
Content- and Cache-aware TCP
(“Poor Man’s Information-Centric Networking”)

Pasi Sarolahti, Jörg Ott, Karthik Budiger, Arseny Kurnikov
Aalto University

Colin Perkins
University of Glasgow

2012-06-14

Background
• Scalable content dissemination for non-CDN providers

•  Independent of the application protocol
•  Beyond web caching

• Support for
•  Quasi-synchronous fan-out to many receivers (e.g., live streaming)
•  Short-term caching (e.g., flash crowds)
•  (Packet-level retransmissions)

• Mix between redundancy elimination & multicast transport

•  Target: deployable content-aware networking

Basic Idea
• Operate at the transport layer: TCP

•  Units are sections of a byte stream
•  Carried as TCP segments (but segment boundaries don’t matter)

•  Label pieces of reusable content at the sender
•  (label, offset) – identifiable independent of their TCP flow

• Store labeled pieces in stateless segment caches

• Re-use these pieces across TCP streams
•  Map (label, offset) to flow-specific TCP sequence numbers

• Controllers maintain state to perform this mapping
•  At an access/edge router or in the receiver

Sample Scenario

4

…
…

…

…

Senders

Receivers

Routers

Controlling
node

Segment
caches

label content

work as before

store and retrieve
labeled content

map between TCP
seq# and content
offsets

aren’t touched
(but could be)

Protocol Phases by Example (1)

SYN

SYN-ACK

ACK

D:200 OK (header only)

D:GET URI

ACK

S
et

 la
be

l =
 S

H
A

1
(U

R
I)

D [n;n+m] [label,offset]
ACK [k] ACK [k] [label,offset,win]

U
ns

et
 la

be
l

A

Protocol Phases by Example (2)

SYN-ACK

D:GET URI

D:200 OK (header only)

ACK ACK [label,n+s,w=1]

ACK

S
et

 la
be

l =
 S

H
A

1
(U

R
I)

D [label,offset=n]

B

ACK

ACK [label,n+s,w=0]

ACK

D [label,n+s]

U
ns

et
 la

be
l ACK ACK [label,n+2s,w=1] ACK [label,n+2s,w=0]

D [label,n+2s]

CA-TCP option

Type

Content label (8 bytes)

Offset / Next sequence (4 bytes)

Length FCS

TCP sequence (4 bytes, only Content Request)

Sender
•  Determines content to be cached

•  Assigns labels based upon interaction with receiver
•  SHA1 (URI), BitTorrent chunk id, …
•  Switches between labeled and unlabeled transmission

•  Data transmission and ACK processing
•  Sends initial data packets
•  Updates SND.NXT as per ACK offset
•  Runs its congestion control algorithm

•  cwin limited by the can_send field – sends no new data if caches did so

•  Tracks receiver interaction
•  Remains aware of requests and their completion
•  Seeds content segments when needed
•  Performs retransmissions

•  Operates as regular TCP if there is no controller (no ACK labels)

Sender API
• BSD sockets

• Current implementation: an extension to send()
•  Defines the label and offset to be used starting with the next
write() or send() calls.

struct catcp_fields { !
 uint8_t content_label[8];!
 uint32_t offset; !// network byte order!
} catcp_cmd;!

send (int sd, &catcp_cmd, sizeof (catcp_cmd), 0xff);!

Segment cache
•  Stores labeled content segments

•  Implements admission and replacement policy

•  Matches incoming ACKs with (label, offset) pairs against stored
segments p:
•  ACK.can_send > 0
•  ACK.label = p.label
•  ACK.offset ≥ p.offset && ACK.offset < p.offset + p.len
 a cached packet yields fresh data for the resource and does not

 leave any gap and there is room to send more data

•  Create packet towards the receiver flow from the stored one
•  Use the sequence # from the CA-TCP option
•  Update: ACK.can_send and ACK.offset
•  Forward ACK uptream when can_send=0 or no more matches

Controlling node
•  Stateful per flow that contains labels

•  Not suitable for the core  edge/access routers or endpoints

•  Only acts for flows without a controlling node downstream

•  Establishes the binding between flow-specific TCP sequence
number and resource offset

•  Runs a per-flow congestion control algorithm
•  Simplified version of TCP congestion avoidance)
•  Indicates the # packets per ACK in the can_send field

•  Delays ACKs to desynchronize simultaneous flows
•  So that a cache has a chance to receive a packet first from the sender

Receiver
• Operates as usual

•  Legacy: ignores CA-TCP options

• CA-TCP: acts as controller for the flow

Features
• Supports bidirectional operation

•  Each direction treated independently
•  Caveat: limited TCP option space

•  Won’t do bidir with timestamps or SACK due to space limitations

• Works with any application layer protocol that allows a
sender to differentiate between cachable and other data
•  Allows any client-server negotiation
•  Server can count requests

• Does not require segment boundary alignment

Implementations
•  Linux kernel 2.6.26 and 3.0.9 for the sender side

•  TCP extensions + extended socket API
•  Used for simulations with the ns-3 cradle and for experiments

•  Four servers that add CA-TCP content labels
•  highttpd 1.4.18 for web resources

•  Uses 8 bytes of MD5 hashes over of the URI as label
•  BitTorrent extensions to the TCP-based peer-to-peer protocol (PWP)

•  Uses 8 bytes of SHA1 identifiers
•  Simple live streaming server (tcpst)

•  Label, data rate, and stream duration encoded in URI
•  Syncs up clients to a common offset when they join

•  Controlling nodes and segment caches
•  Click-based implementation for ns-3 simulation and experiments
•  catcp-bridge (L2 bridge) for the experiments (2400 lines C code)

Performance limits
• Minimal number of packets always seen by the sender

•  Control traffic for every connection
•  SYN-ACK + FIN-ACK handshakes
•  Request/response header packets + ACKs

•  Initial cwin data packets
•  Continuous flow of ACKs

• No gain for resources
less than 8 KB
•  Don’t label them

 0.01

 0.1

 1

 1 10 100 1000Fr
ac

tio
n

of
 c

on
te

nt
 p

ac
ke

ts
 fr

om
 th

e
se

rv
er

Clients

8 kB
64 kB

256 kB
640 kB

Simulation results (1)
• Setup

•  Single sender
•  7 network segments
•  up to 7 receivers each (1…49)
•  625 KB download

0 10 20 30 40 50

0
50

00
10

00
0

15
00

0
20

00
0

Number of receivers

Pa
ck

et
s

●
●

●
●

●
●

●
●

●
●

●

●
●

●

●

●
●

●
●

●

●

●
●

●

●

● normal
CATCP
CATCP−Nagle
CATCP−DelAck

0 10 20 30 40 50

0
10

00
20

00
30

00
40

00

Number of receivers

Pa
ck

et
 lo

ss
es

● ● ● ● ● ● ● ● ● ●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

● normal
CATCP
CATCP−Nagle
CATCP−DelAck

0 10 20 30 40 50

0
10

20
30

40
50

Number of receivers

C
om

pl
et

io
n

tim
e

(s
)

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● normal
CATCP
CATCP−Nagle
CATCP−DelAck

Completion time Packet losses

Packets sent
by the sender

Simulation results (2)

2 4 6 8 10 12 14

0
10

20
30

40

Number of receivers

C
om

pl
et

io
n

tim
e

/ r
ec

ei
ve

r

●
●

●

●
●

●
● ●

●

●

● ●

●

●

● normal
CATCP
CATCP−Nagle
CATCP−DelAck

• Evaluation of impact on TCP cross-traffic
•  Three TCP flows share a bottleneck with 1..15 CA-TCP flows

Experiments
•  Interop

•  Fixed: MS Windows XP and 7, MacOS 10.[456], Linux
•  Mobile: Linux (Maemo, MeeGo), Android, iOS 4, 5, Symbian S 60

•  Lab setup: 4 Linux machines
•  Amazon cloud: 4 servers on different continents

•  Ireland, Brazil (Sao Paulo), Singapore, US (Virginia)
•  Home server with 24/1 Mbit/s DSL

•  1 – 50 receivers, 0 – 1 s intervals, 0 – 200ms ACK delays
•  Web: 64 KB, 256 KB, 1 MB objects
•  Streaming: 100 kbit/s streams

•  BitTorrent: 2 – 10 leechers for 64 KB downloads from Amazon

Web experiments (1)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

Plain TCP CATCP no delay 10ms delay 200ms delay

D
at

a
vo

lu
m

e
re

la
tiv

e
to

 T
C

P

N
or

m
al

iz
ed

 s
ha

re
 o

f d
iff

er
en

t p
ac

ke
ts

Transport Protocol Variant (TCP vs. CATCP)

2012-05-15-US-1s-50rcv-1024KB-50ms-packets.log.data

Uplink
Downlink

ACKs
Server data

Cached data

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

Plain TCP CATCP no delay 10ms delay 200ms delay

D
at

a
vo

lu
m

e
re

la
tiv

e
to

 T
C

P

N
or

m
al

iz
ed

 s
ha

re
 o

f d
iff

er
en

t p
ac

ke
ts

Transport Protocol Variant (TCP vs. CATCP)

2012-05-15-US-1s-5rcv-1024KB-50ms-packets.log.data

Uplink
Downlink

ACKs
Server data

Cached data

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

Plain TCP CATCP no delay 10ms delay 200ms delay

D
at

a
vo

lu
m

e
re

la
tiv

e
to

 T
C

P

N
or

m
al

iz
ed

 s
ha

re
 o

f d
iff

er
en

t p
ac

ke
ts

Transport Protocol Variant (TCP vs. CATCP)

2012-05-15-US-1s-5rcv-0064KB-50ms-packets.log.data

Uplink
Downlink

ACKs
Server data

Cached data

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

Plain TCP CATCP no delay 10ms delay 200ms delay

D
at

a
vo

lu
m

e
re

la
tiv

e
to

 T
C

P

N
or

m
al

iz
ed

 s
ha

re
 o

f d
iff

er
en

t p
ac

ke
ts

Transport Protocol Variant (TCP vs. CATCP)

2012-05-15-US-0s-50rcv-0064KB-50ms-packets.log.data

Uplink
Downlink

ACKs
Server data

Cached data

5 receivers 50 receivers

64 KB

1 MB

Web experiments (2)

 0

 50000

 100000

 150000

 200000

 250000

 0 10 20 30 40 50 60

30
20
10

TC
P

se
q#

 (o
ffs

et
)

AC
K

qu
eu

e
si

ze

Time (s)

ACK
Server
Cache
Stored

ACK queue size

BitTorrent experiments

0 2 4 6 8 10

0
10

20
30

40
50

Number of Leechers

C
om

pl
et

io
n

tim
e(

s)

●
●

● ●

● ● ● ● ●

●

●
●

●
● ● ●

●
●

●
● ●

● ● ● ● ● ●

● ● ● ● ● ● ●

●
●Virginia

Singapore
Ireland
SaoPaolo

2 4 6 8 10

0
10

0
30

0
50

0

Number of Leechers

Pa
ck

et
s

●

●

●

●

●

●

●

●

●

● normal
Virginia
Singapore
Ireland
SaoPaolo

TCP

TCP

CA-TCP

CA-TCP

Issues (from our 2010 talk)
• How to get congestion control right?

•  Controller can implement this per flow. Conservative default:
can_send = 1

• How well do clients deal with unknown options?
•  Works! We tried a dozen different clients (mobile + fixed OSes)

• Uniqueness of resource id
•  We use an optimistic 8 byte hash, could be made longer
•  Including the server IP address would even allow guarantees

•  False positives should not be an issue due to router state
•  Core routers without state could be subject to cache poisoning
•  Again, including the server IP address could help to some extent

New Issues
•  NATs or firewalls

•  Linux NAT tracks sequence numbers
•  ACKs w/o preceding data packets may not get through
•  May cause the sender to time out and retransmit

•  Sequence number and port rewriting do not matter
•  Re-segmenting does not matter, but may lower efficiency

•  Getting TCP options through middleboxes
•  Not an issue in our specific setups
•  Reported problematic in IMC 2011 paper [Honda et al. 2011]

•  Asymmetric routing
•  ACKs need to travel the same path as labeled data packets
•  But data packets may come from any TCP other connection

•  Route changes are not an issue

Conclusion
• CA-TCP offers an incrementally deployable approach to

efficient content distribution
•  For quasi-synchronous access (multicast style)
•  For flash crowds with small intervals between accesses

• Cannot and does not want to compete with web caching

• Segment-level caching supports partial resource caching

•  TCP-based operation independent of application protocols

•  Incrementally deployable w/o client side changes

Future
• Adaptive AckDelays

• Play with different caching policies

• Understand and exploit dependencies between packets
•  Evicting groups of packets per flow rather than individual ones

• Caching stream sections rather than segments
•  More compatible with the TCP service model

• Build it for a real router

