

Modelling Packet Loss in RTP-Based Streaming Video for Residential Users

Martin Ellis¹, Dimitrios Pezaros¹, Theodore Kypraios², Colin Perkins¹

http://martin-ellis.net

Cisco, San Jose: 2012/06/15

¹ School of Computing Science, University of Glasgow

² School of Mathematical Sciences, University of Nottingham

Motivation

- Models for packet loss are useful for simulation studies.
- Markov-chain models widely used in simulation for video techniques (e.g., FEC).
- However, the accuracy of these models hasn't been studied for streaming to residential Internet users (i.e., using DSL/Cable).

This talk:

- Presents an evaluation study of the accuracy of Markov models for simulating packet loss in residential streaming;
- 2 Introduces a more accurate two-level model, to address the shortcomings of existing models.

- 1 Introduction: Markov Models for Packet Loss
- 2 Experimental Setup
- 3 Existing Loss Model Results
- 4 A Two-Level Model
- 5 Two-Level Model Results
- 6 Conclusions

- 1 Introduction: Markov Models for Packet Loss
- 2 Experimental Setup
- 3 Existing Loss Model Results
- 4 A Two-Level Model
- 5 Two-Level Model Results
- 6 Conclusions

Why Model?

Packet loss models allow simulation of loss patterns:

- evaluation of error recovery mechanisms
- determining impact of loss on coding schemes

A common way to do this is using Markov chain models:

- model parameters determine the probability of packet loss
- advantages: don't need large amounts of real trace data for simulation

With simulation, we can evaluate application performance before deployment, provided that the simulation models are accurate.

(Simple) Gilbert Model

SGM has been widely used in multimedia performance evaluation (e.g., 12).

It is has states directly representing received (0) and lost (1) packets. To estimate transition probabilities, we just count the number of transitions between states (i.e., recv/recv, recv/loss, loss/recv, loss/loss).

Tao et al. Real-Time Monitoring of Video Quality in IP Networks. IEEE/ACM Trans. Netw., 2008.

Tournoux et al. On-the-Fly Erasure Coding for Real-Time Video Applications. IEEE Trans. Multimedia, 2011.

Extended Gilbert Model

EGM aims to capture burstiness in packet loss, by increasing the number of states for packet loss to m^3 .

Parameters estimated similarly to the SGM, by counting transitions.

³ Jiang & Schulzrinne. Modeling of Packet Loss and Delay and Their Effect on Real-Time Multimedia Service Quality. Proc. NOSSDAV, 2000.

Hidden Markov Model

HMMs aim to capture transitions between "hidden states" ⁴ (i.e., bursty/non-bursty packet loss).

We look at the loss sequence, deriving with maximum likelihood:

- transition probabilities between the unobserved "hidden" states
- the probability of packet loss within each of these states

Can increase the number of states, but this increases estimation time. We focus on 2- and 3-state HMMs.

⁴ Silveira & de Souza e Silva. Modeling the short-term dynamics of packet losses. *Performance Evaluation Review*, 2006

- 1 Introduction: Markov Models for Packet Loss
- 2 Experimental Setup
- 3 Existing Loss Model Results
- 4 A Two-Level Model
- 5 Two-Level Model Results
- 6 Conclusions

Evaluation procedure

We estimate model parameters from real packet loss traces, then simulate synthetic sequences and compare.

Packet loss data

RTP streaming of IPTV-like traffic from a well-connected server to residential Internet users:

- ullet have $\sim\!3800$ traces (1–10 mins) from 14 links in the UK and Finland
- loss and delay observations for ~230 million packets
- many have little or no loss (modelled easily by SGM, EGM, HMMs), but others show bursty, correlated loss
- here, we focus on the traces showing bursty loss (\sim 430 traces)

The dataset is described in ⁵, and is available for download at http://martin-ellis.net/research/datasets.

Ellis et al. End-to-End and Network-Internal Measurements of Real-Time Traffic to Residential Users. In Proc. ACM MMSys, 2011.

Model evaluation: testing "goodness-of-fit"

We use two approaches for comparing sequences:

- (subjective) visual comparison of original/synthetic at individual trace level
- comparison of statistics from original trace vs. those from 1000 synthetic sequences (test whether original trace likely to have come from the model)

Model evaluation: parametric bootstrap

We use a variation on bootstrapping, a widely-used statistical technique ⁶⁷.

For each loss trace, we generate 1000 synthetic sequences using the model parameters, and calculate a set of statistics from each:

- mean loss rate
- percentiles of receive run-length distribution
- mean/median/max loss run-length

Downey. Lognormal and Pareto distributions in the Internet. Computer Communications, 2005.

Tariq et al. Poisson versus periodic path probing (or, does PASTA matter?). Proc. ACM IMC, 2005.

Goodness-of-Fit testing

For each statistic (e.g., mean loss rate):

- calculate distribution of statistic from 1000 synthetic traces, and examine where raw statistic falls
- if raw stat falls within central 95%, no evidence of poor fit
- if raw stat falls outside central 95%, it suggests this value is unlikely to have been produced by the model → poor fit

- 1 Introduction: Markov Models for Packet Loss
- 2 Experimental Setup
- 3 Existing Loss Model Results
- 4 A Two-Level Model
- 5 Two-Level Model Results
- 6 Conclusions

Example traces

For some traces, all models perform poorly; for others, the HMMs perform better.

Parametric bootstrap

Higher bars represent more traces with good "fit" (better model accuracy).

Summary: existing models not sufficient ...

SGM and EGM models fail to capture the gaps between receive runs:

instead, they just aim on getting the average loss rate or loss burst length

HMMs appear to be a little better, but can still be inaccurate:

"hidden" states estimated by HMMs don't correspond to the underlying network states

- 1 Introduction: Markov Models for Packet Loss
- 2 Experimental Setup
- 3 Existing Loss Model Results
- 4 A Two-Level Model
- 5 Two-Level Model Results
- 6 Conclusions

Motivation

Traces show that there were clear "state changes" in loss patterns.

Idea: improve model by explicitly identifying states (with loss/delay data), and modelling each state separately.

- uncongested: low loss, low delay
- edge congestion: higher loss, high/variable delay (e.g., spikes)
- core congestion: higher loss, without the clear delay signals

Identifying state transitions

We use 2 simple classification algorithms, splitting the traces into 1-second windows and considering loss and delay per-window.

```
Packet loss:

> 2 loss events or > 2 loss bursts per-window ⇒ "high loss"

Delay (loss/delay threshold ld classifier):

median delay > 5ms ⇒ "high delay"

Delay (loss/delay before loss ldbl classifier):

median delay before loss > 2x median delay ⇒ "high delay"
```

Identifying state transitions

We use 2 simple classification algorithms, splitting the traces into 1-second windows and considering loss and delay per-window.

Packet loss:

```
> 2 loss events or > 2 loss bursts per-window \implies "high loss"
```

Delay (loss/delay threshold *ld* classifier):

```
median delay > 5ms \implies "high delay"
```

```
Delay (loss/delay before loss Idbl classifier):
```

median delay before loss > 2x median delay \implies "high delay"

State transitions:

- $lue{}$ uncongested ightarrow edge congestion : "high loss" and "high delay"
- $lue{}$ uncongested ightarrow core congestion : "high loss" and "low delay"
- edge/core congestion → uncongested : "low loss" and "low delay"

Combining classifiers with loss models

Different parameters for each "outer" state

can use different models too – HMMs better for congestive loss?

- 1 Introduction: Markov Models for Packet Loss
- 2 Experimental Setup
- 3 Existing Loss Model Results
- 4 A Two-Level Model
- 5 Two-Level Model Results
- 6 Conclusions

Example traces (recap of SGM, EGM, HMMs)

Example traces (two-level model)

Parametric bootstrap (recap of SGM, EGM, HMMs)

Parametric bootstrap (two-level model)

Summary: new models give more accurate performance

More "well-modelled" traces (in terms of all the statistics) than before:

- new models are more accurate
- using HMMs within congested states gives best performance

- 1 Introduction: Markov Models for Packet Loss
- 2 Experimental Setup
- 3 Existing Loss Model Results
- 4 A Two-Level Model
- 5 Two-Level Model Results
- 6 Conclusions

Future Directions

Applying models in evaluation studies:

- evaluation of FEC schemes, etc.
- network simulation

Applying models in real-time:

- use classification to do adaptation?
- applications in quality monitoring / anomaly detection?

Summary

In this work, we have:

- Shown that existing packet loss models (SGM, EGM, HMMs) perform poorly in bursty packet loss conditions seen on residential links.
- Designed a new two-level model to express changes in network state (using loss/delay data to classify performance).
- Demonstrated improved accuracy over the existing models.

ld classifier

```
if (state = "uncongested") then
   if (N > 2) or (M > 2) then # "high loss"
      if (\widetilde{DQ} > 5 \text{ms}) then # "elevated DQ"
         state \leftarrow "edge congestion"
      else
         state \leftarrow "core congestion"
      end if
   end if
else
   if (N < 2) and (M < 2) and (\widetilde{DQ} < 5 \text{ms}) then
      state \leftarrow "uncongested"
   end if
end if
```

M	
N	number of losses per window
М	number of loss bursts per window
ĐQ	median queueing delay per window

Idbl classifier

end if

```
if (state = "uncongested") then
   if (N > 2) or (M > 2) then
                                    # "high loss"
                                     \# "elevated DQ"
      if (DQ_{BI} > 2DQ) then
         state \leftarrow "edge congestion"
      else
         state ← "core congestion"
      end if
      \widetilde{DQ}_{IIC} \leftarrow \widetilde{DQ}
   end if
else if (state = "edge congestion") then
   if (N \le 2) and (M \le 2) and (\widetilde{DQ} \le k\widetilde{DQ}_{UC}) then
      state \leftarrow "uncongested"
   end if
else if (state = "core congestion") then
   if (N < 2) and (M < 2) then
      state \leftarrow "uncongested"
```

N	number of losses per window
М	number of loss bursts per window
\widetilde{DQ}	median queueing delay per window
\widetilde{DQ}_{BL}	median queueing delay (before loss) per window
\widetilde{DQ}_{UC}	median queueing delay in last uncongested window
k	threshold for delay "close to previous" $(k=1.1)$