RTP Redundancy Update

Colin Perkins <c.perkins@cs.ucl.ac.uk>

Department of Computer Science

University College London

Gower Street

London WC1E 6BT

Status

- RTP redundancy mechanism published as RFC2198 in September 1997.
- Simple packet format, allows bundling of multiple frames of audio into a single packet as a form of media specific FEC.

 Optimised for audio data, but can be used for other media types.

Example packet

0				1				2						3	
					1 2 3										
V=2 I	P X	CC	M	1	+-+-+- PT	1	sequ	ience	nun	nber	of	pr	imar	у	I
1	-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+														
1	synchronization source (SSRC) identifier														
1 b	Lock	PT=7	7	tim	estamp	offse	t		l	bl	ock	le	ngth		I
0 b	-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+														
+ +	LPC encoded redundant data														
 +	+-														
l	I														
+-+-+· 	-+-+-+-+-+-+-+-+-+-+-+-+-+														
+															
1	DVI4 encoded primary data														١
+ 															+
+-+-+-	-+-+	-+-+-	-+-+-	-+-+-	+-+-+-	+-+-+-	+-+		+	+-+-	+-+	-+-	+-+-	+-+	-+

Problem: Start of Talkspurt

- The redundant (FEC) data is typically piggy-backed one packet after the primary.
- The first packet in a talkspurt cannot contain FEC data, since there are no preceding packets.
- This causes two problems:
 - 1. Changing payload type
 - 2. Unknown buffering requirement

Issues: Payload Type

- In a standard RTP session, all packets sent by a source will have the same payload type.
- However, senders using redundant audio send the first packet in a talkspurt with no FEC data (ie: payload type of the primary codec) and the following packets with the redundancy payload type.

• This makes implementations needlessly complex, since they have to associate packets with different payload types into a single stream.

Issues: Buffer Space

- The FEC data can be sent any number of packets after the primary. This delay isn't known until a packet containing FEC data is received...
- ...by which time the playout buffer length for this talkspurt has already been calculated.
- Adapting the playout buffer mid-talkspurt will cause an glitch in the audio. Not adapting may make it impossible to use the FEC data (since it arrives too late)

Solution

- Send all packet with the redundancy payload type.
- For those at the start of the talkspurt, advertise the FEC offset and set the block length to zero.

Solution

- This solves both problems noticed.
- Requires a change to the *usage* of the protocol, but not to the protool specification itself.
- Believed backwards compatible with existing implementations...