
TAPS Working Group B. Trammell

Internet-Draft ETH Zurich

Intended status: Informational C. Perkins

Expires: April 30, 2018 University of Glasgow

 T. Pauly

 Apple Inc.

 M. Kuehlewind

 ETH Zurich

 C. Wood

 Apple Inc.

 October 27, 2017

Post Sockets, An Abstract Programming Interface for the Transport Layer

 draft-trammell-taps-post-sockets-03

Abstract

 This document describes Post Sockets, an asynchronous abstract

 programming interface for the atomic transmission of messages in an

 inherently multipath environment. Post replaces connections with

 long-lived associations between endpoints, with the possibility to

 cache cryptographic state in order to reduce amortized connection

 latency. We present this abstract interface as an illustration of

 what is possible with present developments in transport protocols

 when freed from the strictures of the current sockets API.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the

 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering

 Task Force (IETF). Note that other groups may also distribute

 working documents as Internet-Drafts. The list of current Internet-

 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months

 and may be updated, replaced, or obsoleted by other documents at any

 time. It is inappropriate to use Internet-Drafts as reference

 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on April 30, 2018.

Trammell, et al. Expires April 30, 2018 [Page 1]

Internet-Draft Post Sockets October 2017

Copyright Notice

 Copyright (c) 2017 IETF Trust and the persons identified as the

 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal

 Provisions Relating to IETF Documents

 (https://trustee.ietf.org/license-info) in effect on the date of

 publication of this document. Please review these documents

 carefully, as they describe your rights and restrictions with respect

 to this document. Code Components extracted from this document must

 include Simplified BSD License text as described in Section 4.e of

 the Trust Legal Provisions and are provided without warranty as

 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 3

 2. Abstractions and Terminology 5

 2.1. Message Carrier . 6

 2.2. Message . 8

 2.3. Association . 11

 2.4. Remote . 11

 2.5. Local . 12

 2.6. Configuration . 12

 2.7. Transient . 13

 2.8. Path . 14

 3. Abstract Programming Interface 15

 3.1. Example Connection Patterns 16

 3.1.1. Client-Server . 16

 3.1.2. Client-Server with Happy Eyeballs and 0-RTT

 establishment . 18

 3.1.3. Peer to Peer with Network Address Translation 18

 3.1.4. Multicast Receiver 18

 3.1.5. Association Bootstrapping 19

 3.2. API Dynamics . 20

 4. Implementation Considerations 22

 4.1. Protocol Stack Instance (PSI) 23

 4.2. Message Framing, Parsing, and Serialization 24

 4.3. Message Size Limitations 25

 4.4. Back-pressure . 25

 4.5. Associations, Transients, Racing, and Rendezvous 26

 5. Acknowledgments . 28

 6. References . 28

 6.1. Normative References 28

 6.2. Informative References 28

 Appendix A. Open Issues . 30

 Authors’ Addresses . 30

Trammell, et al. Expires April 30, 2018 [Page 2]

Internet-Draft Post Sockets October 2017

1. Introduction

 The BSD Unix Sockets API’s SOCK_STREAM abstraction, by bringing

 network sockets into the UNIX programming model, allowing anyone who

 knew how to write programs that dealt with sequential-access files to

 also write network applications, was a revolution in simplicity. It

 would not be an overstatement to say that this simple API is the

 reason the Internet won the protocol wars of the 1980s. SOCK_STREAM

 is tied to the Transmission Control Protocol (TCP), specified in 1981

 [RFC0793]. TCP has scaled remarkably well over the past three and a

 half decades, but its total ubiquity has hidden an uncomfortable

 fact: the network is not really a file, and stream abstractions are

 too simplistic for many modern application programming models.

 In the meantime, the nature of Internet access, and the variety of

 Internet transport protocols, is evolving. The challenges that new

 protocols and access paradigms present to the sockets API and to

 programming models based on them inspire the design elements of a new

 approach.

 Many end-user devices are connected to the Internet via multiple

 interfaces, which suggests it is time to promote the paths by which

 two endpoints are connected to each other to a first-order object.

 While implicit multipath communication is available for these

 multihomed nodes in the present Internet architecture with the

 Multipath TCP extension (MPTCP) [RFC6824], MPTCP was specifically

 designed to hide multipath communication from the application for

 purposes of compatibility. Since many multihomed nodes are connected

 to the Internet through access paths with widely different properties

 with respect to bandwidth, latency and cost, adding explicit path

 control to MPTCP’s API would be useful in many situations.

 Another trend straining the traditional layering of the transport

 stack associated with the SOCK_STREAM interface is the widespread

 interest in ubiquitous deployment of encryption to guarantee

 confidentiality, authenticity, and integrity, in the face of

 pervasive surveillance [RFC7258]. Layering the most widely deployed

 encryption technology, Transport Layer Security (TLS), strictly atop

 TCP (i.e., via a TLS library such as OpenSSL that uses the sockets

 API) requires the encryption-layer handshake to happen after the

 transport-layer handshake, which increases connection setup latency

 on the order of one or two round-trip times, an unacceptable delay

 for many applications. Integrating cryptographic state setup and

 maintenance into the path abstraction naturally complements efforts

 in new protocols (e.g. QUIC [I-D.ietf-quic-transport]) to mitigate

 this strict layering.

Trammell, et al. Expires April 30, 2018 [Page 3]

Internet-Draft Post Sockets October 2017

 To meet these challenges, we present the Post-Sockets Application

 Programming Interface (API), described in detail in this work. Post

 is designed to be language, transport protocol, and architecture

 independent, allowing applications to be written to a common abstract

 interface, easily ported among different platforms, and used even in

 environments where transport protocol selection may be done

 dynamically, as proposed in the IETF’s Transport Services working

 group.

 Post replaces the traditional SOCK_STREAM abstraction with a Message

 abstraction, which can be seen as a generalization of the Stream

 Control Transmission Protocol’s [RFC4960] SOCK_SEQPACKET service.

 Messages are sent and received on Carriers, which logically group

 Messages for transmission and reception. For backward compatibility,

 bidirectional byte stream protocols are represented as a pair of

 Messages, one in each direction, that can only be marked complete

 when the sending peer has finished transmitting data.

 Post replaces the notions of a socket address and connected socket

 with an Association with a remote endpoint via set of Paths.

 Implementation and wire format for transport protocol(s) implementing

 the Post API are explicitly out of scope for this work; these

 abstractions need not map directly to implementation-level concepts,

 and indeed with various amounts of shimming and glue could be

 implemented with varying success atop any sufficiently flexible

 transport protocol.

 The key features of Post as compared with the existing sockets API

 are:

 o Explicit Message orientation, with framing and atomicity

 guarantees for Message transmission.

 o Asynchronous reception, allowing all receiver-side interactions to

 be event-driven.

 o Explicit support for multistreaming and multipath transport

 protocols and network architectures.

 o Long-lived Associations, whose lifetimes may not be bound to

 underlying transport connections. This allows associations to

 cache state and cryptographic key material to enable fast

 resumption of communication, and for the implementation of the API

 to explicitly take care of connection establishment mechanics such

 as connection racing [RFC6555] and peer-to-peer rendezvous

 [RFC5245].

Trammell, et al. Expires April 30, 2018 [Page 4]

Internet-Draft Post Sockets October 2017

 o Transport protocol stack independence, allowing applications to be

 written in terms of the semantics best for the application’s own

 design, separate from the protocol(s) used on the wire to achieve

 them. This enables applications written to a single API to make

 use of transport protocols in terms of the features they provide,

 as in [I-D.ietf-taps-transports].

 This work is the synthesis of many years of Internet transport

 protocol research and development. It is inspired by concepts from

 the Stream Control Transmission Protocol (SCTP) [RFC4960], TCP Minion

 [I-D.iyengar-minion-protocol], and MinimaLT [MinimaLT], among other

 transport protocol modernization efforts. We present Post as an

 illustration of what is possible with present developments in

 transport protocols when freed from the strictures of the current

 sockets API. While much of the work for building parts of the

 protocols needed to implement Post are already ongoing in other IETF

 working groups (e.g. MPTCP, QUIC, TLS), we argue that an abstract

 programming interface unifying access all these efforts is necessary

 to fully exploit their potential.

2. Abstractions and Terminology

Trammell, et al. Expires April 30, 2018 [Page 5]

Internet-Draft Post Sockets October 2017

 +===============+

 | Message |

 +===============+

 | ^ | |

 send()| |ready() |initiate() |listen()

 V | V V

 +=======================+ +============+

 | | accept()| |

 | Carrier |<--------| Listener |

 | | | |

 +=======================+ +============+

 |1 | n| | +=========+

 | | |1 | +---| Local |

 | +===============+ +=======================+ | +=========+

 | | | | |---+

 | | Configuration |--| Association | +=========+

 | | | | |-------| Remote |

 | +===============+ +=======================+ +=========+

 | | 1| durable end-to-end

 +-------+ | | state via many paths,

 | | | policies, and prefs

 n| | n|

 +===========+ +==========+

 ephemeral | | | |

 transport & | Transient |-------| Path | properties of

 crypto state | |n 1| | address pair

 +===========+ +==========+

 Figure 1: Abstractions and relationships in Post Sockets

 Post is based on a small set of abstractions, centered around a

 Message Carrier as the entry point for an application to the

 networking API. The relationships among them are shown in

 Figure Figure 1 and detailed in this section.

2.1. Message Carrier

 A Message Carrier (or simply Carrier) is a transport protocol stack-

 independent interface for sending and receiving messages between an

 application and a remote endpoint; it is roughly analogous to a

 socket in the present sockets API.

 Sending a Message over a Carrier is driven by the application, while

 receipt is driven by the arrival of the last packet that allows the

 Message to be assembled, decrypted, and passed to the application.

 Receipt is therefore asynchronous; given the different models for

 asynchronous I/O and concurrency supported by different platforms, it

Trammell, et al. Expires April 30, 2018 [Page 6]

Internet-Draft Post Sockets October 2017

 may be implemented in any number of ways. The abstract API provides

 only for a way for the application to register how it wants to handle

 incoming messages.

 All the Messages sent to a Carrier will be received on the

 corresponding Carrier at the remote endpoint, though not necessarily

 reliably or in order, depending on Message properties and the

 underlying transport protocol stack.

 A Carrier that is backed by current transport protocol stack state

 (such as a TCP connection; see Section 2.7) is said to be "active":

 messages can be sent and received over it. A Carrier can also be

 "dormant": there is long-term state associated with it (via the

 underlying Association; see Section 2.3), and it may be able to

 reactivated, but messages cannot be sent and received immediately.

 Carriers become dormant when the underlying transport protocol stack

 determines that an underlying connection has been lost and there is

 insufficient state in the Association to re-establish it (e.g., in

 the case of a server-side Carrier where the client’s address has

 changed unexpectedly). Passive close can be handled by the

 application via an event on the carrier. Attempting to use a carrier

 after passive close results in an error.

 If supported by the underlying transport protocol stack, a Carrier

 may be forked: creating a new Carrier associated with a new Carrier

 at the same remote endpoint. The semantics of the usage of multiple

 Carriers based on the same Association are application-specific.

 When a Carrier is forked, its corresponding Carrier at the remote

 endpoint receives a fork request, which it must accept in order to

 fully establish the new carrier. Multiple Carriers between endpoints

 are implemented differently by different transport protocol stacks,

 either using multiple separate transport-layer connections, or using

 multiple streams of multistreaming transport protocols.

 To exchange messages with a given remote endpoint, an application may

 initiate a Carrier given its remote (see Section 2.4 and local (see

 Section 2.5) identities; this is an equivalent to an active open.

 There are four special cases of Carriers, as well, supporting

 different initiation and interaction patterns, defined in the

 subsections below.

 o Listener: A Listener is a special case of Message Carrier which

 only responds to requests to create a new Carrier from a remote

 endpoint, analogous to a server or listening socket in the present

 sockets API. Instead of being bound to a specific remote

 endpoint, it is bound only to a local identity; however, its

 interface for accepting fork requests is identical to that for

 fully fledged Carriers.

Trammell, et al. Expires April 30, 2018 [Page 7]

Internet-Draft Post Sockets October 2017

 o Source: A Source is a special case of Message Carrier over which

 messages can only be sent, intended for unidirectional

 applications such as multicast transmitters. Sources cannot be

 forked, and need not accept forks.

 o Sink: A Sink is a special case of Message Carrier over which

 messages can only be received, intended for unidirectional

 applications such as multicast receivers. Sinks cannot be forked,

 and need not accept forks.

 o Responder: A Responder is a special case of Message Carrier which

 may receive messages from many remote sources, for cases in which

 an application will only ever send Messages in reply back to the

 source from which a Message was received. This is a common

 implementation pattern for servers in client-server applications.

 A Responder’s receiver gets a Message, as well as a Source to send

 replies to. Responders cannot be forked, and need not accept

 forks.

2.2. Message

 A Message is the unit of communication between applications.

 Messages can represent relatively small structures, such as requests

 in a request/response protocol such as HTTP; relatively large

 structures, such as files of arbitrary size in a filesystem; and

 structures of indeterminate length, such as a stream of bytes in a

 protocol like TCP.

 In the general case, there is no mapping between a Message and

 packets sent by the underlying protocol stack on the wire: the

 transport protocol may freely segment messages and/or combine

 messages into packets. However, a message may be marked as

 immediate, which will cause it to be sent in a single packet when

 possible.

 Content may be sent and received either as Complete or Partial

 Messages. Dealing with Complete Messages should be preferred for

 simplicity whenever possible based on the underlying protocol. It is

 always possible to send Complete Messages, but only protocols that

 have a fixed maximum message length may allow clients to receive

 Messages using an API that guarantees Complete Messages. Sending and

 receiving Partial Messages (that is, a Message whose content spans

 multiple calls or callbacks) is always possible.

 To send a Message, either Complete or Partial, the Message content is

 passed into the Carrier, and client provides a set of callbacks to

 know when the Message was delivered or acknowledged. The client of

 the API may use the callbacks to pace the sending of Messages.

Trammell, et al. Expires April 30, 2018 [Page 8]

Internet-Draft Post Sockets October 2017

 To receive a Message, the client of the API schedules a completion to

 be called when a Complete or Partial Message is available. If the

 client is willing to accept Partial Messages, it can specify the

 minimum incomplete Message length it is willing to receive at once,

 and the maximum number of bytes it is willing to receive at once. If

 the client wants Complete Messages, there are no values to tune. The

 scheduling of the receive completion indicates to the Carrier that

 there is a desire to receive bytes, effectively creating a "pull

 model" in which backpressure may be applied if the client is not

 receiving Messages or Partial Messages quickly enough to match the

 peer’s sending rate. The Carrier may have some minimal buffer of

 incoming Messages ready for the client to read to reduce latency.

 When receiving a Complete Message, the entire content of the Message

 must be delivered at once, and the Message is not delivered at all if

 the full Message is not received. This implies that both the sending

 and receiving endpoint, whether in the application or the carrier,

 must guarantee storage for the full size of a Message.

 Partial Messages may be sent or received in several stages, with a

 handle representing the total Message being associated with each

 portion of the content. Each call to send or receive also indicates

 whether or not the Message is now complete. This approach is

 necessary whenever the size of the Message does not have a known

 bound, or the size is too large to process and hold in memory.

 Protocols that only present a concept of byte streams represent their

 data as single Messages with unknown bounds. In the case of TCP, the

 client will receive a single Message in pieces using the Partial

 Message API, and that Message will only be marked as complete when

 the peer has sent a FIN.

 Messages are sent over and received from Message Carriers (see

 Section 2.1).

 On sending, Messages have properties that allow the application to

 specify its requirements with respect to reliability, ordering,

 priority, idempotence, and immediacy; these are described in detail

 below. Messages may also have arbitrary properties which provide

 additional information to the underlying transport protocol stack on

 how they should be handled, in a protocol-specific way. These stacks

 may also deliver or set properties on received messages, but in the

 general case a received messages contains only a sequence of ordered

 bytes. Message properties include:

 o Lifetime and Partial Reliability: A Message may have a "lifetime"

 - a wall clock duration before which the Message must be available

 to the application layer at the remote end. If a lifetime cannot

 be met, the Message is discarded as soon as possible. Messages

Trammell, et al. Expires April 30, 2018 [Page 9]

Internet-Draft Post Sockets October 2017

 without lifetimes are sent reliably if supported by the transport

 protocol stack. Lifetimes are also used to prioritize Message

 delivery.

 There is no guarantee that a Message will not be delivered after

 the end of its lifetime; for example, a Message delivered over a

 strictly reliable transport will be delivered regardless of its

 lifetime. Depending on the transport protocol stack used to

 transmit the message, these lifetimes may also be signalled to

 path elements by the underlying transport, so that path elements

 that realize a lifetime cannot be met can discard frames

 containing the Messages instead of forwarding them.

 o Priority: Messages have a "niceness" - a priority among other

 messages sent over the same Carrier in an unbounded hierarchy most

 naturally represented as a non-negative integer. By default,

 Messages are in niceness class 0, or highest priority. Niceness

 class 1 Messages will yield to niceness class 0 Messages sent over

 the same Carrier, class 2 to class 1, and so on. Niceness may be

 translated to a priority signal for exposure to path elements

 (e.g. DSCP code point) to allow prioritization along the path as

 well as at the sender and receiver. This inversion of normal

 schemes for expressing priority has a convenient property:

 priority increases as both niceness and lifetime decrease. A

 Message may have both a niceness and a lifetime - Messages with

 higher niceness classes will yield to lower classes if resource

 constraints mean only one can meet the lifetime.

 o Dependence: A Message may have "antecedents" - other Messages on

 which it depends, which must be delivered before it (the

 "successor") is delivered. The sending transport uses deadlines,

 niceness, and antecedents, along with information about the

 properties of the Paths available, to determine when to send which

 Message down which Path.

 o Idempotence: A sending application may mark a Message as

 "idempotent" to signal to the underlying transport protocol stack

 that its application semantics make it safe to send in situations

 that may cause it to be received more than once (i.e., for 0-RTT

 session resumption as in TCP Fast Open, TLS 1.3, and QUIC).

 o Immediacy: A sending application may mark a Message as "immediate"

 to signal to the underlying transport protocol stack that its

 application semantics require it to be placed in a single packet,

 on its own, instead of waiting to be combined with other messages

 or parts thereof (i.e., for media transports and interactive

 sessions with small messages).

Trammell, et al. Expires April 30, 2018 [Page 10]

Internet-Draft Post Sockets October 2017

 Senders may also be asynchronously notified of three events on

 Messages they have sent: that the Message has been transmitted, that

 the Message has been acknowledged by the receiver, or that the

 Message has expired before transmission/acknowledgement. Not all

 transport protocol stacks will support all of these events.

2.3. Association

 An Association contains the long-term state necessary to support

 communications between a Local (see Section 2.5) and a Remote (see

 Section 2.4) endpoint, such as trust model information, including

 pinned public keys or anchor certificates, cryptographic session

 resumption parameters, or rendezvous information. It uses

 information from the Configuration (see Section 2.6) to constrain the

 selection of transport protocols and local interfaces to create

 Transients (see Section 2.7) to carry Messages; and information about

 the paths through the network available available between them (see

 Section 2.8).

 All Carriers are bound to an Association. New Carriers will reuse an

 Association if they can be carried from the same Local to the same

 Remote over the same Paths; this re-use of an Association may implies

 the creation of a new Transient.

 Associations may exist and be created without a Carrier. This may be

 done if peer cryptographic state such as a pre-shared key is

 established out-of-band. Thus, Associations may be created without

 the need to send application data to a peer, that is, without a

 Carrier. Associations are mutable. Association state may expire

 over time, after which it is removed from the Association, and

 Transients may export cryptographic state to store in an Association

 as needed. Moreover, this state may be exported directly into the

 Association or modified before insertion. This may be needed to

 diversify ephemeral Transient keying material from the longer-term

 Association keying material.

 A primary use of Association state is to allow new Associations and

 their derived Carriers to be quickly created without performing in-

 band cryptographic handshakes. See [I-D.kuehlewind-taps-crypto-sep]

 for more details about this separation.

2.4. Remote

 A Remote represents information required to establish and maintain a

 connection with the far end of an Association: name(s), address(es),

 and transport protocol parameters that can be used to establish a

 Transient; transport protocols to use; trust model information,

 inherited from the relevant Association, used to identify the remote

Trammell, et al. Expires April 30, 2018 [Page 11]

Internet-Draft Post Sockets October 2017

 on connection establishment; and so on. Each Association is

 associated with a single Remote, either explicitly by the application

 (when created by the initiation of a Carrier) or a Listener (when

 created by forking a Carrier on passive open).

 A Remote may be resolved, which results in zero or more Remotes with

 more specific information. For example, an application may want to

 establish a connection to a website identified by a URL

 https://www.example.com. This URL would be wrapped in a Remote and

 passed to a call to initiate a Carrier. The first pass resolution

 might parse the URL, decomposing it into a name, a transport port,

 and a transport protocol to try connecting with. A second pass

 resolution would then look up network-layer addresses associated with

 that name through DNS, and store any certificates available from

 DANE. Once a Remote has been resolved to the point that a transport

 protocol stack can use it to create a Transient, it is considered

 fully resolved.

2.5. Local

 A Local represents all the information about the local endpoint

 necessary to establish an Association or a Listener. It encapsulates

 the Provisioning Domain (PvD) of a single interface in the multiple

 provisioning domain architecture [RFC7556], and adds information

 about the service endpoint (transport protocol port), and, per

 [I-D.pauly-taps-transport-security], cryptographic identities

 (certificates and associated private keys) bound to this endpoint.

2.6. Configuration

 A Configuration encapsulates an application’s preferences around Path

 selection and protocol options.

 Each Association has exactly one Configuration, and all Carriers

 belonging to that Association share the same Configuration.

 The application cannot modify the Configuration for a Carrier or

 Association once it is set. If a new set of options needs to be

 used, then the application needs a new Carrier or Association

 instance. This is necessary to ensure that a single Carrier can

 consistently track the Paths and protocol options it uses, since it

 is usually not possible to modify these properties without breaking

 connectivity.

 To influence Path selection, the application can configure a set of

 requirements, preferences, and restrictions concerning which Paths

 may be selected by the Association to use for creating Transients

 between a Local and a Remote. For example, a Configuration can

Trammell, et al. Expires April 30, 2018 [Page 12]

Internet-Draft Post Sockets October 2017

 specify that the application prefers Wi-Fi access over LTE when

 roaming on a foreign LTE network, due to monetary cost to the user.

 The Association uses the Configuration’s Path preferences as a key

 part of determining the Paths to use for its Transients. The

 Configuration is provided as input when examining the complete list

 of available Paths on the system (to limit the list, or order the

 Paths by preference). The system’s policy will further restrict and

 modify the Path that is ultimately selected, using other aspects of

 the Configuration (protocol options and originating application) to

 select the most appropriate Path.

 To influence protocol selection and options, the Configuration

 contains one or more allowed Protocol Stack Configurations. Each of

 these is comprised of application- and transport-layer protocols that

 may be used together to communicate to the Remote, along with any

 protocol-specific options. For example, a Configuration could

 specify two alternate, but equivalent, protocol stacks: one using

 HTTP/2 over TLS over TCP, and the other using QUIC over UDP.

 Alternatively, the Configuration could specify two protocol stacks

 with the same protocols, but different protocol options: one using

 TLS with TLS 1.3 0-RTT enabled and TCP with TCP Fast-Open enabled,

 and one using TLS with out 0-RTT and TCP without TCP Fast-Open.

 Protocol-specific options within the Configuration include trust

 settings and acceptable cryptographic algorithms to be used by

 security protocols. These may be configured for specific protocols

 to allow different settings for each (such as between TLS over TCP

 and TLS for use with QUIC), or set as default security settings on

 the Configuration to be used by any protocol that needs to evaluate

 trust. Trust settings may include certificate anchors and

 certificate pinning options.

2.7. Transient

 A Transient represents a binding between a Carrier and the instance

 of the transport protocol stack that implements it. As an

 Association contains long-term state for communications between two

 endpoints, a Transient contains ephemeral state for a single

 transport protocol over a one or more Paths at a given point in time.

 A Carrier may be served by multiple Transients at once, e.g. when

 implementing multipath communication such that the separate paths are

 exposed to the API by the underlying transport protocol stack. Each

 Transient serves only one Carrier, although multiple Transients may

 share the same underlying protocol stack; e.g. when multiplexing

 Carriers over streams in a multistreaming protocol.

Trammell, et al. Expires April 30, 2018 [Page 13]

Internet-Draft Post Sockets October 2017

 Transients are generally not exposed by the API to the application,

 though they may be accessible for debugging and logging purposes.

2.8. Path

 A Path represents information about a single path through the network

 used by an Association, in terms of source and destination network

 and transport layer addresses within an addressing context, and the

 provisioning domain [RFC7556] of the local interface. This

 information may be learned through a resolution, discovery, or

 rendezvous process (e.g. DNS, ICE), by measurements taken by the

 transport protocol stack, or by some other path information discovery

 mechanism. It is used by the transport protocol stack to maintain

 and/or (re-)establish communications for the Association.

 The set of available properties is a function of the transport

 protocol stacks in use by an association. However, the following

 core properties are generally useful for applications and transport

 layer protocols to choose among paths for specific Messages:

 o Maximum Transmission Unit (MTU): the maximum size of an Message’s

 payload (subtracting transport, network, and link layer overhead)

 which will likely fit into a single frame. Derived from signals

 sent by path elements, where available, and/or path MTU discovery

 processes run by the transport layer.

 o Latency Expectation: expected one-way delay along the Path.

 Generally provided by inline measurements performed by the

 transport layer, as opposed to signaled by path elements.

 o Loss Probability Expectation: expected probability of a loss of

 any given single frame along the Path. Generally provided by

 inline measurements performed by the transport layer, as opposed

 to signaled by path elements.

 o Available Data Rate Expectation: expected maximum data rate along

 the Path. May be derived from passive measurements by the

 transport layer, or from signals from path elements.

 o Reserved Data Rate: Committed, reserved data rate for the given

 Association along the Path. Requires a bandwidth reservation

 service in the underlying transport protocol stack.

 o Path Element Membership: Identifiers for some or all nodes along

 the path, depending on the capabilities of the underlying network

 layer protocol to provide this.

Trammell, et al. Expires April 30, 2018 [Page 14]

Internet-Draft Post Sockets October 2017

 Path properties are generally read-only. MTU is a property of the

 underlying link-layer technology on each link in the path; latency,

 loss, and rate expectations are dynamic properties of the network

 configuration and network traffic conditions; path element membership

 is a function of network topology. In an explicitly multipath

 architecture, application and transport layer requirements can be met

 by having multiple paths with different properties to select from.

 Transport protocol stacks can also provide signaling to devices along

 the path, but this signaling is derived from information provided to

 the Message abstraction.

3. Abstract Programming Interface

 We now turn to the design of an abstract programming interface to

 provide a simple interface to Post’s abstractions, constrained by the

 following design principles:

 o Flexibility is paramount. So is simplicity. Applications must be

 given as many controls and as much information as they may need,

 but they must be able to ignore controls and information

 irrelevant to their operation. This implies that the "default"

 interface must be no more complicated than BSD sockets, and must

 do something reasonable.

 o Reception is an inherently asynchronous activity. While the API

 is designed to be as platform-independent as possible, one key

 insight it is based on is that an Message receiver’s behavior in a

 packet-switched network is inherently asynchronous, driven by the

 receipt of packets, and that this asynchronicity must be reflected

 in the API. The actual implementation of receive and event

 handling will need to be aligned to the method a given platform

 provides for asynchronous I/O.

 o A new API cannot be bound to a single transport protocol and

 expect wide deployment. As the API is transport-independent and

 may support runtime transport selection, it must impose the

 minimum possible set of constraints on its underlying transports,

 though some API features may require underlying transport features

 to work optimally. It must be possible to implement Post over

 vanilla TCP in the present Internet architecture.

 The API we design from these principles is centered around a Carrier,

 which can be created actively via initiate() or passively via a

 listen(); the latter creates a Listener from which new Carriers can

 be accept()ed. Messages may be created explicitly and passed to this

 Carrier, or implicitly through a simplified interface which uses

 default message properties (reliable transport without priority or

Trammell, et al. Expires April 30, 2018 [Page 15]

Internet-Draft Post Sockets October 2017

 deadline, which guarantees ordered delivery over a single Carrier

 when the underlying transport protocol stack supports it).

 For each connection between a Local and a Remote a new Carrier is

 created and destroyed when the connection is closed. However, a new

 Carrier may use an existing Association if present for the requested

 Local-Remote pair and permitted by the PolicyContext that can be

 provided at Carrier initiation. Further the system-wide

 PolicyContext can contain more information that determine when to

 create or destroy Associations other than at Carrier initiation.

 E.g. an Association can be created at system start, based on the

 configured PolicyContext or also by a manual action of an single

 application, for Local-Remote pairs that are known to be likely used

 soon, and to pre-establish, e.g., cryptographic context as well as

 potentially collect current information about path capabilities.

 Every time an actual connection with a specific PSI is established

 between the Local and Remote, the Association learns new Path

 information and stores them. This information can be used when a new

 transient is created, e.g. to decide which PSI to use (to provide the

 highest probably for a successful connection attempt) or which PSIs

 to probe for (first). A Transient is created when an application

 actually sends a Message over a Carrier. As further explained below

 this step can actually create multiple transients for probing or

 assign a new transient to an already active PSI, e.g. if multi-

 streaming is provided and supported for these kind of use on both

 sides.

3.1. Example Connection Patterns

 Here, we illustrate the usage of the API for common connection

 patterns. Note that error handling is ignored in these illustrations

 for ease of reading.

3.1.1. Client-Server

 Here’s an example client-server application. The server echoes

 messages. The client sends a message and prints what it receives.

 The client in Figure 2 connects, sends a message, and sets up a

 receiver to print messages received in response. The carrier is

 inactive after the Initiate() call; the Send() call blocks until the

 carrier can be activated.

Trammell, et al. Expires April 30, 2018 [Page 16]

Internet-Draft Post Sockets October 2017

 // connect to a server given a remote

 func sayHello() {

 carrier := Initiate(local, remote)

 carrier.Send([]byte("Hello!"))

 carrier.Ready(func (msg InMessage) {

 fmt.Println(string([]byte(msg))

 return false

 })

 carrier.Close()

 }

 Figure 2: Example client

 The server in Figure 3 creates a Listener, which accepts Carriers and

 passes them to a server. The server echos the content of each

 message it receives.

 // run a server for a specific carrier, echo all its messages

 func runMyServerOn(carrier Carrier) {

 carrier.Ready(func (msg InMessage) {

 carrier.Send(msg)

 })

 }

 // accept connections forever, spawn servers for them

 func acceptConnections() {

 listener := Listen(local)

 listener.Accept(func(carrier Carrier) bool {

 go runMyServerOn(carrier)

 return true

 })

 }

 Figure 3: Example server

 The Responder allows the server to be significantly simplified, as

 shown in Figure 4.

 func echo(msg InMessage, reply Sink) {

 reply.Send(msg)

 }

 Respond(local, echo)

 Figure 4: Example responder

Trammell, et al. Expires April 30, 2018 [Page 17]

Internet-Draft Post Sockets October 2017

3.1.2. Client-Server with Happy Eyeballs and 0-RTT establishment

 The fundamental design of a client need not change at all for happy

 eyeballs [RFC6555] (selection of multiple potential protocol stacks

 through connection racing); this is handled by the Post Sockets

 implementation automatically. If this connection racing is to use

 0-RTT data (i.e., as provided by TCP Fast Open [RFC7413], the client

 must mark the outgoing message as idempotent.

// connect to a server given a remote and send some 0-RTT data

func sayHelloQuickly() {

 carrier := Initiate(local, remote)

 carrier.SendMsg(OutMessage{Content: []byte("Hello!"), Idempotent: true}, nil,

 carrier.Ready(func (msg InMessage) {

 fmt.Println(string([]byte(msg)))

 return false

 })

 carrier.Close()

}

3.1.3. Peer to Peer with Network Address Translation

 In the client-server examples shown above, the Remote given to the

 Initiate call refers to the name and port of the server to connect

 to. This need not be the case, however; a Remote may also refer to

 an identity and a rendezvous point for rendezvous as in ICE

 [RFC5245]. Here, each peer does its own Initiate call

 simultaneously, and the result on each side is a Carrier attached to

 an appropriate Association.

3.1.4. Multicast Receiver

 A multicast receiver is implemented using a Sink attached to a Local

 encapsulating a multicast address on which to receive multicast

 datagrams. The following example prints messages received on the

 multicast address forever.

 func receiveMulticast() {

 sink = NewSink(local)

 sink.Ready(func (msg InMessage) {

 fmt.Println(string([]byte(msg)))

 return true

 })

 }

Trammell, et al. Expires April 30, 2018 [Page 18]

Internet-Draft Post Sockets October 2017

3.1.5. Association Bootstrapping

 Here, we show how Association state may be initialized without a

 carrier. The goal is to create a long-term Association from which

 Carriers may be derived and, if possible, used immediately. Per

 [I-D.pauly-taps-transport-security], a first step is to specify trust

 model constraints, such as pinned public keys and anchor

 certificates, which are needed to create Remote connections.

 We begin by creating shared security parameters that will be used

 later for creating a remote connection.

 // create security parameters with a set of trusted certificates

 func createParameters(trustedCerts []Certificate) Parameters {

 parameters := Parameters()

 parameters = parameters.SetTrustedCerts(trustedCerts)

 return parameters

 }

 Using these statically configured parameters, we now show how to

 create an Association between a Local and Remote using these

 parameters.

// create an Association using shared parameters

func createAssociation(local Local, remote Remote, parameters Parameters) Associa

 association := NewAssociation(local, remote, parameters)

 return association

}

 We may also create an Association with a pre-shared key configured

 out-of-band.

// create an Association using a pre-shared key

func createAssociationWithPSK(local Local, remote Remote, parameters Parameters,

 association := NewAssociation(local, remote, parameters)

 association = association.SetPreSharedKey(preSharedKey)

 return association

}

 We now show how to create a Carrier from an existing, pre-configured

 Association. This Association may or may not contain shared

 cryptographic static between the Local and Remote, depending on how

 it was configured.

Trammell, et al. Expires April 30, 2018 [Page 19]

Internet-Draft Post Sockets October 2017

// open a connection to a server using an existing Association and send some data

// which will be sent early if possible.

func sayHelloWithAssociation(association Association) {

 carrier := association.Initiate()

 carrier.SendMsg(OutMessage{Content: []byte("Hello!"), Idempotent: true}, nil,

 carrier.Ready(func (msg InMessage) {

 fmt.Println(string([]byte(msg)))

 return false

 })

 carrier.Close()

}

3.2. API Dynamics

 As Carriers provide the central entry point to Post, they are key to

 API dynamics. The lifecycle of a carrier is shown in Figure 5.

 Carriers are created by active openers by calling Initiate() given a

 Local and a Remote, and by passive openers by calling Listen() given

 a Local; the .Accept() method on the listener Carrier can then be

 used to create active carriers. By default, the underlying

 Association is automatically created and managed by the underlying

 API. This underlying Association can be accessed by the Carrier’s

 .Association() method. Alternately, an association can be explicitly

 created using NewAssociation(), and a Carrier on the association may

 be accessed or initiated by calling the association’s .Initiate()

 method.

 Once a Carrier has been created (via Initiate(),

 Association.Initiate(), NewSource(), NewSink(), or

 Listen()/Accept()), it may be used to send and receive Messages. The

 existence of a Carrier does not imply the existence of an active

 Transient or associated transport-layer connection; these may be

 created when the carrier is, or may be deferred, depending on the

 network environment, configuration, and protocol stacks available.

Trammell, et al. Expires April 30, 2018 [Page 20]

Internet-Draft Post Sockets October 2017

 Listen(local) Initiate(local,remote) NewSource(local,remote)

 | | or NewSink(local)

 [Carrier] | |

 [(listener)] +--------------------+

 | V

 .Accept()-----------> [Carrier] -+----------> .Close()

 | ^ | close [Carrier]

 | | +- event -> [(closed)]

 | |

 .Association() .Carriers()

 | .Initiate()

 V |

 [Association]

 ^

 |

 NewAssociation(local,remote)

 Figure 5: Carrier and Association Life Cycle

 Access to more detailed information is possible through accessors on

 Carriers and Associations, as shown in Figure 6. The set of

 currently active Transients can be accessed through the Carrier’s

 .Transients() methods. The active path(s) used by a Transient can be

 accessed through the Transient’s .Paths() method, and the set of all

 paths for which properties are cached by an Association can be

 accessed through the Association’s .Paths() method. The set of

 active carriers on an association can be accessed through the

 Association’s .Carriers() method. Access to transients and paths is

 not necessary in normal operation; these accessors are provided

 primarily for logging and debugging purposes.

 [Carrier]---.Transients()--->[Transient]

 | ^ |

 | | |

 .Association() .Carriers() .Paths()

 | .Initiate() |

 V | V

 [Association]---.Paths()------>[Path]

 Figure 6: Accessors on Carriers and Associations

 Each Carrier has a .Send() method, by which Messages can be sent with

 given properties, and a .Ready() method, which supplies a callback

 for reading Messages from the remote side. .Send() is not available

 on Sinks, and .Ready() is not available on Sources. Carriers also

 provide .OnSent(), .OnAcked(), and .OnExpired() calls for binding

 default send event handlers to the Carrier, and .OnClosed() for

 handling passive close notifications.

Trammell, et al. Expires April 30, 2018 [Page 21]

Internet-Draft Post Sockets October 2017

 +---------[incoming]-----------+

 | [Message] V

 [outgoing] ---> .Send() ---> [Carrier] <---- .Ready() <---- [Receiver]

 [Message] |

 +--- .OnSent()

 +--- .OnAcked()

 +--- .OnExpired()

 +--- .OnClosed()

 Figure 7: Sending and Receiving Messages and Events

 An application may have a global Configuation, as well as more

 specific Configurations to apply to the establishment of a given

 Association or Carrier. These Configurations are optional arguments

 to the Association and Carrier creation calls.

 In order to initiate a connection with a remote endpoint, a user of

 Post Sockets must start from a Remote (see Section 2.4). A Remote

 encapsulates identifying information about a remote endpoint at a

 specific level of resolution. A new Remote can be wrapped around

 some identifying information by via the NewRemote() call. A Remote

 has a .Resolve() method, which can be iteratively revoked to increase

 the level of resolution; a call to Resolve on a given Remote may

 result in one to many Remotes, as shown in Figure 8. Remotes at any

 level of resolution may be passed to Post Sockets calls; each call

 will continue resolution to the point necessary to establish or

 resume a Carrier.

 +----------------------------+

 n | | 1

 NewRemote(identifiers) ---+--->[Remote] --.Resolve()---+

 Figure 8: Recursive resolution of Remotes

 Information about the local endpoint is also necessary to establish

 an Association, whether explicitly or implicitly through the creation

 of a Carrier or Listener. This is passed in the form of a Local (see

 Section 2.5). A Local is created with a NewLocal() call, which takes

 a Configuration (including certificates to present and secret keys

 associated with them) and identifying information (interface(s) and

 port(s) to use).

4. Implementation Considerations

 Here we discuss an incomplete list of API implementation

 considerations that have arisen with experimentation with prototype

 implementations of Post.

Trammell, et al. Expires April 30, 2018 [Page 22]

Internet-Draft Post Sockets October 2017

4.1. Protocol Stack Instance (PSI)

 A PSI encapsulates an arbitrary stack of protocols (e.g., TCP over

 IPv6, SCTP over DTLS over UDP over IPv4). PSIs provide the bridge

 between the interface (Carrier) plus the current state (Transients)

 and the implementation of a given set of transport services

 [I-D.ietf-taps-transports].

 A given implementation makes one or more possible protocol stacks

 available to its applications. Selection and configuration among

 multiple PSIs is based on system-level or application policies, as

 well as on network conditions in the provisioning domain in which a

 connection is made.

 +=========+ +=========+ +==========+ +==========+

 | Carrier | | Carrier | | Carrier | | Carrier |

 +=========+ +=========+ +==========+ +==========+

 | | | |

 +=========+ +=========+ +==========+ +==========+

 |Transient| |Transient| |Transient | |Transient |

 +=========+ +=========+ +==========+ +==========+

 | \ / / \

 +=========+ +=========+ +=========+ +=========+

 | PSI | | PSI | | PSI | | PSI |

 +===+-----++ +===+-----++ +===+-----++ ++-----+===+

 |TLS | |SCTP | |TLS | | TLS|

 |TCP | |DTLS | |TCP | | TCP|

 |IPv6 | |UDP | |IPv6 | | IPv4|

 |802.3 | |IPv6 | |802.11| |802.11|

 +------+ |802.3 | +------+ +------+

 +------+

 (a) Transient (b) Carrier multiplexing (c) Multiple candidates

 bound to PSI over a multi-streaming racing during session

 transport protocol establishment

 Figure 9: Example Protocol Stack Instances

 For example, Figure 9(a) shows a TLS over TCP stack, usable on most

 network connections. Protocols are layered to ensure that the PSI

 provides all the transport services required by the application. A

 single PSI may be bound to multiple Carriers, as shown in

 Figure 9(b): a multi-streaming transport protocol like QUIC or SCTP

 can support one carrier per stream. Where multi-streaming transport

 is not available, these carriers could be serviced by different PSIs

 on different flows. On the other hand, multiple PSIs are bound to a

 single transient during establishment, as shown in Figure 9(c).

 Here, the losing PSI in a happy-eyeballs race will be terminated, and

 the carrier will continue using the winning PSI.

Trammell, et al. Expires April 30, 2018 [Page 23]

Internet-Draft Post Sockets October 2017

4.2. Message Framing, Parsing, and Serialization

 While some transports expose a byte stream abstraction, most higher

 level protocols impose some structure onto that byte stream. That

 is, the higher level protocol operates in terms of messages, protocol

 data units (PDUs), rather than using unstructured sequences of bytes,

 with each message being processed in turn. Protocols are specified

 in terms of state machines acting on semantic messages, with parsing

 the byte stream into messages being a necessary annoyance, rather

 than a semantic concern. Accordingly, Post Sockets exposes a

 message-based API to applications as the primary abstraction.

 Protocols that deal only in byte streams, such as TCP, represent

 their data in each direction as a single, long message. When framing

 protocols are placed on top of byte streams, the messages used in the

 API represent the framed messages within the stream.

 There are other benefits of providing a message-oriented API beyond

 framing PDUs that Post Sockets should provide when supported by the

 underlying transport. These include:

 o the ability to associate deadlines with messages, for transports

 that care about timing;

 o the ability to provide control of reliability, choosing what

 messages to retransmit in the event of packet loss, and how best

 to make use of the data that arrived;

 o the ability to manage dependencies between messages, when some

 messages may not be delivered due to either packet loss or missing

 a deadline, in particular the ability to avoid (re-)sending data

 that relies on a previous transmission that was never received.

 All require explicit message boundaries, and application-level

 framing of messages, to be effective. Once a message is passed to

 Post Sockets, it can not be cancelled or paused, but prioritization

 as well as lifetime and retransmission management will provide the

 protocol stack with all needed information to send the messages as

 quickly as possible without blocking transmission unnecessarily.

 Post Sockets provides this by handling message, with known identity

 (sequence numbers, in the simple case), lifetimes, niceness, and

 antecedents.

 Transport protocols such as SCTP provide a message-oriented API that

 has similar features to those we describe. Other transports, such as

 TCP, do not. To support a message oriented API, while still being

 compatible with stream-based transport protocols, Post Sockets must

 provide APIs for parsing and serialising messages that understand the

 protocol data. That is, we push message parsing and serialisation

Trammell, et al. Expires April 30, 2018 [Page 24]

Internet-Draft Post Sockets October 2017

 down into the Post Sockets stack, allowing applications to send and

 receive strongly typed data objects (e.g., a receive call on an HTTP

 Message Carrier should return an object representing the HTTP

 response, with pre-parsed status code, headers, and any message body,

 rather than returning a byte array that the application has to parse

 itself). This is backwards compatible with existing protocols and

 APIs, since the wire format of messages does not change, but gives a

 Post Sockets stack additional information to allow it to make better

 use of modern transport services.

 The Post Sockets approach is therefore to raise the semantic level of

 the transport API: applications should send and receive messages in

 the form of meaningful, strongly typed, protocol data. Parsing and

 serialising such messages should be a re-usable function of the

 protocol stack instance not the application. This is well-suited to

 implementation in modern systems languages, such as Swift, Go, Rust,

 or C++, but can also be implemented with some loss of type safety in

 C.

4.3. Message Size Limitations

 Ideally, Messages can be of infinite size. However, protocol stacks

 and protocol stack implementations may impose their own limits on

 message sizing; For example, SCTP [RFC4960] and TLS

 [I-D.ietf-tls-tls13] impose record size limitations of 64kB and 16kB,

 respectively. Message sizes may also be limited by the available

 buffer at the receiver, since a Message must be fully assembled by

 the transport layer before it can be passed on to the application

 layer. Since not every transport protocol stack implements the

 signaling necessary to negotiate or expose message size limitations,

 these may need to be defined out of band, and are probably best

 exposed through the Configuration.

 A truly infinite message service - e.g. large file transfer where

 both endpoints have committed persistent storage to the message - is

 probably best realized as a layer above Post Sockets, and may be

 added as a new type of Message Carrier to a future revision of this

 document.

4.4. Back-pressure

 Regardless of how asynchronous reception is implemented, it is

 important for an application to be able to apply receiver back-

 pressure, to allow the protocol stack to perform receiver flow

 control. Depending on how asynchronous I/O works in the platform,

 this could be implemented by having a maximum number of concurrent

 receive callbacks, or by bounding the maximum number of outstanding,

 unread bytes at any given time, for example.

Trammell, et al. Expires April 30, 2018 [Page 25]

Internet-Draft Post Sockets October 2017

4.5. Associations, Transients, Racing, and Rendezvous

 As the network has evolved, even the simple act of establishing a

 connection has become increasingly complex. Clients now regularly

 race multiple connections, for example over IPv4 and IPv6, to

 determine which protocol to use. The choice of outgoing interface

 has also become more important, with differential reachability and

 performance from multiple interfaces. Name resolution can also give

 different outcomes depending on the interface the query was issued

 from. Finally, but often most significantly, NAT traversal, relay

 discovery, and path state maintenance messages are an essential part

 of connection establishment, especially for peer-to-peer

 applications.

 Post Sockets accordingly breaks communication establishment down into

 multiple phases:

 o Gathering Locals

 The set of possible Locals is gathered. In the simple case, this

 merely enumerates the local interfaces and protocols, and

 allocates ephemeral source ports for transients. For example, a

 system that has WiFi and Ethernet and supports IPv4 and IPv6 might

 gather four candidate locals (IPv4 on Ethernet, IPv6 on Ethernet,

 IPv4 on WiFi, and IPv6 on WiFi) that can form the source for a

 transient.

 If NAT traversal is required, the process of gathering locals

 becomes broadly equivalent to the ICE candidate gathering phase

 [RFC5245]. The endpoint determines its server reflexive locals

 (i.e., the translated address of a local, on the other side of a

 NAT) and relayed locals (e.g., via a TURN server or other relay),

 for each interface and network protocol. These are added to the

 set of candidate locals for this association.

 Gathering locals is primarily an endpoint local operation,

 although it might involve exchanges with a STUN server to derive

 server reflexive locals, or with a TURN server or other relay to

 derive relayed locals. It does not involve communication with the

 remote.

 o Resolving the Remote

 The remote is typically a name that needs to be resolved into a

 set of possible addresses that can be used for communication.

 Resolving the remote is the process of recursively performing such

 name lookups, until fully resolved, to return the set of

 candidates for the remote of this association.

Trammell, et al. Expires April 30, 2018 [Page 26]

Internet-Draft Post Sockets October 2017

 How this is done will depend on the type of the Remote, and can

 also be specific to each local. A common case is when the Remote

 is a DNS name, in which case it is resolved to give a set of IPv4

 and IPv6 addresses representing that name. Some types of remote

 might require more complex resolution. Resolving the remote for a

 peer-to-peer connection might involve communication with a

 rendezvous server, which in turn contacts the peer to gain consent

 to communicate and retrieve its set of candidate locals, which are

 returned and form the candidate remote addresses for contacting

 that peer.

 Resolving the remote is _not_ a local operation. It will involve

 a directory service, and can require communication with the remote

 to rendezvous and exchange peer addresses. This can expose some

 or all of the candidate locals to the remote.

 o Establishing Transients

 The set of candidate locals and the set of candidate remotes are

 paired, to derive a priority ordered set of Candidate Paths that

 can potentially be used to establish a connection.

 Then, communication is attempted over each candidate path, in

 priority order. If there are multiple candidates with the same

 priority, then transient establishment proceeds simultaneously and

 uses the transient that wins the race to be established.

 Otherwise, transients establishment is sequential, paced at a rate

 that should not congest the network. Depending on the chosen

 transport, this phase might involve racing TCP connections to a

 server over IPv4 and IPv6 [RFC6555], or it could involve a STUN

 exchange to establish peer-to-peer UDP connectivity [RFC5245], or

 some other means.

 o Confirming and Maintaining Transients

 Once connectivity has been established, unused resources can be

 released and the chosen path can be confirmed. This is primarily

 required when establishing peer-to-peer connectivity, where

 connections supporting relayed locals that were not required can

 be closed, and where an associated signalling operation might be

 needed to inform middleboxes and proxies of the chosen path.

 Keep-alive messages may also be sent, as appropriate, to ensure

 NAT and firewall state is maintained, so the transient remains

 operational.

 By encapsulating these four phases of communication establishment

 into the PSI, Post Sockets aims to simplify application development.

 It can provide reusable implementations of connection racing for TCP,

Trammell, et al. Expires April 30, 2018 [Page 27]

Internet-Draft Post Sockets October 2017

 to enable happy eyeballs, that will be automatically used by all TCP

 clients, for example. With appropriate callbacks to drive the

 rendezvous signalling as part of resolving the remote, we believe a

 generic ICE implementation ought also to be possible. This procedure

 can even be repeated fully or partially during a connection to enable

 seamless hand-over and mobility within the network stack.

5. Acknowledgments

 Many thanks to Laurent Chuat and Jason Lee at the Network Security

 Group at ETH Zurich for contributions to the initial design of Post

 Sockets. Thanks to Joe Hildebrand, Martin Thomson, and Michael Welzl

 for their feedback, as well as the attendees of the Post Sockets

 workshop in February 2017 in Zurich for the discussions, which have

 improved the design described herein.

 This work is partially supported by the European Commission under

 Horizon 2020 grant agreement no. 688421 Measurement and Architecture

 for a Middleboxed Internet (MAMI), and by the Swiss State Secretariat

 for Education, Research, and Innovation under contract no. 15.0268.

 This support does not imply endorsement.

6. References

6.1. Normative References

 [I-D.ietf-taps-transports]

 Fairhurst, G., Trammell, B., and M. Kuehlewind, "Services

 provided by IETF transport protocols and congestion

 control mechanisms", draft-ietf-taps-transports-14 (work

 in progress), December 2016.

6.2. Informative References

 [I-D.ietf-quic-transport]

 Iyengar, J. and M. Thomson, "QUIC: A UDP-Based Multiplexed

 and Secure Transport", draft-ietf-quic-transport-07 (work

 in progress), October 2017.

 [I-D.ietf-tls-tls13]

 Rescorla, E., "The Transport Layer Security (TLS) Protocol

 Version 1.3", draft-ietf-tls-tls13-21 (work in progress),

 July 2017.

 [I-D.iyengar-minion-protocol]

 Jana, J., Cheshire, S., and J. Graessley, "Minion - Wire

 Protocol", draft-iyengar-minion-protocol-02 (work in

 progress), October 2013.

Trammell, et al. Expires April 30, 2018 [Page 28]

Internet-Draft Post Sockets October 2017

 [I-D.kuehlewind-taps-crypto-sep]

 Kuehlewind, M., Pauly, T., and C. Wood, "Separating Crypto

 Negotiation and Communication", draft-kuehlewind-taps-

 crypto-sep-00 (work in progress), July 2017.

 [I-D.pauly-taps-transport-security]

 Pauly, T. and C. Wood, "A Survey of Transport Security

 Protocols", draft-pauly-taps-transport-security-00 (work

 in progress), July 2017.

 [I-D.trammell-plus-abstract-mech]

 Trammell, B., "Abstract Mechanisms for a Cooperative Path

 Layer under Endpoint Control", draft-trammell-plus-

 abstract-mech-00 (work in progress), September 2016.

 [I-D.trammell-plus-statefulness]

 Kuehlewind, M., Trammell, B., and J. Hildebrand,

 "Transport-Independent Path Layer State Management",

 draft-trammell-plus-statefulness-03 (work in progress),

 March 2017.

 [MinimaLT]

 Petullo, W., Zhang, X., Solworth, J., Bernstein, D., and

 T. Lange, "MinimaLT, Minimal-latency Networking Through

 Better Security", May 2013.

 [NEAT] Grinnemo, K-J., Tom Jones, ., Gorry Fairhurst, ., David

 Ros, ., Anna Brunstrom, ., and . Per Hurtig, "Towards a

 Flexible Internet Transport Layer Architecture", June

 2016.

 [RFC0793] Postel, J., "Transmission Control Protocol", STD 7,

 RFC 793, DOI 10.17487/RFC0793, September 1981,

 <https://www.rfc-editor.org/info/rfc793>.

 [RFC4960] Stewart, R., Ed., "Stream Control Transmission Protocol",

 RFC 4960, DOI 10.17487/RFC4960, September 2007,

 <https://www.rfc-editor.org/info/rfc4960>.

 [RFC5245] Rosenberg, J., "Interactive Connectivity Establishment

 (ICE): A Protocol for Network Address Translator (NAT)

 Traversal for Offer/Answer Protocols", RFC 5245,

 DOI 10.17487/RFC5245, April 2010,

 <https://www.rfc-editor.org/info/rfc5245>.

 [RFC6555] Wing, D. and A. Yourtchenko, "Happy Eyeballs: Success with

 Dual-Stack Hosts", RFC 6555, DOI 10.17487/RFC6555, April

 2012, <https://www.rfc-editor.org/info/rfc6555>.

Trammell, et al. Expires April 30, 2018 [Page 29]

Internet-Draft Post Sockets October 2017

 [RFC6698] Hoffman, P. and J. Schlyter, "The DNS-Based Authentication

 of Named Entities (DANE) Transport Layer Security (TLS)

 Protocol: TLSA", RFC 6698, DOI 10.17487/RFC6698, August

 2012, <https://www.rfc-editor.org/info/rfc6698>.

 [RFC6824] Ford, A., Raiciu, C., Handley, M., and O. Bonaventure,

 "TCP Extensions for Multipath Operation with Multiple

 Addresses", RFC 6824, DOI 10.17487/RFC6824, January 2013,

 <https://www.rfc-editor.org/info/rfc6824>.

 [RFC7258] Farrell, S. and H. Tschofenig, "Pervasive Monitoring Is an

 Attack", BCP 188, RFC 7258, DOI 10.17487/RFC7258, May

 2014, <https://www.rfc-editor.org/info/rfc7258>.

 [RFC7413] Cheng, Y., Chu, J., Radhakrishnan, S., and A. Jain, "TCP

 Fast Open", RFC 7413, DOI 10.17487/RFC7413, December 2014,

 <https://www.rfc-editor.org/info/rfc7413>.

 [RFC7556] Anipko, D., Ed., "Multiple Provisioning Domain

 Architecture", RFC 7556, DOI 10.17487/RFC7556, June 2015,

 <https://www.rfc-editor.org/info/rfc7556>.

Appendix A. Open Issues

 This document is under active development; a list of current open

 issues is available at https://github.com/mami-project/draft-

 trammell-post-sockets/issues

Authors’ Addresses

 Brian Trammell

 ETH Zurich

 Gloriastrasse 35

 8092 Zurich

 Switzerland

 Email: ietf@trammell.ch

 Colin Perkins

 University of Glasgow

 School of Computing Science

 Glasgow G12 8QQ

 United Kingdom

 Email: csp@csperkins.org

Trammell, et al. Expires April 30, 2018 [Page 30]

Internet-Draft Post Sockets October 2017

 Tommy Pauly

 Apple Inc.

 1 Infinite Loop

 Cupertino, California 95014

 United States of America

 Email: tpauly@apple.com

 Mirja Kuehlewind

 ETH Zurich

 Gloriastrasse 35

 8092 Zurich

 Switzerland

 Email: mirja.kuehlewind@tik.ee.ethz.ch

 Chris Wood

 Apple Inc.

 1 Infinite Loop

 Cupertino, California 95014

 United States of America

 Email: cawood@apple.com

Trammell, et al. Expires April 30, 2018 [Page 31]

