], modelling loss and receive runs with lengths
derived from mixtures of geometric distributions. This improved
modelling accuracy, but only one trace was used in the
evaluation, making generality of results unclear. Performance
of the SGM, the four-state Markov-chain model, and MTA
were compared in [8], using DVB-H traces, concluding that
the four-state model is well-suited for DVB-H; however, they
rely on manual parameter estimation, limiting applicability.

VIII. CONCLUSIONS AND FUTURE WORK

We evaluated the accuracy of commonly used packet loss
models using traces from residential access networks, and
found them insufficient to capture the bursty loss conditions
present. We introduced a new two-level model to better capture
these loss conditions, improving performance across all types of
traces. Combining the simplicity of an SGM for non-congestive
loss, and the power of HMMs for capturing bursty, congestive
loss, the SGM/2HMM/2HMM configuration performs well.

Further work will compare the performance of the models
for a real application (e.g., FEC performance), and investigate
whether better accuracy can be obtained by improving on the
simple classification algorithm in Section V-B.
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