
INTERNET-DRAFT J. Ott/C. Perkins/D. Kutscher

Expires: February 1999 Universitaet Bremen/UCL/Universitaet Bremen

 August 1998

 A Message Bus for Conferencing Systems

 draft-ietf-mmusic-mbus-transport-00.txt

Status of this memo

 This document is an Internet-Draft. Internet-Drafts are working

 documents of the Internet Engineering Task Force (IETF), its areas,

 and its working groups. Note that other groups may also distribute

 working documents as Internet-Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months

 and may be updated, replaced, or obsoleted by other documents at any

 time. It is inappropriate to use Internet-Drafts as reference

 material or to cite them other than as ‘‘work in progress.’’

 To learn the current status of any Internet-Draft, please check the

 ‘‘1id-abstracts.txt’’ listing contained in the Internet-Drafts Shadow

 Directories on ftp.is.co.za (Africa), nic.nordu.net (Europe),

 munnari.oz.au (Pacific Rim), ftp.ietf.org (US East Coast), or

 ftp.isi.edu (US West Coast).

 Distribution of this document is unlimited.

Abstract

 In a variety of scenarios, a local communication channel is desirable

 for conference-related information exchange between co-located but

 otherwise independent application entities, for example those taking

 part in application sessions that belong to the same conference.

 Such a mechanism allows for coordination of applications entities to

 e.g. implement synchronization between media streams or realize

 tightly coupled conferences. The local conference Message Bus (Mbus)

 provides a means to achieve the necessary amount of coordination

 between co-located conferencing applications for virtually any type

 of conference. The Message Bus comprises two logically distinct

 parts: a message transport and addressing infrastructure and a set of

 common as well as media tool specific messages. This documents deals

 with message addressing, transport, and security issues and defines

 the message syntax for the Mbus. It does not define application

 oriented semantics and procedures for using the message bus. The

 common procedures for Mbus operation as well as the common set of

 application/media specific messages are introduced in a companion

 Internet draft[9].

 This document is intended for discussion in the Multiparty Multimedia

 Session Control (MMUSIC) working group of the Internet Engineering

 Task Force. Comments are solicited and should be addressed to the

Ott/Perkins/Kutscher [Page 1]

INTERNET-DRAFT A Message Bus for Conferencing Systems August 1998

 working group’s mailing list at confctrl@isi.edu and/or the authors.

1. Introduction

1.1. Background

 In the Mbone community a model has arisen whereby a set of loosely

 coupled tools are used to participate in a conference. A typical

 scenario is that audio, video and shared workspace functionality is

 provided by three separate tools (although some combined tools

 exist). This maps well onto the underlying RTP [5] (as well as

 other) media streams, which are also transmitted separately. Given

 such an architecture, it is useful to be able to perform some

 coordination of the separate media tools. For example, it may be

 desirable to communicate playout-point information between audio and

 video tools, in order to implement lip-synchronisation, to arbitrate

 the use of shared resources (such as input devices), etc.

 A refinement of this architecture relies on the presence of a number

 of media engines which perform protocol functions as well as

 capturing and playout of media. In addition, one (or more)

 (separate) user interface agents exist that interact with and control

 their media engine(s). Such an approach allows flexibility in the

 user-interface design and implementation, but obviously requires some

 means by which the various involved agents may communicate with one

 another. This is particularly desirable to enable a coherent

 response to a user’s conference-related actions (such as joining or

 leaving).

 Although current practice in the Mbone community is to work with a

 loosely coupled conference control model, situations arise where this

 is not appropriate and a more tightly coupled wide-area conference

 control protocol must be employed (e.g. for IP telephony). In such

 cases, it is highly desirable to be able to re-use the existing tools

 (media engines) available for loosely coupled conferences and

 integrate them with a system component implementing the tight

 conference control model. One appropriate means to achieve this

 integration is a communication channel that allows a dedicated

 conference control entity to ‘‘remotely’’ control the media engines

 in addition to or instead of their respective user interfaces.

 The Message Bus defined in this and a companion document provides a

 suitable means for local communication that serves all of the above

 purposes.

1.2. Purpose

 Two components constitute the Message Bus: the (lower level) message

 passing mechanisms and the (higher level) messages and their

Ott/Perkins/Kutscher [Page 2]

INTERNET-DRAFT A Message Bus for Conferencing Systems August 1998

 semantics.

 The purpose of this document is to define the characteristics of the

 basic Mbus message passing mechanism which is common to all Mbus

 implementations. This includes the specification of

 o the generic Mbus message format;

 o the addressing concept for application entities;

 o the transport mechanisms to be employed for conveying messages

 between (co-located) application entities;

 o the security concept to prevent misuse of the Message Bus (as

 taking control of another user’s conferencing environment); and

 o the details of the Mbus message syntax.

1.3. Terminology for requirement specifications

 In this document, the key words "MUST", "MUST NOT", "REQUIRED",

 "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY",

 and "OPTIONAL" are to be interpreted as described in RFC 2119 [1] and

 indicate requirement levels for compliant Mbus implementations.

1.4. Definition of terms

 o Conference

 The relationship between a set of human beings that are

 communicating together. In this document, the term is used for

 both tightly and loosely coupled [4] computer based conferences.

 o Participant

 A (typically human) being that takes part in a conference.

 o Member

 The system, including all software and hardware components, that

 is used in a teleconference to represent a single participant.

 o End system

 A host or a set of locally interconnected hosts[1] that is used

 [1] In this document, we use the term ‘‘end system’’ as a syn-

onym for ‘‘host’’ in the simplest case. We do not want to ex-

clude, however, that the local system that serves one participant

may be composed of several ‘‘hosts’’ in the Internet sense.

Ott/Perkins/Kutscher [Page 3]

INTERNET-DRAFT A Message Bus for Conferencing Systems August 1998

 as an interface to a teleconference by a single participant.

 The end system runs all the required conferencing software (e.g.

 media agents, session directory, and a controlling entity). End

 system and software together constitute a member in each of the

 conferences a user participates in.

 o Conference controller

 A dedicated application running on an end system that implements

 a horizontal conference control protocol through which it

 interacts with conference controllers on other end systems to

 implement (typically tight) conference control mechanisms and

 conference policies. The conference controller constitutes the

 electronic representation of its (human) user and her actions

 with respect to conference(s) as a whole (rather than with

 respect to individual media sessions).

 o UCI

 A universal communication identifier of a person. This may be

 the e-mail address of an individual (or some other globally

 unique identifier) that is part of the information to identify

 her within a conference but can also be used to invite her via

 the Session Initiation Protocol (SIP) [6] protocol.

 o Presence

 A presence corresponds to a person (identified by a UCI) being

 ‘‘logged in’’ at an end system and available for conferencing,

 i.e. a presence may be identified by the pair of a user’s UCI

 and the respective end system’s identification (such as a host

 name). A presence of a user may appear in many conferences (see

 below).

 o Appearance

 An instantiation of a user’s presence actually participating

 (i.e. appearing) in a conference is referred to as an

 appearance. There is a one-to-one correspondence between

 appearances and members.

 o Conference context

 All state information kept about a conference at each member of

 this conference.

 o Application session (AS), Session

 The set of media agents/applications that act as peers to each

 other within a conference. For real-time data, this generally

 will be an RTP session [5]; for other application protocols,

 other horizontal protocols may define their own type of session

 concept. Possible synonyms are ‘‘application group’’ or ‘‘media

Ott/Perkins/Kutscher [Page 4]

INTERNET-DRAFT A Message Bus for Conferencing Systems August 1998

 agent group’’.

 o Application instance, application entity, media agent

 A program instance taking part in an application session for a

 conference participant. There can be more than one instance of

 the same program in one session, there can also be more than one

 instance in different sessions.

2. Requirements and Concepts

 The Mbus is supposed to operate in a variety of scenarios as outlined

 in the introduction. From these scenarios, the following (minimum)

 requirements are derived that have to be met by the Mbus design to

 provide a suitable local communication infrastructure.

 Local coordination involves a widely varying number of entities: some

 messages may need to be destined for all local application entities,

 such as membership information, floor control notifications,

 dissemination conference state changes, etc. Messages may also be

 targeted at a certain application class (e.g. all whiteboards or all

 audio tools) or agent type (e.g. all user interfaces rather than all

 media engines). Or there may be any (application- or message-

 specific) subgrouping defining the intended recipients, e.g. messages

 related to media synchronization. Finally there will be messages

 that are directed to a single entity, for example, specific

 configuration settings that a conference controller sends to a

 application entity or query-response exchanges between any local

 server and its clients.

 The Mbus concept as presented here satisfies these different

 communication models by defining different message transport

 mechanisms (defined in section 3.4) and by providing a flexible

 addressing scheme (defined in section 3.2).

 Furthermore, Mbus messages exchanged between application entities may

 have different reliability requirements (which are typically derived

 from their semantics). Some messages will have a rather

 informational character conveying ephemeral state information (which

 is refreshed/updated periodically), such as the volume meter level of

 an audio receiver entity to be displayed by its user interface agent.

 Certain Mbus messages (such as queries for parameters or queries to

 local servers) may require a response from the peer(s) thereby

 providing an explicit acknowledgment at the semantic level on top of

 the Mbus. Other messages will modify the application or conference

 state and hence it is crucial that they do not get lost. The latter

 type of message has to be delivered reliably to the recipient,

 whereas message of the first type do not require reliability

 mechanisms at the Mbus transport layer. For messages confirmed at the

 application layer it is up to the discretion of the application

 whether or not to use a reliable transport underneath.

Ott/Perkins/Kutscher [Page 5]

INTERNET-DRAFT A Message Bus for Conferencing Systems August 1998

 In some cases, application entities will want to tailor the degree of

 reliability to their needs, others will want to rely on the

 underlying transport to ensure delivery of the messages -- and this

 may be different for each Mbus message. The Mbus message passing

 mechanism described in this paper provides a maximum of flexibility

 by providing reliable transmission achieved through transport-layer

 acknowledgments (in case of point-to-point communications only) as

 well as unreliable message passing (for unicast, local multicast, and

 local broadcast). We address this topic in section 3.2.

 Finally, accidental or malicious disturbance of Mbus communications

 through messages originated by applications from other users needs to

 be prevented. Accidental reception of Mbus messages from other users

 may occur if either two users share the same workstation for

 conferencing or are using end systems spread across the same physical

 network: in either case, the Mbus multicast address and the port

 numbers may match leading to reception of the other party’s Mbus

 messages in addition to a user’s own ones. Malicious disturbance may

 happen because of applications multicasting (e.g. at a global scope)

 or unicasting Mbus messages (which could contain a "TERMINATE

 CONFERENCE" command). To eliminate the possibility of receiving

 bogus Mbus messages, the Mbus protocol therefore contains message

 digests for authentication. Furthermore, the Mbus allows for

 encryption to ensure privacy and thus enable using the Mbus for local

 key distribution and other functions potentially sensitive to

 eavesdropping. This document defines the framework for configuring

 Mbus applications with regard to security parameters in appendix C

 (Mbus configuration).

3. Message Bus Specification

3.1. Message Format

 A conference coordination message comprises a header and a body. The

 header is used to indicate how and where a message should be

 delivered, the body provides information and commands to the

 destination entity. The following information is included in the

 header:

 o The MsgDigest is a Base64-encoded[3] calculated hash value of

 the entire message (starting from the ProtocolID field) as

 described in appendices A (Algorithms) and C (Mbus

 configuration).

 o A fixed ProtocolID field identifies the version of the message

 bus protocol used. The protocol defined in this document is

 ‘‘mbus/1.0’’.

 o A sequence number SeqNum is contained in each message. The first

Ott/Perkins/Kutscher [Page 6]

INTERNET-DRAFT A Message Bus for Conferencing Systems August 1998

 message sent by a source SHOULD have SeqNum equal to zero, and

 it SHALL increment by one for each message sent by that source.

 A single sequence is used for all message from a source,

 irrespective of the intended recipients and the reliability mode

 selected. SeqNums are decimal numbers in ASCII representation.

 o The TimeStamp field is also contained in each message and SHALL

 contain a decimal number representing the time at message

 construction in seconds since 00:00:00, UTC, January 1, 1970.

 o A MessageType field indicates the kind of message being sent.

 The value ‘‘R’’ indicates that the message is to be transmitted

 reliably and MUST be acknowledged by the recipient, ‘‘U’’

 indicates an unreliable message which MUST NOT be acknowledged.

 o The SrcAddr field identifies the sender of a message. This MUST

 be a full address, with no wildcards present. The addressing

 scheme is described in section 3.2.

 o The DestAddr field identifies the intended recipient(s) of the

 message. This field MAY contain wildcards and hence address any

 number (including zero) of application entities. The addressing

 scheme is described in section 3.2.

 o The AckList field comprises a list of SeqNums for which this

 message is an acknowledgment. See section 3.3 for details.

 The header is followed by the message body which contains one or more

 messages to be delivered to the destination entity. The syntax for a

 complete message is given in section ‘‘syntax’’.

3.2. Addressing

 Each entity on the message bus SHOULD respond to messages sent to one

 (or more) addresses. Addresses are quad-tuples written as:

 (MediaType ModuleType AppName AppInstance)

 where one or more fields MAY be wildcarded (with ‘*’) in some cases.

 All fields in an address are case sensitive.

 The MediaType element identifies the type of media processed by an

 application. Currently defined values are:

 audio An RTP audio stream

 video An RTP video stream

Ott/Perkins/Kutscher [Page 7]

INTERNET-DRAFT A Message Bus for Conferencing Systems August 1998

 whiteboard A shared whiteboard

 editor A shared text editor

 sap A session announcement tool, using SAP

 sip A session invitation tool, using SIP

 h323 An ITU-T H.323 conference controller

 rtsp An RTSP session controller

 control A local coordination entity

 Other values are likely to be defined at a later date.

 The ModuleType element defines a logical part of an application. The

 value ‘ui’ denotes the user-interface of an application, and the

 value ‘engine’ defines a media/protocol engine, and ‘transcoder’

 defines a media transcoder. Other values may be defined in future.

 The AppName element identifies the application being used (e.g.: rat,

 vic, etc.).

 The AppInstance element is used to distinguish several instances of

 the same application. This is a per-instance-unique identifier, which

 is not necessarily an integer. Many Unix applications will use the

 process-id (PID) number, although this is not a requirement. Note

 that if an end system is spread across several hosts, the AppInstance

 MUST NOT be the process-id, unless e.g.. the host name or its IP

 address are included as well. The companion draft "The Message Bus:

 Messages and Procedures"[9] defines a bootstrap procedure ensuring

 that entities can track the abandoning and restarting of application

 instances as long as unique AppInstance values are being used.

 The following examples illustrate how to make use of the addresses:

 (audio ui rat 124) The user interface of the rat application with instance-i

 (workspace ui * *) The user interfaces of all workspace applications

 (audio * * *) All audio applications

 (* * rat *) All instances of the rat application

3.3. Reliability

 While most messages are expected to be sent using unreliable

 transport, it may be necessary to deliver some messages reliably.

 Reliability can be selected on a per message basis by means of the

 MessageType field. Reliable delivery is supported for messages with

 a single recipient only; i.e., all components of the DestAddr field

 have to be specified, without the use of wildcards.[2]

 [2] Disallowing reliable message delivery for messages sent to

multiple destinations is motivated by simplicity of the implemen-

tation as well as the protocol. Although ACK implosions are not

really an issue and losses are rare, achieving reliability for

such messages would require full knowledge of the membership for

Ott/Perkins/Kutscher [Page 8]

INTERNET-DRAFT A Message Bus for Conferencing Systems August 1998

 Each message is tagged with a message sequence number. If the

 MessageType is ‘‘R’’, the sender expects an acknowledgment from the

 recipient within a short period of time. If the acknowledgment is

 not received within this interval, the sender SHALL retransmit the

 message (with the same message sequence number), increase the

 timeout, and restart the timer. Messages SHALL be retransmitted a

 small number of times before the recipient is considered to have

 failed. If the message is not delivered successfully, the sending

 application is notified. In this case, it is up to this application

 to determine the specific action(s) (if any) to be taken.

 Reliable messages are acknowledged by adding their SeqNum to the

 AckList field of a message sent to the originator of the reliable

 message. Multiple acknowledgments MAY be sent in a single message.

 It is possible to either piggy-back the AckList onto another message

 sent to the same destination, or to send a dedicated acknowledgment

 message, with no other commands.

 The precise procedures are as follows:

 Sender:

 A sender A of a reliable message M to receiver B SHALL transmit

 the message via multicast or via unicast, keep a copy of M,

 initialize a retransmission counter N to ’1’, and start a

 retransmission timer T (initialized to T_r). If an

 acknowledgment is received from B, timer T MUST BE cancelled and

 the copy of M is discarded. If T expires, the message M SHALL

 BE retransmitted, the counter N SHALL BE incremented by one, and

 the timer SHALL BE restarted (set to N*T_r). If N exceeds the

 retransmission threshold N_r, the transmission is assumed to

 have failed, further retransmission attempts MUST NOT be

 undertaken, the copy of M SHALL BE discarded, and the sending

 application SHALL BE notified.

 Receiver:

 A receiver B of a reliable message from a sender A SHALL

 acknowledge receipt of the message within a time period T_c<T_r.

 This MAY be done by means of a dedicated acknowledgment message

 or by piggy-backing the acknowledgment on another message

 addressed only to A.

 Receiver optimizing: gathering and piggy-backing ACKs

 In a simple implementation, B may choose to immediately send a

 dedicated acknowledgment message. However, for efficiency, it

 could add the SeqNum of the received message to a sender-

 specific list of acknowledgments; if the added SeqNum is the

 first acknowledgment in the list, B shall start an

 acknowledgment timer TA (initialized to T_c). When the timer

 expires, B shall create a dedicated acknowledgment message and

 send it to A. If B is to transmit another Mbus message

each subgroup which is deemed too much effort.

Ott/Perkins/Kutscher [Page 9]

INTERNET-DRAFT A Message Bus for Conferencing Systems August 1998

 addressed only to A, it should piggy-back the acknowledgments

 onto this message and cancel TA. In either case, B should store

 a copy of the acknowledgment list as a single entry in the per-

 sender copy list, keep this entry for a period T_k, and empty

 the acknowledgment list. In case any of the messages kept in an

 entry of the copy list is received again from A, the entire

 acknowledgment list stored in this entry is scheduled for

 (re-)transmission following the above rules.

 Constants:

 Suggested values are T_r=100ms, N_r=3, T_c=70ms,

 T_k=((N_r)*(N_r+1)/2)*T_r.

3.4. Transport

 All messages are transmitted as UDP messages with two ways of sending

 messages being possible:

 1) local multicast (host-local or link-local, see Appendix ‘‘Mbus

 configuration’’) to a fixed, yet to be assigned link-local

 address of the administratively scoped multicast space as

 described in RFC 2365 [8]. There is a base port for each

 presence conducting conferences using the Mbus. This port SHALL

 be used for communication between application entities not

 associated with a particular conference. For each conference

 that a person participates in, a dedicated port is used for

 conference-specific communication. Messages of interest for all

 conferences a presence is involved in SHALL be sent to the base

 port. Messages intended for a specific conference (i.e.

 messages relating to an appearance only) SHALL be sent to the

 port of the respective conference. Message intended for several

 but not all conferences SHALL be sent individually to the

 specific ports of these conference (one by one). The concrete

 port numbers are taken from a reserved set of ports from a

 defined PORTBASE to PORTBASE+#ports. Appendix B (Port

 Allocation) defines procedures for port allocation.

 2) Directed unicast via UDP to the port of a specific application.

 This still requires the DestAddr field to be filled in properly.

 Directed unicast is intended for use in situations where node

 local multicast is not available. It MAY also be used by Mbus

 implementations for delivering messages addressed at a single

 application entity only -- the address of which the Mbus

 implementation has learned from other message exchanges before.

 If a single multimedia conferencing endpoint is distributed across

 several co-located hosts, link local scope SHALL be used for

 multicasting Mbus messages that potentially have recipients on the

 other hosts. The Mbus protocol is not intended (and hence

 deliberately not defined) for communication between hosts not on the

 same link.

Ott/Perkins/Kutscher [Page 10]

INTERNET-DRAFT A Message Bus for Conferencing Systems August 1998

 Since messages are transmitted in UDP datagrams, a maximum size of 64

 KBytes MUST NOT be exceeded. It is RECOMMENDED that applications

 using a non host-local scope do not exceed a message size of the

 network’s MTU.

3.5. Message Syntax

3.5.1. Message Encoding

 All messages SHALL use the UTF-8 character encoding. Note that US

 ASCII is a subset of UTF-8 and requires no additional encoding, and

 that a message encoded with UTF-8 will not contain zero bytes.

 Each Message MAY be encrypted using a secret key algorithm as defined

 in appendix A (Algorithms).

3.5.2. Message Header

 A message starts with the header. The first field in the header is

 the message digest calculated using a keyed hash algorithm as

 described in appendix A followed by a newline character. The other

 fields in the header are separated by white space characters, and

 followed by a newline. The format of the header is as follows:

 <MsgDigest>

 mbus/1.0 <SeqNum> <TimeStamp> <MessageType> <SrcAddr> <DestAddr> \

 <AckList>

 The header fields are defined in section 3.1.

3.5.3. Command Syntax

 The header is followed by zero, or more, messages to be delivered to

 the application(s) indicated by the DestAddr field. Each message

 comprises a command followed by a list of zero, or more, parameters,

 and is followed by a newline.

 command (parameter parameter ...)

 The command name MUST be a ‘symbol’ as defined in the following

 table. The parameters MAY be any data type drawn from the following

 table:

Ott/Perkins/Kutscher [Page 11]

INTERNET-DRAFT A Message Bus for Conferencing Systems August 1998

 +---------+--------------------+---------------------------------+

 |DataType | Syntax | Description |

 +---------+--------------------+---------------------------------+

 |Integer | "-"[0-9]+ | |

 |Float | "-"[0-9]+"."[0-9]+ | |

 |String | """...""" | See below for escape characters |

 | | | |

 |List | (DataType DataType | |

 | | ...) | |

 |Symbol | [A-Za-z0-9_-.]+ | A predefined protocol value |

 |Data | "<"data">" | Opaque Data |

 +---------+--------------------+---------------------------------+

 Boolean values are encoded as an integer, with the value of zero

 representing false, and non-zero representing true (as in the ‘C’

 programming language).

 String parameters in the payload MUST be enclosed in the double quote

 (’’) character. Within strings, the escape character is the backslash

 (\), and the following escape sequences are defined:

 Opaque data is represented as Base64-encoded [3] character strings

 surrounded by "<" and ">"

 +----------------+-----------+

 |Escape Sequence | Meaning |

 +----------------+-----------+

 | \\ | \ |

 | \’’ | ’’ |

 | \n | <newline> |

 +----------------+-----------+

3.6. Messages

 The specific messages applications will send using the Mbus are not

 defined in this document. Currently a companion document[9] is

 produced defining classes of messages which are of use in certain

 application areas. Additional documents are expected to follow.

4. Author’s Addresses

 l. Joerg Ott <jo@tzi.org> Universitaet Bremen, TZI, MZH 5180

 Bibliothekstr. 1 D-28359 Bremen Germany voice +49 421 201-7028 fax

 +49 421 218-7000

 l. Colin Perkins <c.perkins@cs.ucl.ac.uk> Department of Computer

 Science University College London Gower Street London WC1E 6BT United

 Kingdom

Ott/Perkins/Kutscher [Page 12]

INTERNET-DRAFT A Message Bus for Conferencing Systems August 1998

 l. Dirk Kutscher <dku@tzi.org> Universitaet Bremen, TZI, MZH 5160

 Bibliothekstr. 1 D-28359 Bremen Germany voice +49 421 218-7595 fax

 +49 421 218-7000

5. References

 [1] S. Bradner, ‘‘Key words for use in RFCs to Indicate Requirement

 Levels’’ RFC 2119, March 1997

 [2] H. Krawczyk, M. Bellare, R. Canetti, ‘‘HMAC: Keyed-Hashing for

 Message Authentication’’, RFC 2104, February 1997

 [3] N. Borenstein, N. Freed ‘‘MIME (Multipurpose Internet Mail

 Extensions) Part One: Mechanisms for Specifying and Describing

 the Format of Internet Message Bodies’’, RFC 1521, September

 1993

 [4] Mark Handley, Jon Crowcroft, Carsten Bormann, ‘‘The Internet

 Multimedia Conferencing Architecture,’’ Internet Draft draft-

 ietf-mmusic-confarch-00.txt, Work in Progress, February 1996.

 [5] H. Schulzrinne, S. Casner, R. Frederick, V. Jacobson, ‘‘RTP: A

 Transport Protocol for Real-Time Applications,’’ RFC 1889,

 January 1996.

 [6] Mark Handley, Henning Schulzrinne, Eve Schooler, Jonathan

 Rosennberg, ‘‘SIP: Session Initiation Protocol’’, Internet Draft

 draft-ietf-mmusic-sip-07.txt, Work in Progress, July 16, 1998

 [7] M. Handley, V. Jacobson, ‘‘SDP: Session Description Protocol’’,

 RFC 2327, April 1998

 [8] D. Meyer ‘‘Administratively Scoped IP Multicast’’, RFC 2365,

 July 1998

 [9] J. Ott, C. Perkins, and D. Kutscher, ‘‘The Message Bus: Messages

 and Procedures’’, Internet Draft draft-ietf-mmusic-mbus-

 semantics-00.txt, Work in Progress, August 1998.

Appendix A: Algorithms

 Message Authentication

 Either MD5 or SHA-1 SHALL be used for message authentication

 codes (MACs). An implementation MAY provide SHA-1, whereas MD5

 MUST be implemented. To generate keyed hash values the algorithm

 described in [2] MUST be applied with hash values truncated to

 80 bits. The resulting hash values SHALL be Base64 encoded (16

 characters). The HMAC algorithm works with both, MD5 and SHA-1.

Ott/Perkins/Kutscher [Page 13]

INTERNET-DRAFT A Message Bus for Conferencing Systems August 1998

 HMAC values, regardless of the algorithm, MUST therefore always

 consist of 16 Base64-encoded characters.

 Hash keys SHALL have a length of 96 bit, that are 20

 Base64-encoded characters.

 Encryption

 Either DES, 3DES (triple DES) or IDEA SHALL be used for

 encryption. Encryption MAY be neglected for applications, e.g.

 in situations where license regulations, export or encryption

 laws would be offended otherwise. However, the implementation of

 DES is RECOMMENDED as a baseline. DES implementations MUST use

 the DES electronic codebook (ECB) mode. Chaining modes are not

 appropriate due to (possible) unreliable message transport. For

 algorithms requiring en/decryption data to be padded to certain

 boundaries ASCII code 32 SHALL be used for padding characters.

 IDEA uses 128-bit keys (24 Base64-encoded characters). DES SHALL

 be used with 56-bit keys (12 Base64-encoded characters).

 The mandatory subset of algorithms that MUST be provided by

 implementation is DES and MD5.

 See appendix C for a specification of notations for Base64-strings.

Appendix B: Port allocation

 The reserved Mbus port numbers are in the range from PORTBASE to

 PORTBASE+(n*(m+1)) (n=number of base ports, m=reasonable maximum

 number of conferences per presence). The first n ports are reserved

 for base ports. The set of conference specific ports starts at offset

 n and has a cardinality of n*m.

 Implementations SHALL use the presence-id (see below) to calculate a

 valid offset to the set of base port numbers for a person’s presence.

 Offsets to conference specific port numbers SHALL be obtained by

 using the conference name. The conference name is a SDP session

 name[7] and MUST be known in advance of port allocation.

 Base port number calculation SHALL rely on the following algorithm:

 All UTF-8 octets of the session name are considered for building a

 sum of their key codes. The offset to the base port number is the

 result of the modulo division of the sum by n (number of base ports).

 Offsets for per-conference port numbers SHALL be calculated

 analogously: The key codes of the presence-id’s characters are summed

 up and the the offset is obtained by adding the result of modulo

 dividing the sum by m (number of conference ports per presence). The

 actual port number is obtained by adding the result to

 PORTBASE+(n*(baseport offset+1)).

 Example:

Ott/Perkins/Kutscher [Page 14]

INTERNET-DRAFT A Message Bus for Conferencing Systems August 1998

 PORTBASE = 2000

 nr of base ports n= 10

 nr of conference ports m= 6

 session name= abc

 presence-id= a@b.org

 baseport offset= (97+98+99) % 10

 = 4

 baseport = PORTBASE + 4

 = 2004

 conference port offset= (97+64+99+46+111+114+103) % 6

 = 4

 conference port= PORTBASE + (6* (baseport offset+1))

 + conference port offset

 = 2034

Appendix C: Mbus configuration

 An implementation MUST be configurable by the following parameters:

 Encryption key The secret key used for message encryption.

 Hash key The hash key used for message authentication.

 Presence ID The UCI of the person participating in a conference.

 Scope The Internet scope to be used for sent messages.

 The logical structure of the specified parameters is as follows:[3]

 hashkey ::= algo-id expiration key

 secretkey ::= algo-id expiration key

 presence ::= uci

 expiration ::= digits

 algo-id ::= ‘‘NOENCR’’ | ‘‘DES’’ | ‘‘3DES’’ | ‘‘IDEA’’ | ‘‘HMAC-MD5-80’’

 scope ::= ‘‘HOSTLOCAL’’ | ‘‘LINKLOCAL’’

 key ::= base64string

 uci ::= alpha

 A Base64-String consists of the characters defined in the Base64

 char-set [3] including all eventual padding characters, i.e. the

 length of Base64-string is always a multiple of 4.

 [3] syntactical definitions follow below

Ott/Perkins/Kutscher [Page 15]

INTERNET-DRAFT A Message Bus for Conferencing Systems August 1998

Appendix D: Parameter storage

 Two distinct facilities for parameter storage are considered: For

 Unix-like systems a configuration file SHALL be used and for

 Windows-95/98/NT systems a set of registry entries is defined.

 File based parameter storage:

 The file name for a Mbus configuration file is ‘‘.mbus’’ in the

 user’s home-directory which MAY be overridden by an environment

 variable called MBUS. Implementations MUST ensure that this file has

 appropriate file permissions that prevent other users to read or

 write it. The file MUST exist before a conference is initiated. Its

 contents SHALL be UTF-8 encoded and SHALL be structured as follows:

 [MBUS]

 HASHKEY=<hashkey>

 ENCRYPTIONKEY=<secretkey>

 PRESENCE=<presence-id>

 SCOPE=<scope-id>

 A key entry MUST be in this notation:

 ‘‘(’’algo-id‘‘,’’ expiration‘‘,’’base64string‘‘)’’

 algo-id is one of the character strings specified above and

 expiration is a decimal number representing the date that the key

 invalidates at, notated in seconds counting from 00:00:00, UTC,

 January 1, 1970.

 The presence-id is a universal communication identifier (UCI) for a

 conference participant. This can be a canonical email address like

 ‘‘dku@tzi.org’’. In case the same UCI is actually used to represent

 different presences, e.g. to express different affiliations of a

 person or to let different person use a single-user end-system

 concurrently, the presence-id MAY be constituted of a UCI and a

 presence ‘‘modifier’’ like ‘‘dku@tzi.org#0’’, ‘‘dku@tzi.org#1’’ and

 so on. Presence-ids MUST be in the US-ASCII subset of

 ISO-10646/UTF-8.

 An example Mbus-configuration file:

Ott/Perkins/Kutscher [Page 16]

INTERNET-DRAFT A Message Bus for Conferencing Systems August 1998

 [MBUS]

 HASHKEY=(HMAC-MD5-80,946080000,MTIzMTU2MTg5MTEyMQ==)

 ENCRYPTIONKEY=(DES,946080000,MTIzMTU2MQ==)

 PRESENCE=dku@tzi.org

 SCOPE=HOSTLOCAL

 Registry based parameter storage:

 For systems lacking the concept of a user’s home-directory as a place

 for configuration files the suggested database for configuration

 settings (e.g. the Windows9x-, Windows NT-registry) SHALL be used.

 The hierarchy for Mbus related registry entries is as follows:[4]

 HKEY_CURRENT_USER\Software\Mbone Applications\Mbus

 The entries in this hierarchy section are

 +--------------+--------+

 |Name | Type |

 +--------------+--------+

 |HASHKEY | String |

 |ENCRYPTIONKEY | String |

 |PRESENCE | String |

 |SCOPE | String |

 +--------------+--------+

 The same syntax for key values as for the file based configuration

 facility MUST be used.

 [4] complies with vat’s registry hierarchy

Ott/Perkins/Kutscher [Page 17]

