
Implementing Real-Time Transport Services over an
Ossified Network

Stephen McQuistin
University of Glasgow, UK

sm@smcquistin.uk

Colin Perkins
University of Glasgow, UK

csp@csperkins.org

Marwan Fayed
University of Stirling, UK

mmf@cs.stir.ac.uk

ABSTRACT

Real-time applications require a set of transport services not cur-

rently provided by widely-deployed transport protocols. Ossification

prevents the deployment of novel protocols, restricting solutions

to protocols using either TCP or UDP as a substrate. We describe

the transport services required by real-time applications. We show

that, in the short-term (i.e., while UDP is blocked at current levels),

TCP offers a feasible substrate for providing these services. Over

the longer term, protocols using UDP may reduce the number

of networks blocking UDP, enabling a shift towards its use as a

demultiplexing layer for novel transport protocols.

CCS Concepts

•Networks→ Protocol design; Transport protocols;

Keywords

Transport protocols; real-time multimedia applications

1. INTRODUCTION
Real-time applications are increasingly present in the Internet.

We want to make it easier to write these applications, while also

improving the quality of experience for users by lowering latency

and increasing the quality and robustness of the media delivery.

Unfortunately, the limitations of the standard Internet transport

protocols make this a challenging target, and the ossified nature of

the network makes it increasingly difficult to deploy new transport

protocols.

There have been several attempts to standardise and deploy new

transport protocols [13, 24]. In practice, however, only UDP and

TCP are widely usable in the Internet, since the remaining protocols

are blocked by firewalls and other middleboxes. UDP exposes

the best-effort IP packet delivery service, offering the flexibility to

develop new protocols, but at the cost of requiring new mechanisms

to be defined and implemented from scratch. In contrast, TCP

mechanisms are well defined, consisting of sophisticated congestion

control coupled with a reliable, ordered, byte stream API. These have

been proven suitable for many applications, but are inappropriate

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ANRW ’16, July 16 2016, Berlin, Germany

© 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ISBN 978-1-4503-4443-2/16/07. . . $15.00

DOI: http://dx.doi.org/10.1145/2959424.2959443

for real-time traffic. While both protocols are used for real-time

applications, neither really provides the right services and API.

This forces each application to re-invent or re-interpret mechanisms

that should be provided by the transport. The increased costs and

complexity of doing so make applications less reliable, and raise

barriers to innovation.

In this paper we identify and present the appropriate set of transport

services and APIs for real-time applications, and demonstrate their

merit by implementing a proof-of-concept. We show that it is

possible to realise real-time services and APIs in the context of both

TCP and UDP, despite the limitations imposed by their legacies,

by middleboxes, and by the ossification of the network. Initial

experiments with our implementation suggest that the network has

the flexibility to deploy new transport protocols, provided care is

taken to reinterpret application and transport layer boundaries in a

manner that is not at odds with conventional UDP and TCP layer

boundaries.

In doing so we make three main contributions. First, we make

explicit the needs of real-time applications, as well as the appropriate

transport services and APIs to support those needs. Second, we

illustrate an example realisation of those transport services on the

current Internet, in the context of UDP and TCP deployments.

Finally, we present initial measurement results that suggest the

proposed mechanisms ought to be usable in the public Internet.

We structure the remainder of this paper as follows. We begin in

Section 2 by discussing transport services for real-time applications,

and outlining the common conceptual API that those applications use.

This is followed in Section 3 by a review of deployment considerations

for new protocols, caused by ossification of the network. Section 4

considers, in particular, how TCP reliability semantics can evolve

within the constraints of the existing infrastructure. The semantics

are realised and put into practice in Section 5. Finally, Section 6

discusses related work, and Section 7 concludes.

2. REAL-TIME TRANSPORT SERVICES

In the IETF, the Transport Services (TAPS) working group is

chartered to (1) develop a taxonomy of transport services, that is, to

identify the features that comprise, and can be combined to form,

complete transport protocols; and (2) to develop an abstract API for

applications to request desirable services, allowing the system to

select an appropriate transport protocol based on application needs.

It is hoped that this will loosen the coupling between application

and transport, so enabling deployment of new transport protocols.

2.1 Desirable Transport Services

The work in TAPS provides a vocabulary for discussing the

components of transport protocols. The vocabulary is useful when

discussing the needs of real-time applications, and the protocols to

support them. In this section, we use this to describe the transport

services we believe are required for real-time multimedia applications.

Table 1 summarises the transport services discussed.

Timing and Deadlines: Timing is the most salient feature of

real-time applications. Since their data must be conveyed with real-

time demands, they all have some concept of a deadline. Data that

fails to present within the deadline is otherwise useless. The ‘slack’

in a deadline depends on the application. Interactive applications,

such as telephony, video conferencing, or telepresence, require low

end-to-end latency. Their deadlines for presenting the media, i.e.,

playing the audio and displaying the video frame, range from tens to

a few hundred milliseconds. Non-interactive application deadlines

associated with broadcast and on-demand programming are on the

order of seconds.

Networked multimedia deadlines are unusual when compared

to other real-time systems. They are simultaneously flexible and

strict: flexible in that the exact value of the deadline is typically

not important, provided it is of the right order-of-magnitude for

the application, but strict in that any particular deadline provides a

cut-off, after which the data arrives too late to be rendered to the

user (although, again, it is not entirely useless, since it might be

used to complete a predictive coding chain, improving the quality of

frames decoded later).

Partial Reliability: In a best-effort network, deadlines constrain

packet delivery service to partial reliability. For example, when

used to repair loss, the limits of forward error correction imply

some probability that packet will be non-recoverable. By contrast,

retransmissions used to recover from loss have potentially unbounded

delay (since any retransmission may itself be lost). Accordingly,

a transport protocol that meets deadlines should provide partial

reliability, acknowledging that it may be unable to deliver all data by

its deadline.

Many real-time applications run over TCP today, though TCP

offers no partial reliability service. TCP’s full reliability can lead to

play-out stalls when the application is blocked by retransmissions

that take too long. These stalls are one of the primary causes of

poor user experience in streaming applications. For the applications

under scrutiny, a missed frame that is not delivered by its deadline,

while surrounding frames are delivered, is much less disruptive than

a stall in play-out waiting for repair.

Message-oriented Dependencies: The combination of deadlines

and partial reliability makes dependency management an important

transport service. In particular, data should never be sent when it

relies on a previous transmission that was never received. Providing

this service is complicated by the two ways in which data can be useful

to applications: it may itself be played out, or it may be needed as

part of the application’s decoding chain. Interdependencies between

frames of video exist within a number of codecs. The original

MPEG-1 codec [14] divided video frames into three types. I-frames

were independently encoded, while P- and B-frames contain only the

changes since the previous frame (P), or between frames (B), and so

could only be decoded dependent on the successful arrival of other

frames. Newer codecs, such as H.264 [25], use more complex and

sophisticated versions of the same idea. A consequence is that the

sender might know that a frame will not arrive in time to be played

out, but may need to send it anyway to ensure that the receiver can

decode any dependent frames sent later in the stream.

In the context of both deadlines and dependencies coupled with

packet loss, partial reliability requires application-level framing [5]

to make the best use of payload data. At the transport layer, this

implies a message oriented service, that maintains application data

unit (ADU) boundaries. Messages are delivered to the application in

the order they arrive. As seen in TCP, in-order delivery can introduce

Transport Service Requirement

Deadlines Core

Partial reliability Core

Dependencies Core

Message-oriented Core

Sub-streams Core

Congestion controlled Core

Connection oriented Subsidiary

Keep-alive Subsidiary

Table 1: Transport services for real-time multimedia

significant latency: incoming segments may be head-of-line blocked

waiting for the delivery of an earlier segment.

Message orientation may also be used to construct a sub-stream

service. Many multimedia applications make use of multiple data

streams. For example, a simple IPTV application will maintain

separate audio and video stream. These could be sent across

multiple transport-layer connections, but overheads can be reduced

by multiplexing these flows on a single connection.

Connections and Congestion Control: We note the importance

of congestion control. Historically, real-time many applications

have required an isochronous channel, and have not implemented

congestion control. This is impractical on the Internet. Further,

while some applications are non-adaptive or constant bit-rate, an

increasing number are either, or both, of adaptive and variable

bit-rate. Users would be better served by applications that adapt to

available bandwidth. This is especially true of mobile applications,

where channel capacity can vary significantly over time.

We note that a connection-oriented transport is a lesser requirement

for many real-time multimedia applications. Indeed, flexibility to

change the destination within a call is beneficial for applications that

support mobile users, and for some forms of multiparty session. On

the other hand, maintaining per-connection state at the endpoints is

helpful for the implementation of many forms of congestion control.

Signalling messages indicating start and end of connections can also

ease NAT traversal, and help dynamically manage firewall pinholes,

by indicating when in-network state should be created and can be

torn down. Accordingly, it is often desirable for the transport to be

connection oriented.

We believe these concerns outweigh the benefits of connectionless

transport, and so add a requirement for connection oriented service.

Similarly, while not strictly needed by the applications, it is beneficial

if the transport provides a keep-alive service to refresh NAT and

firewall bindings if the application goes silent.

2.2 Abstract API
Given the set of transport services outlined in Table 1, we sketch

an abstract API in Table 2. The primitives divide into five categories:

• Hosts setup and tear-down sockets using the socket() and

close() functions, as in the standard Berkeley sockets API.

• Socket options can be set and read using the setsockopt()

and getsockopt() functions respectively, again, mirroring

the standard Berkeley sockets API. A socket option may be

used to select the desired congestion control algorithm (e.g., as

with the DCCP_SOCKOPT_CCID socket option in DCCP [13]).

• The connection primitives are the same as those of TCP

sockets. Servers bind() to a particular address and port, then

listen() for and accept() incoming connections. Clients

connect() to a server.

Transport Service Function Parameters Return Value(s)

socket af – Address family Socket descriptor

st – Socket type

close sd – Socket descriptor 0 (success), -1 (error)

getsockopt/setsockopt sd – Socket descriptor 0 (success), -1 (error)

level – Protocol level

option – Option name

value – Option value

len – Option length

Connection oriented bind sd – Socket descriptor 0 (success), -1 (error)

addr – Address to bind to

addrlen – Length of addr

listen sd – Socket descriptor 0 (success), -1 (error)

accept sd – Listening socket descriptor Connection socket descriptor

addr – Address of peer

addrlen – Length of addr

connect addr – Address to connect to 0 (success), -1 (error)

addrlen – Length of addr

Deadlines set_po_delay delay – Playout delay (in ms) 0 (success), -1 (error)

Message oriented send_message sd – Socket descriptor Number of bytes sent

buf – Message data

len – Length of message data

seq_num – Sequence number

Deadlines deadline – Relative deadline of message (in ms)

Dependencies depends_on – seq_num of dependency

Sub-streams substream – Substream identifier

recv_message sd – Socket descriptor Number of bytes received

buf – Buffer for message data Substream identifier

len – Size of buf

Table 2: Outline transport API for real-time applications. Return values shown are for successful calls; in all cases, -1 is returned in

the event of an error

• Once the connection is established, the receiver then in-

dicates its media play-out delay, in milliseconds, via the

set_po_delay() call. This specifies the time that the applic-

ation will buffer data, to compensate for network timing jitter,

before it is rendered to the user. The play-out delay is fed back

to the sender, for use as part of the media deadline estimation.

• Finally, message-oriented data transmission is exposed by the

send_message() and recv_message() functions. These

expose a partially reliable message delivery service to the

application, framing data such that either a complete message

is delivered, or it is lost in its entirety.

It is instructive to compare the partially reliable send and re-

ceive functions to their Berkeley Sockets API counterparts. The

send_message() call takes four additional parameters. These are

1) a message sequence number, that can be used to re-order messages

and detect message loss; 2) a relative deadline, which is combined

with an estimate of the current round-trip-time, and the time that

the message has spent in the sending buffer, to determine if a mes-

sage will arrive in time to be played-out; 3) the message sequence

number of any message on which this depends, for example, of a

video I-frame on which a P-frame is predicted; and 4) a sub-stream

identifier, used, for example, to differentiate audio, video, sub-title,

control, and repair streams. Of this metadata, only the sub-stream

identifier is sent on the wire. The sequence number, deadline, and

dependency information is used only by the sender to provide the

partially reliable service.

The recv_message() call returns the sub-stream identifier and

length of the message, along with the received message data. This

allows the receiver to direct the message to the correct decoding

queue.

A message that won’t arrive within its lifetime is considered to have

expired. A message is also considered to have expired if its message

sequence number dependency, depends_on, has expired. A partial

reliability service follows from this deadline and dependency service:

messages will be reliably transmitted until they expire.

It is to be noted that this API is not dissimilar to the PR-SCTP

abstract API, which provides timed reliability, using a “lifetime”

specified by the application.

3. INNOVATION AND OSSIFICATION
The Internet architecture, in principle, allows free innovation at

the transport layer, provided the underlying network (IP) layer is

unchanged. Routers should inspect the source addresses of packets to

perform network ingress filtering [6], and the destination addresses

to route packets to the correction destination, but should not inspect

their contents. This is not, of course, how the real network operates.

There are performance and security benefits that can be attained

by adding transport-layer functionality within the network. For

example, a firewall can better protect the network if it can detect

payload anomalies.

The implication of this reality is that it is difficult to deploy

new transport protocols. The installed base of NATs, firewalls,

and other middleboxes is such that packets that do not look like

TCP or UDP are unlikely to pass the network. We may innovate

all we like, provided the transport of the future looks like TCP or

UDP to middleboxes. This is inconvenient, certainly, but is not

necessarily a bad thing. The Internet is critical infrastructure. It

support emergency services, healthcare applications, infrastructure

components, financial services, and so on, many of which are

essential to the functioning of society. Making changes to this type

of infrastructure should require careful consideration of backwards

compatibility [16].

UDP is the obvious base for future protocol development, since it

provides minimal additional services over the IP layer, allowing great

flexibility in innovation for protocols tunnelled on top. Provided

middleboxes do not inspect the payload too carefully, the only real

cost to innovation, when compared to a native transport protocol

running over IP, is a few bytes of additional header. Examples in

this space include RTP [23], one of the most widely deployed real-

time transport protocols; the WebRTC Data Channel [11], which

tunnels peer-to-peer SCTP associations over a DTLS association

over UDP; and QUIC [7], which provides a modern alternative to

TCP, implemented over UDP.

Despite these advantages, UDP can be problematic as a substrate

for new protocol development. UDP traffic is blocked by some

enterprise firewalls, and some in the operations community have a

strong distrust of UDP-based protocols and applications [2]. In part

this is due to ignorance. Outside specific niches, such as DNS, UDP

has not been widely used in enterprise environments, and hence is

widely misunderstood. Blocking the unknown is a rational response.

In addition, UDP traffic has been widely used as a component of

distributed denial of service (DDoS) attacks, leading some to install

blanket blocks of UDP as a safety measure (blanket blocking, rather

than the more targeted blocks used when TCP traffic is used in DDoS

attacks, are justified using the argument that UDP is not widely

used). These issues are slowly changing, as UDP-based applications

penetrate the enterprise consciousness, but UDP is not universally

available (Google report 90-95% of endpoints are reachable with

QUIC running over UDP [22], but it is not clear that the set of

hosts running their Chrome browser is representative of all Internet

environments).

Beyond the availability of UDP, it is often necessary to use TCP

because HTTP is being used at the application-layer. For real-time

systems, this is likely to be an HTTP adaptive streaming (HAS)

protocol, such as MPEG-DASH or Apple’s HLS. Using TCP as a

substrate enables the use of these protocols, allowing applications to

benefit from the existing infrastructure that supports them.

TCP is a more complex choice for innovation. It is a more

sophisticated protocol than UDP, with complex headers, and a

protocol state machine that mandates much more behaviour and

is widely understood, and policed, by in-network middleboxes.

This does not mean that TCP cannot evolve, or form the basis for

new transport services. Rather, it means that any innovation or

development must be done carefully, paying very careful attention

to backwards compatibility.

We identify a number of places where TCP can evolve with

comparative freedom. These include congestion control, the end-

point API, and data segmentation. If care is taken, there is also the

possibility to change the reliability semantic.

The TCP congestion control algorithm is executed by the end

points, and can be changed, provided the new version requires no new

information to be exchanged. We note that, while standardised TCP

congestion control has followed the goal of maximising throughput

at the expense of latency and variability, this is not required by the

protocol. TCP Vegas [1] is perhaps the best known approach that

changes these constraints, with a delay-based algorithm that reduces

latency, although it is known to be less aggressive than standard

TCP, and is prone to starvation. FAST TCP [12] is a more modern

delay-based algorithm that competes well with standard TCP in

many environments, and is seeing commercial deployment. The

development of TCP congestion control shows that there might be

fairness issues as new algorithms are deployed, but the network does

not prevent the deployment of those algorithms.

It would also be possible to implement alternative congestion con-

trol algorithms that seek stability, or compatibility with the dictates

of a video codec, rather than traditional “TCP Friendly” congestion

control, even if implemented within TCP. To do this effectively

might require changes to the interface between the application and

the TCP stack, even if the on-the-wire format remains the same. For

example, video applications generate data periodically, and it might

help the congestion control to know the period, so it can pace out

data; video traffic is less elastic than many TCP bulk flows, and

it might be benefical to inform the stack of an upper rate beyond

which there is no point increasing the congestion window, and a

lower rate beyond which the flow cannot proceed; and informing

the codec of the RTT and congestion window might allow it to

better schedule bursts of traffic to match the available capacity. In

the interactive video conferencing community, [26] addresses this

issue for congestion control over RTP on UDP/IP, but there is no

analagous document for TCP congestion control interactions as yet.

The API that is exposed to applications using TCP is invisible to

the network, and can be changed. For example, TCP Fast Open [3]

has been implemented by overloading the connectionless sendto()

call to trigger an implicit connect() when used on an unconnected

TCP socket. Relaxing the API to enable out-of-order delivery of

segments is trivial: segments are delivered to the application in

the order that they arrive, with their TCP sequence attached. The

TCP sequence number can be passed to the application using the

existing Berkeley sockets API, either with the received data, or using

getsockopt(). Out-of-order delivery is not useful when using a

byte-stream abstraction, and so the API should be further modified

to provide a message-oriented abstraction. The Berkeley sockets

API already supports such an abstraction for datagram protocols.

These changes could address many of the transport service needs

for real-time applications, but still leave a critical issue of how

to improve timing behaviour. Specifically, how to enable partial

reliability for TCP, after which it is possible to layer-on support for

managing deadlines and dependencies.

4. PARTIAL RELIABILITY AND TCP
Partial reliability (i.e., reliability conditional on timing and de-

pendency information) can be implemented by relaxing TCP’s

reliability guarantee. The implication of this is that we need to offer

a message-oriented abstraction to applications. If the arrival of a

segment cannot be guaranteed, then it is not possible to offer a byte

stream abstraction.

To offer a message-oriented abstraction, the boundaries between

each message must be maintained between sender and receiver. This

means that a framing mechanism is required: it is not sufficient to

send each message in a single segment, as this mapping will not

necessarily be maintained by the network. A framing marker is

added to the start and end of each message before transmission, and

removed on reception, and an encoding algorithm is used to escape

all occurrences of the framing marker within the message data. This

process does not impact on the data that can be sent or received

by applications. As discussed in Section 5, COBS framing [4] is

suitable for this purpose.

Middleboxes in the network have ossified around TCP’s reliability

mechanism: they do not expect gaps in the TCP sequence number

space. Honda et al. [9] test the behaviour of middleboxes in response

to gaps in the TCP sequence number space, showing that middleboxes

interfere with flows in up to 29% of tested paths. This depends on

the mechanism and port number used, with ports used by common

applications impacted most. To ensure compatibility with these

middleboxes, offering partial reliability requires using inconsistent

retransmissions. Retransmissions will be triggered as under standard

TCP to ensure that the sequence number space is filled, but the data

in a retransmitted segment may not be the same as the original. This

means that the mapping between message data and TCP sequence

numbers is no longer static: a given TCP sequence number may

be relate to different messages at different times. Therefore, an

application-level sequence number is required to allow messages to

be uniquely identified (multipath TCP has a similar requirement).

When a TCP segment is to be retransmitted, the mapping between

its sequence number and application-level sequence numbers is

used to determine which messages within the segment are to be

retransmitted. A liveness check is performed on these messages, to

determine that (i) the message will arrive on time to be played out;

and (ii) the message does not depend on an expired message. For (i),

we combine the time that the message has spent in a sending queue,

with an estimate of the round-trip time and the current play-out

delay. This is then compared against the lifetime of the message, as

expressed by the application. For (ii), we maintain metadata about

sequence numbers that have expired, and check this metadata for the

dependency expressed by the application.

This mechanism – inconsistent retransmissions – is visible to

middleboxes on the network that are performing payload inspection.

These middleboxes may interpret this behaviour as relating to an

attack. For example, a man-on-the-side attack exhibits similar

behaviour, where a malicious host is injecting data into an existing

TCP flow. As a result, our connection may be disrupted. Honda et

al. [9] conducted experiments across 135 paths on the Internet, to

determine support for inconsistent retransmissions. They observed

that the majority of paths delivered inconsistent retransmissions

successfully. On Port 80 (HTTP), the original segment was delivered

on 7% of paths tested. Only one connection reset was observed.

We conducted further deployment experiments using inconsistent

retransmissions, testing all major UK providers, with the sender at

the University of Glasgow [15]. The results are shown in Table

3. We found that 100% of tested fixed-line networks delivered

inconsistent retransmissions successfully. However, delivery of the

original segment is common on cellular networks, with only 25% of

tested networks delivering inconsistent retransmissions successfully

and reliably. The behaviour observed when evaluating cellular

networks was consistent with that of a transparent, split-connection

TCP cache. Segments were lost, but were retransmitted (with the IP

address of the sender) by a middlebox in the network. It is likely

that these caches are deployed close to the wireless link, given its

relatively high rate of non-congestive loss.

These deployment experiments suggest that our protocol should

be flexible: inconsistent retransmissions might not be delivered, and

we should handle reception of the original segment. If the protocol

detects that inconsistent retransmissions are not being delivered, they

can be disabled for the connection. Further, if a connection reset

occurs, then the connection should be retried with the mechanism

disabled.

Use of inconsistent retransmissions can interact negatively with

middleboxes that cache and re-segment TCP streams, resulting in

the corruption of messages between sender and receiver. The result

can be a message formed from some combination of the original

message and an inconsistent retransmission. To protect against this,

a checksum must be attached to each message, to allow the receiver

ISP Port 4001 Port 80

Fixed-line Andrews & Arnold

BT

Demon

EE

Eclipse

Sky

TalkTalk

Virgin Media

Cellular EE

O2

Three

Vodafone

Table 3: Deployability of inconsistent retransmissions, where

indicates successful delivery, indicates delivery of the ori-

ginal data, and indicates connection failure (none observed).

We note that the campus firewall near the server blocks UDP

traffic, so all are examples where fallback from UDP to TCP is

beneficial for real-time traffic.

to verify its integrity. The role of a checksum may also be fulfilled

by using a secure transport, such as DTLS [20].

5. REALISING TRANSPORT SERVICES
While further measurement studies are required to confirm the

ability to deploy wire-visible changes to TCP (such as inconsistent

retransmissions) in the wider Internet, we have shown that we can

provide all of the transport services needed by real-time applications,

using either TCP or UDP.

Evidence that these services can be deployed above UDP exists

in the form of the WebRTC data channel [11] and QUIC protocol

[7]. The former is a peer-to-peer protocol, comprising an SCTP

association running over DTLS, itself running over a UDP flow

negotiated via an SDP [8] offer/answer exchange [21] as part of a

WebRTC session [10] (WebRTC media uses RTP over UDP also,

further showing the utility of UDP-based data). This has been

deployed in popular web browsers, with global deployment, and

demonstrated to be effective. The latter is implemented by Google

in their Chrome browser, and used as an alternative to TCP has a

significant fraction of web traffic downloads from their domain.

Deployments using UDP are popular, and work well. However,

as described in Section 3, there are also reasons for providing these

services over TCP, since there are a significant fraction of networks

that block UDP traffic. It is clearly possible to run real-time traffic

over TCP, as demonstrated by applications such as NetFlix or the

BBC iPlayer that comprise the majority of Internet traffic. However,

TCP has a inconvenient API that imposes lots of work on application

developers, and introduces higher than desired latency. We have

shown how to address these issues, and provide the full set of

transport services we propose in Section 2 in previous work, with

our TCP Hollywood proposal [15].

The architecture of TCP Hollywood is shown in Figure 1. TCP

Hollywood implements all of the services described in Section 2,

splitting functionality across an intermediary layer in user-space, and

a set of modifications to the kernel. This split allows applications to

program against one API, whether or not the kernel modifications

are available: the intermediary layer functions in both cases.

At the sender, applications pass messages (using an API similar to

that given in Table 2) to the intermediary layer, with their metadata,

including deadline and dependency information. At the intermediary

TCP Hollywood socket

Berkeley Socket

send_message()

write()

RTT

estimate

Intermediary Layer

Kernel

send queue

metadata entries

Timing info

Hollywood receive logic

read()

fragment reassembly buffer

message

fragments

receive_message()

Sender Receiver

receive queue

metadata entries

reassembly buffer

TCP receive logic TCP ACKs

set_po_delay()

COBS encoding

T
C

P
 H

o
ll

y
w

o
o
d

IP
A

p
p
li

ca
ti

o
n

COBS decoding

complete

messages

TCP seq num

Figure 1: TCP Hollywood architecture

layer, COBS encoding [4] is used to escape all zero bytes in the

message data, allowing them to be used as framing markers. The

message’s metadata is then attached to the encoded and framed

message, before being passed to the kernel using the standard

Berkeley sockets API.

At the kernel, the message data is queued in TCP’s sending

buffer, while the metadata is held in a separate structure. Nagle’s

algorithm, designed to coalesce smaller writes into larger segments,

is disabled to minimise latency. As segments are (re-)transmitted,

their deadlines and dependencies are checked to ensure that the

message will be useful on arrival. In the current version of TCP

Hollywood, the dependency check does not overrule the deadline

check: only data that can be played out will be sent. If the message

does not pass the liveness check, the next message in the queue

that is live will be sent instead. If this is a retransmission, then

inconsistent retransmissions will be used: the replacement message

will be sent with the same TCP sequence number as the original.

At the receiver, segments are passed to the kernel, where they

are initially processed as under standard TCP: duplicate acknow-

ledgements are generated for out-of-order segments, for example.

After this, a metadata entry is created, and placed in FIFO queue.

When the intermediary layer reads from the socket, it receives the

segment associated with the metadata entry at the head of the queue,

with its TCP sequence number attached. This means that segments

are delivered in the order that they arrive, removing the latency

associated with head-of-line blocking in TCP [15].

At the intermediary layer on the receiver, incoming segments are

scanned for complete messages (i.e., data between two zero bytes),

which are decoded and passed to the application. While segments

are sent containing only one message, these may be resegmented

or coalesced in the network. A segment may arrive containing

fragments of message data. These fragments are buffered, alongside

their TCP sequence number, awaiting the arrival of the remainder of

the message. Once the message has been reassembled, it is decoded,

and delivered to the application.

Taken together, the wide experiences with the WebRTC Data

Channel and QUIC demonstrate that the transport services necessary

to support real-time traffic could be deployed running over UDP.

Our work prototyping the TCP Hollywood protocol, and earlier

measurements by Honda et al. [9] also suggest that deployment over

TCP is possible.

6. RELATED WORK

Related changes to TCP are made by Minion protocol [18], that

uses TCP as a substrate to provide an unordered, message-oriented

service to applications, enabling some of the transport services

described in Section 2, but without support for partial reliability,

deadlines, and dependencies. Time-Lined TCP (TLTCP) [17] sim-

ilarly provides a message-oriented service, but allows applications

to attach a time-line to messages. Messages are (re-)transmitted

as under standard TCP within their time-line, after which they

are discarded. The mechanism by which this service is provided

(introducing gaps in the sequence space) hinders deployment.

QUIC [7] demonstrates that similar services can be provided by a

new protocol running over UDP, while [19] and [11] demonstrate

that existing protocols, DCCP and SCTP, can also be effectively

tunnelled over UDP. Fallback to TCP is discussed in this paper, and

on our previous work [15].

7. CONCLUSIONS

The standard transport protocols, TCP and UDP, are not well-

suited for real-time applications. Both can be made to work, but

the existence of numerous papers exploring how to make media

play-out over TCP reliable, and almost as extensive a collection

discussing UDP-based protocol design, suggests that this is difficult

to do well. To make effective use of the network, and simplify real-

time application design and implementation, we need to deploy new

transport services and protocols that allow innovative applications

to be developed by users who are not experts in transport protocol

design. We discussed requirements for such a new transport, in the

context of the TAPS framework, and outlined a straw-man abstract

API, in Section 2.

It seems likely that the right long-term approach for doing this is to

repurpose UDP as a demultiplexing layer for higher-layer protocols.

We can then deploy an appropriate transport protocol framework

as a user-space library, that can be reused as appropriate. In the

short-term, however, there are sufficient networks that block UDP,

that any new transport protocol needs to be able to run over TCP.

Sections 3 and 4 discuss how this can be done, and suggest from

some initial measurement studies that this may be feasible to deploy.

Section 5 considers prototypes that present such services over UDP,

and presents our initial prototype demonstrated for TCP-based use.

The challenge for the future is in combining such techniques

below a common API, so that an application can transparently switch

between UDP-based and TCP-based transport, depending on what

is supported by the underlying network. This is the promise of the

TAPS API, that we have shown ought to be feasible for real-time

applications.

8. REFERENCES

[1] L. S. Brakmo, S. W. O’Malley, and L. L. Peterson. TCP Vegas:

New techniques for congestion detection and avoidance. In

Proceedings of the SIGCOMM Conference, pages 24–35,

London, UK, August 1994. ACM.

[2] C. Byrne and J. Kleberg. Advisory Guidelines for UDP

Deployment. Internet Engineering Task Force, July 2015.

Work in Progress.

[3] Y. Cheng, J. Chu, S. Radhakrishnan, and A. Jain. TCP Fast

Open. Internet Engineering Task Force, December 2014. RFC

7413.

[4] S. Cheshire and M. Baker. Consistent Overhead Byte Stuffing.

In Proceedings of the SIGCOMM Conference, Cannes, France,

September 1997. ACM.

[5] D. D. Clark and D. L. Tennenhouse. Architectural

Considerations for a New Generation of Protocols. In

Proceedings of the SIGCOMM Conference, Philadelphia, PA,

September 1990. ACM.

[6] P. Ferguson and D. Senie. Network Ingress Filtering. Internet

Engineering Task Force, May 2000. RFC 2827.

[7] R. Hamilton, J. Iyengar, I. Swett, and A. Wilk. QUIC: A

UDP-Based Secure and Reliable Transport for HTTP/2.

Internet Engineering Task Force, January 2016. Work in

Progress.

[8] M. Handley, V. Jacobson, and C. S. Perkins. SDP: Session

Description Protocol. Internet Engineering Task Force, July

2006. RFC 4566.

[9] M. Honda, Y. Nishida, C. Raiciu, A. Greenhalgh, M. Handley,

and H. Tokuda. Is it still possible to extend TCP? In

Proceedings of the Internet Measurement Conference, Berlin,

Germany, November 2011. ACM.

[10] C. Jennings, T. Hardie, and M. Westerlund. Real time

communications for the web. IEEE Communications

Magazine, 51(4), April 2013.

[11] R. Jesup, S. Loreto, and M. Tuezen. WebRTC Data Channels.

Internet Engineering Task Force, January 2015. Work in

Progress.

[12] C. Jin, D. X. Wei, and S. H. Low. FAST TCP: Motivation,

architecture, algorithms, performance. In Proceedings of the

Infocom Conference, Hong Kong, China, March 2004. IEEE.

[13] E. Kohler, M. Handley, and S. Floyd. Datagram Congestion

Control Protocol (DCCP). RFC 4340, March 2006.

[14] D. Le Gall. MPEG: A video compression standard for

multimedia applications. Communications of the ACM,

34(4):46–58, 1991.

[15] S. McQuistin, C. Perkins, and M. Fayed. TCP Hollywood: An

Unordered, Time-Lined, TCP for Networked Multimedia

Applications. In Proceedings of the Networking Conference,

Vienna, Austria, May 2016. IFIP.

[16] S. McQuistin and C. S. Perkins. Reinterpreting the Transport

Protocol Stack to Embrace Ossification. In Proceedings of the

IAB Workshop on Stack Evolution in a Middlebox Internet,

Zürich, Switzerland, January 2015.

[17] B. Mukherjee and T. Brecht. Time-lined TCP for the

TCP-friendly delivery of streaming media. In Proceedings of

the International Conference on Network Protocols, Osaka,

Japan, November 2000. IEEE.

[18] M. F. Nowlan, N. Tiwari, J. Iyengar, S. O. Amin, and B. Ford.

Fitting Square Pegs Through Round Pipes: Unordered

Delivery Wire-Compatible with TCP and TLS. In

Proceedings of the Symposium on Networked Systems Design

and Implementation, San Jose, CA, April 2012. USENIX.

[19] T. Phelan, G. Fairhurst, and C. S. Perkins. DCCP-UDP: A

datagram congestion control protocol UDP encapsulation for

NAT traversal. Internet Engineering Task Force, November

2012. RFC 6773.

[20] E. Rescorla and N. Modadugu. Datagram Transport Layer

Security version 1.2. Internet Engineering Task Force, January

2012. RFC 6347.

[21] J. Rosenberg and H. Schulzrinne. An offer/answer model with

the Session Description Protocol (SDP). Internet Engineering

Task Force, June 2002. RFC 3264.

[22] J. Roskind. Quick UDP Internet Connections: Design

Document and Specification Rationale, December 2013.
[23] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson.

RTP: A Transport Protocol for Real-Time Applications. RFC

3550, July 2003.

[24] R. Stewart. Stream control transmission protocol. Internet

Engineering Task Force, September 2007. RFC 4960.

[25] T. Wiegand, G. J. Sullivan, G. Bjontegaard, and A. Luthra.

Overview of the H.264/AVC video coding standard. IEEE

Transactions on circuits and systems for video technology,

13(7):560–576, 2003.

[26] M. Zanaty, V. Singh, S. Nandakumar, and Z. Sarker.

Congestion control and codec interactions in RTP applications.

Internet Engineering Task Force, March 2016. Work in

Progress.

