PREDICTIVE BUFFERING FOR STREAMING VIDEO IN 3G NETWORKS

Varun SINGH, Jörg OTT, Igor Curcio

PROBLEM STATEMENT

- 22% of mobile broadband in the US is YouTube [MobileTrends, 2011].
 - [note] http://m.youtube.com uses RTSP instead of HTTP based progressive download.

- Problems with 3G connectivity:
 - Mobility (fading, interference, cell loading, handovers) → affects available throughput

STREAMING

- If there is loss of connectivity
 - − Pre-buffer, typically, ~5 to 10s
 - May be insufficient in the case of 3G
 - Rate-switching usually happens after disruption is detected

ATT COVERAGE MAP

ARCHITECTURE

SIGNALING

Alternative: RTSP **SPEED** parameter

LOOK-AHEAD

- Known travel route
 - Client can calculate <u>maximum</u> size of pre-buffer for the whole trip.
- Area look ahead
 - Client can only calculate <u>optimum</u> buffer for the known outages
 - Client subscribe to locations with poor connectivity for updates

EARLY SCHEDULING

LATE SCHEDULING

CLIENT OPERATION

CALCULATE IMPACT OF COVERAGE HOLE

function(speed, location)

GROUPING OF THROUGHPUT VALUES

 Calculate STDEV for each region [1,3]

 Calculate AVERAGE/ median for each region [2]

- Definition of region
 - Areas with similar throughput

This is out-of-scope of the paper

Use K-means square algorithm Grouping based on throughput

PROTOCOL DESIGN AND IMPLEMENTATION

- HTTP between Coverage Map Server and client
 - REpresentational State Transfer (REST) APIs
 - JSON encoded responses
- How to throttle the rate
 - Dictionary of {time, throughput}
 - RTSP Speed parameter
- Gstreamer using x264 and JRTPLib
- PostgreSQL, C++

HELSINKI BUS ROUTES

Second half of 2010 ~400,000 updates

- 40-50 bus rides
- Walking around the city/campus

THROUGHPUT AROUND THE UNIVERSITY AREA

BANDWIDTH ALONG A TRAVEL ROUTE

PERFORMANCE ANALYSIS

VIDEO QUALITY

- Average PSNR over multiple runs
- No adaptation: 27.5
- Omniscient: 43.12
- Rate-switching: 42.75
- Late-switching: 48.43

At t=8h

NCMS_{ratio}= Response/Actual

CONCLUSIONS

- We find that the information provided by coverage map service is suitable for
 - Predictive rate-switching
 - Predictive pre-buffering

• Future Work: Integrate with a DASH system