
Network Working Group Ott

Internet-Draft TZI, Universitaet Bremen

Expires: July 3, 2000 Perkins

 University College London

 Kutscher

 TZI, Universitaet Bremen

 January 3, 2000

 A Message Bus for Local Coordination

 draft-ietf-mmusic-mbus-transport-01.txt

Status of this Memo

 This document is an Internet-Draft and is in full conformance with

 all provisions of Section 10 of RFC2026.

 Internet-Drafts are working documents of the Internet Engineering

 Task Force (IETF), its areas, and its working groups. Note that

 other groups may also distribute working documents as

 Internet-Drafts.

 Internet-Drafts are draft documents valid for a maximum of six

 months and may be updated, replaced, or obsoleted by other documents

 at any time. It is inappropriate to use Internet-Drafts as reference

 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at

 http://www.ietf.org/ietf/1id-abstracts.txt

 The list of Internet-Draft Shadow Directories can be accessed at

 http://www.ietf.org/shadow.html.

 This Internet-Draft will expire on July 3, 2000.

Copyright Notice

 Copyright (C) The Internet Society (2000). All Rights Reserved.

Abstract

 In a variety of conferencing scenarios, a local communication

 channel is desirable for conference-related information exchange

 between co- located but otherwise independent application entities,

 for example those taking part in application sessions that belong to

 the same conference. In loosely coupled conferences such a

 mechanism allows for coordination of applications entities to e.g.

 implement synchronization between media streams or to configure

 entities without user interaction. It can also be used to implement

 tightly coupled conferences enabling a conference controller to

 enforce conference wide control within a end system.

 The local Message Bus (Mbus) provides a means to achieve the

Ott, et. al. Expires July 3, 2000 [Page 1]

Internet-Draft A Message Bus for Local Coordination January 2000

 necessary amount of coordination between co-located conferencing

 applications for virtually any type of conference as postulated in a

 a companion requirement document[11]. The Message Bus comprises two

 logically distinct parts: a message transport infrastructure and a

 set of common as well as protocol/ media/tool-specific messages

 along with a conference-specific addressing scheme. This document

 deals with message addressing, transport, and security issues and

 defines the message syntax for the Mbus. It does not define

 application oriented semantics and procedures for using the message

 bus. Application specific command sets and procedures for

 applications using the Mbus are expected to be defined in follow-up

 documents.

 This document is intended for discussion in the Multiparty

 Multimedia Session Control (MMUSIC) working group of the Internet

 Engineering Task Force. Comments are solicited and should be

 addressed to the working group’s mailing list at confctrl@isi.edu

 and/or the authors.

Ott, et. al. Expires July 3, 2000 [Page 2]

Internet-Draft A Message Bus for Local Coordination January 2000

Table of Contents

 1. Introduction . 4

 1.1 Background . 4

 1.2 Purpose . 4

 1.3 Terminology for requirement specifications 4

 2. General Outline . 5

 3. Message Format . 7

 4. Addressing . 9

 4.1 Mandatory Address Elements 10

 5. Reliability . 11

 6. Transport . 13

 7. Message Syntax . 15

 7.1 Message Encoding . 15

 7.2 Message Header . 15

 7.3 Command Syntax . 15

 8. Messages . 18

 8.1 mbus.hello . 18

 8.2 mbus.bye . 19

 8.3 mbus.quit . 19

 8.4 mbus.waiting . 19

 8.5 mbus.go . 20

 9. Timer and Counters . 21

 10. Mbus Security . 22

 10.1 Security Model . 22

 10.2 Message Authentication 22

 10.3 Encryption . 23

 11. Mbus Configuration . 24

 11.1 File based parameter storage 25

 11.2 Registry based parameter storage 26

 12. Security Considerations 28

 13. IANA Considerations . 29

 References . 30

 Authors’ Addresses . 31

 A. Mbus Addresses for Conferencing 32

 Full Copyright Statement 34

Ott, et. al. Expires July 3, 2000 [Page 3]

Internet-Draft A Message Bus for Local Coordination January 2000

1. Introduction

1.1 Background

 The requirement specification as defined in the requirements

 draft[11] provides a set of scenario descriptions for the usage of a

 local coordination infrastructure. The Message Bus defined in this

 and a companion document provides a suitable means for local

 communication that serves all of the purposes mentioned in the

 requirement document.

1.2 Purpose

 Two components constitute the Message Bus: the (lower level) message

 passing mechanisms and the (higher level) messages and their

 semantics along with their addressing scheme.

 The purpose of this document is to define the characteristics of the

 lower level Mbus message passing mechanism which is common to all

 Mbus implementations. This includes the specification of

 o the generic Mbus message format;

 o the addressing concept for application entities (note that

 addressing details are defined by the application environment);

 o the transport mechanisms to be employed for conveying messages

 between (co-located) application entities;

 o the security concept to prevent misuse of the Message Bus (as

 taking control of another user’s conferencing environment);

 o the details of the Mbus message syntax; and

 o a set of mandatory application independent commands that are used

 for bootstrapping Mbus sessions.

1.3 Terminology for requirement specifications

 In this document, the key words "MUST", "MUST NOT", "REQUIRED",

 "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY",

 and "OPTIONAL" are to be interpreted as described in RFC 2119[1] and

 indicate requirement levels for compliant Mbus implementations.

Ott, et. al. Expires July 3, 2000 [Page 4]

Internet-Draft A Message Bus for Local Coordination January 2000

2. General Outline

 The Mbus is supposed to operate in a variety of scenarios as

 outlined in the companion requirement document[11]. From these

 scenarios, the following (minimum) requirements are derived that

 have to be met by the Mbus design to provide a suitable local

 communication infrastructure.

 Local coordination involves a widely varying number of entities:

 some messages (such as membership information, floor control

 notifications, dissemination conference state changes, etc.) may

 need to be destined for all local application entities. Messages may

 also be targeted at a certain application class (e.g. all

 whiteboards or all audio tools) or agent type (e.g. all user

 interfaces rather than all media engines). Or there may be any

 (application- or message- specific) subgrouping defining the

 intended recipients, e.g. messages related to media synchronization.

 Finally, there will be messages that are directed to a single

 entity, for example, specific configuration settings that a

 conference controller sends to a application entity or

 query-response exchanges between any local server and its clients.

 The Mbus concept as presented here satisfies these different

 communication models by defining different message transport

 mechanisms (defined in Section 6) and by providing a flexible

 addressing scheme (defined in Section 4).

 Furthermore, Mbus messages exchanged between application entities

 may have different reliability requirements (which are typically

 derived from their semantics). Some messages will have a rather

 informational character conveying ephemeral state information (which

 is refreshed/updated periodically), such as the volume meter level

 of an audio receiver entity to be displayed by its user interface

 agent. Certain Mbus messages (such as queries for parameters or

 queries to local servers) may require a response from the peer(s)

 thereby providing an explicit acknowledgment at the semantic level

 on top of the Mbus. Other messages will modify the application or

 conference state and hence it is crucial that they do not get lost.

 The latter type of message has to be delivered reliably to the

 recipient, whereas message of the first type do not require

 reliability mechanisms at the Mbus transport layer. For messages

 confirmed at the application layer it is up to the discretion of the

 application whether or not to use a reliable transport underneath.

 In some cases, application entities will want to tailor the degree

 of reliability to their needs, others will want to rely on the

 underlying transport to ensure delivery of the messages -- and this

 may be different for each Mbus message. The Mbus message passing

 mechanism described in this paper provides a maximum of flexibility

Ott, et. al. Expires July 3, 2000 [Page 5]

Internet-Draft A Message Bus for Local Coordination January 2000

 by providing reliable transmission achieved through transport-layer

 acknowledgments (in case of point-to-point communications only) as

 well as unreliable message passing (for unicast, local multicast,

 and local broadcast). We address this topic in Section 4.

 Finally, accidental or malicious disturbance of Mbus communications

 through messages originated by applications from other users needs

 to be prevented. Accidental reception of Mbus messages from other

 users may occur if either two users share the same workstation for

 conferencing or are using end systems spread across the same

 physical network: in either case, the Mbus multicast address and the

 port number may match leading to reception of the other party’s Mbus

 messages in addition to a user’s own ones. Malicious disturbance

 may happen because of applications multicasting (e.g. at a global

 scope) or unicasting Mbus messages (which could contain a

 "conf.terminated" command). To eliminate the possibility of

 receiving bogus Mbus messages, the Mbus protocol contains message

 digests for authentication. Furthermore, the Mbus allows for

 encryption to ensure privacy and thus enable using the Mbus for

 local key distribution and other functions potentially sensitive to

 eavesdropping. This document defines the framework for configuring

 Mbus applications with regard to security parameters in Section 11.

Ott, et. al. Expires July 3, 2000 [Page 6]

Internet-Draft A Message Bus for Local Coordination January 2000

3. Message Format

 A Mbus message comprises a header and a body. The header is used to

 indicate how and where a message should be delivered, the body

 provides information and commands to the destination entity. The

 following information is included in the header:

 The MsgDigest is a Base64-encoded (see RFC1521[5]) calculated

 hash value of the entire message (starting from the ProtocolID

 field) as described in Section 10 and Section 11.

 A fixed ProtocolID field identifies the version of the message

 bus protocol used. The protocol defined in this document is

 "mbus/1.0" (case-sensitive).

 A sequence number (SeqNum) is contained in each message. The

 first message sent by a source SHOULD have SeqNum equal to zero,

 and it MUST increment by one for each message sent by that

 source. A single sequence number is used for all messages from a

 source, irrespective of the intended recipients and the

 reliability mode selected. SeqNums are decimal numbers in ASCII

 representation.

 The TimeStamp field is also contained in each message and SHOULD

 contain a decimal number representing the time at message

 construction in seconds since 00:00:00, UTC, January 1, 1970.

 A MessageType field indicates the kind of message being sent.

 The value "R" indicates that the message is to be transmitted

 reliably and MUST be acknowledged by the recipient, "U" indicates

 an unreliable message which MUST NOT be acknowledged.

 The SrcAddr field identifies the sender of a message. This MUST

 be a complete address, with all address elements specified. The

 addressing scheme is described in Section 4.

 The DestAddr field identifies the intended recipient(s) of the

 message. This field MAY contain wildcards by omitting address

 element and hence address any number (including zero) of

 application entities. The addressing scheme is described in

 Section 4.

 The AckList field comprises a list of SeqNums for which this

 message is an acknowledgment. See Section 5 for details.

 The header is followed by the message body which contains one or

 more commands to be delivered to the destination entity. The syntax

 for a complete message is given in Message syntax (Section 7).

Ott, et. al. Expires July 3, 2000 [Page 7]

Internet-Draft A Message Bus for Local Coordination January 2000

 If multiple commands are contained within the same Mbus message

 payload, they MUST to be delivered to the Mbus application in the

 same sequence in which they appear in the message payload.

Ott, et. al. Expires July 3, 2000 [Page 8]

Internet-Draft A Message Bus for Local Coordination January 2000

4. Addressing

 Each entity on the message bus SHOULD respond to messages sent to

 one (or more) addresses. Addresses are sequences of address elements

 that are tag/value pairs. The tag and the value are separated by a

 colon and tag/value pairs are separated by whitespace, like this:

 (tag:value tag:value ...)

 The formal ABNF syntax definition for Mbus addresses and their

 elements is as follows:

 mbus_address = "(" *address_element ")"

 address_element = *WSP address_tag ":" address_value *WSP

 address_tag = 1*32(ALPHA)

 address_value = 1*64(%x21-7F)

 ; any 7-bit US-ASCII character

 ; excluding white space

 ; and control characters

 Each entity has a fixed sequence of address elements constituting

 its address and MUST only process messages sent to addresses that

 either match all elements or consist of a subset of its own address

 elements. Each element value in this subset must match the

 correspoding value of the receiver’s address element value. The

 order of address elements in an address sequence is not relevant.

 For example, an entity with an address of:

 (conf:test media:audio module:engine app:rat id:4711-1@134.102.218.45)

 will process messages sent to

 (media:audio module:engine)

 and

 (module:engine)

 but must ignore messages sent to

 (conf:test media:audio module:engine app:rat id:123-4@134.102.218.45 foo:bar)

 and

 (foo:bar)

 A message that should be processed by all entities requires an empty

 set of address elements.

Ott, et. al. Expires July 3, 2000 [Page 9]

Internet-Draft A Message Bus for Local Coordination January 2000

4.1 Mandatory Address Elements

 Each Mbus entity MUST provide one mandatory address element that

 allows to identify the entity. The element name is "id" and the

 value MUST be be composed of the following components:

 o The IP address of the interface that is used for sending messages

 to the Mbus. For IPv4 this the address in decimal dotted

 notation. For IPv6 the interface-ID-part of an address in textual

 representation as specified in [3] MUST be used. In this

 specification, this part is called the "host-ID".

 o An identifier ("entity-ID") that is unique within the scope of

 single host-ID. The entity comprises two parts. For systems where

 the concept of a process ID is applicable it is RECOMMENDED this

 identifier be composed using a process-ID and a per-process

 disambiguator for different Mbus entities of a process. If a

 process ID is not available, this part of the entity-ID may be

 randomly chosen (it is recommended that at least a 32 bit random

 number is chosen). Both numbers are represented in decimal

 textual form and MUST be separated by a ’-’ character.

 Note that the entity-ID cannot be the port number of the endpoint

 used for sending messages to the Mbus because implementations MAY

 use the common Mbus port number for sending to and receiving from

 the multicast group (as specified in Section 6). The total

 identifier has the following structure:

 id-element = "id:" id-value

 id-value = entity-id "@" host-id

 entity-id = 1*10DIGIT "-" 1*5DIGIT

 host-id = (IPv4address / IPv6address)

 Please refer to [3] for productions of IPv4address and IPv6address.

 An example for an id element:

 id:4711-99@134.102.218.45

 A set of the address elements that are to be used by conferencing

 applications is specified in "Mbus Addresses for Conferencing"

 (Appendix A).

Ott, et. al. Expires July 3, 2000 [Page 10]

Internet-Draft A Message Bus for Local Coordination January 2000

5. Reliability

 While most messages are expected to be sent using unreliable

 transport, it may be necessary to deliver some messages reliably.

 Reliability can be selected on a per message basis by means of the

 MessageType field. Reliable delivery is supported for messages with

 a single recipient only; i.e., all components of the DestAddr field

 have to be specified. An entity can thus only send reliable messages

 to known addresses, i.e. it can only send reliable messages to

 entities that have announced their existence on the Mbus (e.g. by

 means of mbus.hello() messages (Section 8.1)). A sending entity MUST

 NOT send a message reliably if the target address is not unique.

 (See Transport (Section 6) for the specification of an algorithm to

 determine whether an address is unique.) A receiving entity MUST

 only process and acknowledge reliable message if the destination

 address exactly matches its own source address (the destination

 address MUST NOT be a subset of the source address).

 Disallowing reliable message delivery for messages sent to multi-

 ple destinations is motivated by simplicity of the implementation as

 well as the protocol. Although ACK implosions are not really an

 issue and losses are rare, achieving reliability for such messages

 would require full knowledge of the membership for each subgroup

 which is deemed too much effort.

 Each message is tagged with a message sequence number. If the

 MessageType is "R", the sender expects an acknowledgment from the

 recipient within a short period of time. If the acknowledgment is

 not received within this interval, the sender SHOULD retransmit the

 message (with the same message sequence number), increase the

 timeout, and restart the timer. Messages MUST be retransmitted a

 small number of times (see below) before the recipient is considered

 to have failed. If the message is not delivered successfully, the

 sending application is notified. In this case, it is up to this

 application to determine the specific action(s) (if any) to be

 taken.

 Reliable messages are acknowledged by adding their SeqNum to the

 AckList field of a message sent to the originator of the reliable

 message. Multiple acknowledgments MAY be sent in a single message.

 It is possible to either piggy-back the AckList onto another message

 sent to the same destination, or to send a dedicated acknowledgment

 message, with no other commands.

 The precise procedures are as follows:

 Sender: A sender A of a reliable message M to receiver B SHOULD

 transmit the message via multicast or via unicast, keep a copy of

 M, initialize a retransmission counter N to ’1’, and start a

Ott, et. al. Expires July 3, 2000 [Page 11]

Internet-Draft A Message Bus for Local Coordination January 2000

 retransmission timer T (initialized to T_r). If an acknowledgment

 is received from B, timer T MUST BE cancelled and the copy of M

 is discarded. If T expires, the message M SHOULD BE

 retransmitted, the counter N SHOULD BE incremented by one, and

 the timer SHOULD BE restarted (set to N*T_r). If N exceeds the

 retransmission threshold N_r, the transmission is assumed to have

 failed, further retransmission attempts MUST NOT be undertaken,

 the copy of M SHOULD BE discarded, and the sending application

 SHOULD BE notified.

 Receiver: A receiver B of a reliable message from a sender A SHOULD

 acknowledge receipt of the message within a time period T_c <

 T_r. This MAY be done by means of a dedicated acknowledgment

 message or by piggy-backing the acknowledgment on another message

 addressed only to A.

 Receiver optimization: In a simple implementation, B may choose to

 immediately send a dedicated acknowledgment message. However,

 for efficiency, it could add the SeqNum of the received message

 to a sender-specific list of acknowledgments; if the added SeqNum

 is the first acknowledgment in the list, B SHOULD start an

 acknowledgment timer TA (initialized to T_c). When the timer

 expires, B SHOULD create a dedicated acknowledgment message and

 send it to A. If B is to transmit another Mbus message addressed

 only to A, it should piggy-back the acknowledgments onto this

 message and cancel TA. In either case, B should store a copy of

 the acknowledgment list as a single entry in the per- sender copy

 list, keep this entry for a period T_k, and empty the

 acknowledgment list. In case any of the messages kept in an

 entry of the copy list is received again from A, the entire

 acknowledgment list stored in this entry is scheduled for

 (re-)transmission following the above rules.

 Constants:

 Suggested values are T_r=100ms, N_r=3, T_c=70ms,

 T_k=((N_r)*(N_r+1)/2)*T_r.

Ott, et. al. Expires July 3, 2000 [Page 12]

Internet-Draft A Message Bus for Local Coordination January 2000

6. Transport

 All messages are transmitted as UDP messages with two ways of

 sending messages being possible:

 1. Local multicast (host-local or link-local, see Mbus

 configuration (Section 11)) to a fixed, yet to be assigned (see

 Section 13) link-local address of the administratively scoped

 multicast space as described in RFC 2365[10]. There will also be

 a fixed, registered port number that all Mbus entities MUST use.

 Until the address and port numer are assigned, 224.255.222.239

 is used as the multicast address and 47000 (decimal) as the port

 number.

 2. Directed unicast (via UDP) to the port of a specific

 application. This still requires the DestAddr field to be filled

 in properly. Directed unicast is intended for situations where

 node local multicast is not available. It MAY also be used by

 Mbus implementations for delivering messages addressed at a

 single application entity only -- the address of which the Mbus

 implementation has learned from other message exchanges before.

 Every Mbus entity SHOULD use a unique endpoint address for every

 message it sends to the Mbus multicast group or to individual

 receiving entities. A unique endpoint address is a tuple

 consisting of the entity’s IP address and a port number, where

 the port number is different from the standard Mbus port number

 (yet to be assigned, see Section 13). When multicast is

 available, messages MUST only be sent via unicast if the Mbus

 target address is unique and if the sending entity can verify

 that the receiving entity uses a unique endpoint address. The

 latter can be verified by considering the last message received

 from that entity. (Note that several Mbus entities, say within

 the same process, may share a common transport address; in this

 case, the contents of the destination address field is used to

 further dispatch the message. Given the definition of "unique

 endpoint address" above the use of a shared endpoint address and

 a dispatcher still allows other Mbus entities to send unicast

 messages to one of the entities that share the endpoint address.

 So this can be considered an implementation detail.) When

 multicast is not available messages can be sent via unicast but

 all messages that do not contain a unique target address MUST be

 sent to all known entities via unicast. Messages with an empty

 target address list MUST always be sent to all Mbus entities

 (via multicast if available).

 The following algorithm can be used by sending entities to

 determine whether a Mbus address is unique considering the

 current set of Mbus entities:

Ott, et. al. Expires July 3, 2000 [Page 13]

Internet-Draft A Message Bus for Local Coordination January 2000

 let ta=the target address;

 iterate through the set of all

 currently known Mbus addresses {

 let ti=the address in each iteration;

 count the addresses for which

 the predicate isSubsetOf(ta,ti) yields true;

 }

 If the count of matching addresses is exactly 1 the address

 is unique. The following algorithm can be used for the

 predicate isSubsetOf, that checks whether the second message

 matches the first according to the rules specified in Section

 4. (A match means that a receiving entity that uses the

 second Mbus address must also process received messages with

 the first address as a target address.

 isSubsetOf(addr a1,a2) yields true, iff

 every address element of a1 is contained

 in a2’s address element list

 An address element is contained in an address element list if

 the list contains an element that provides same values for

 the two address element fields key and value.

 If a single application system is distributed across several

 co-located hosts, link local scope SHOULD be used for multicasting

 Mbus messages that potentially have recipients on the other hosts.

 The Mbus protocol is not intended (and hence deliberately not

 designed) for communication between hosts not on the same link.

 Since messages are transmitted in UDP datagrams, a maximum size of

 64 KBytes MUST NOT be exceeded. It is RECOMMENDED that applications

 using a non host-local scope do not exceed a message size of the

 network’s MTU.

Ott, et. al. Expires July 3, 2000 [Page 14]

Internet-Draft A Message Bus for Local Coordination January 2000

7. Message Syntax

7.1 Message Encoding

 All messages MUST use the UTF-8 character encoding. Note that US

 ASCII is a subset of UTF-8 and requires no additional encoding, and

 that a message encoded with UTF-8 will not contain zero bytes.

 Each Message MAY be encrypted using a secret key algorithm as

 defined in Section 10.

7.2 Message Header

 A message starts with the header. The first field in the header is

 the message digest calculated using a keyed hash algorithm as

 described in Section 10 followed by a newline character. The other

 fields in the header are separated by white space characters, and

 followed by a newline. The format of the header is as follows:

 msg_header = MsgDigest LF "mbus/1.0" 1*WSP SeqNum 1*WSP TimeStamp 1*WSP

 MessageType 1*WSP SrcAddr 1*WSP DestAddr 1*WSP AckList

 The header fields are explained in Message Format (Section 3). Here

 are the ABNF syntax definitions for the header fields:

 MsgDigest = base64

 SeqNum = 1*DIGIT

 TimeStamp = 1*DIGIT

 MessageType = "R" / "U"

 ScrAddr = mbus_address

 DestAddr = mbus_address

 AckList = "(" *(1*DIGIT)) ")"

 The syntax definition of a complete message is as follows:

 mbus_message = msg_header LF msg_payload

 msg_payload = mbus_command *(LF mbus_command)

 See Figure 19 for the definition a Mbus command.

7.3 Command Syntax

 The header is followed by zero, or more, commands to be delivered to

 the application(s) indicated by the DestAddr field. Each message

 comprises a command followed by a list of zero, or more, parameters,

 and is followed by a newline.

 command (parameter parameter ...)

Ott, et. al. Expires July 3, 2000 [Page 15]

Internet-Draft A Message Bus for Local Coordination January 2000

 Syntactically, the command name MUST be a ‘symbol’ as defined in the

 following table. The parameters MAY be any data type drawn from the

 following table:

 +---------+-------------------------+--------------------------------+

 |DataType | Syntax | Description |

 +---------+-------------------------+--------------------------------+

 |val | (Integer / Float / | |

 | | String / List Symbol | a value can be of one of |

 | | Data) | these types |

 | | | |

 |Integer | "-" 1*DIGIT | |

 |Float | "-" 1*DIGIT "." 1*DIGIT | |

 |String | DQUOTE *CHAR DQUOTE | See below for escape characters|

 | | | |

 |List | "(" *(val | |

 | | *(WSP val)) ")" | |

 | | | |

 |Symbol | ALPHA *(ALPHA / DIGIT / | A predefined protocol value |

 | | "_" / "-" / ".") | |

 | | | |

 |Data | "<" *base64 ">" | Opaque Data |

 +---------+-------------------------+--------------------------------+

 Boolean values are encoded as an integer, with the value of zero

 representing false, and non-zero representing true (as in the ‘C’

 programming language).

 String parameters in the payload MUST be enclosed in the double

 quote (’’) character. Within strings, the escape character is the

 backslash (\), and the following escape sequences are defined:

 +----------------+-----------+

 |Escape Sequence | Meaning |

 +----------------+-----------+

 | \\ | \ |

 | \" | " |

 | \n | newline |

 +----------------+-----------+

 List parameters do not have to be homogeneous lists, i.e. they can

 contain parameters of varying types.

 Opaque data is represented as Base64-encoded (see RFC1521[5])

 character strings surrounded by "< " and "> "

 The ABNF syntax definition for Mbus commands is as follows:

Ott, et. al. Expires July 3, 2000 [Page 16]

Internet-Draft A Message Bus for Local Coordination January 2000

 mbus_command = command_name arglist

 command_name = ALPHA *(ALPHA / DIGIT / "_" / ".")

 arglist = "(" *(*WSP parameter *WSP) ")"

 parameter = Integer / Float / String / List

 Symbol / Data

 Command names SHOULD be constructed using hierarchical names to

 group conceptually related commands under a common hierarchy. The

 delimiter between names in the hierarchy is "." (dot).

 The Mbus addressing scheme defined in Addressing (Section 4)

 provides for specifying incomplete addresses by omitting certain

 elements of an address element list, enabling entities to send

 commands to a group of Mbus entities. Therefore all command names

 SHOULD be unambiguous in a way that it is possible to interpret or

 ignore them without considering the message’s address.

 A set of commands within a certain hierarchy that must be understood

 by every entity is defined in Messages (Section 8).

Ott, et. al. Expires July 3, 2000 [Page 17]

Internet-Draft A Message Bus for Local Coordination January 2000

8. Messages

 The section defines some basic application independent messages that

 MUST be understood by all implementations. This specification does

 not contain application specific messages which are to be defined

 outside of the basic Mbus protocol specification.

 Before components of a distributed system can communicate with one

 another using the Mbus, they need to mutually find out about their

 existence. After this bootstrap procedure that each Mbus entity

 goes through all other entities listening to the same Mbus know

 about the newcomer and the newcomer has learned about all the other

 entities. Furthermore entities need to be able to to notice the

 failure (or leaving) of other entities.

 Any Mbus entity is supposed to announce its presence (on the Mbus)

 after starting up. This is to be done repeatedly throughout its

 lifetime to address the issues of startup sequence: Entities should

 always become aware of other entities independent of the order of

 starting.

 Any Mbus entity should frequently indicate that it is still alive.

 This mechanism may be combined with the aforementioned

 self-announcement.

 An Mbus entity should be able to indicate that it is waiting for a

 certain event to happen (similar to a P() operation on a semaphore

 but without creating external state somewhere). In conjunction with

 this, an Mbus entity should be capable of indicating to another

 entity that this condition is now satisfied (similar to a

 semaphore’s V() operation).

 An appropriate commend set to implement the aforementioned concepts

 is presented in the following sections.

8.1 mbus.hello

 Syntax:

 mbus.hello()

 Parameters: - none -

 Each Mbus entity MUST send HELLO messages after startup to the

 global Mbus channel. After transmission of the HELLO message, it

 shall start a timer after the expiration of which the next HELLO

 message shall be transmitted. The timer shall be set to a random

 value t_hello <= t <= t_hello + t_dither to avoid synchronization of

 HELLO messages. Transmission of HELLO messages MUST NOT be stopped

 unless the entity detaches from the Mbus. Section 9 defines

Ott, et. al. Expires July 3, 2000 [Page 18]

Internet-Draft A Message Bus for Local Coordination January 2000

 concrete values for those parameters.

 HELLO messages MUST be sent unreliably to all Mbus entities.

 Each Mbus entity learns about other Mbus entities by observing their

 HELLO messages and tracking the sender address of each message.

 The HELLO message is also used to track the liveness of any Mbus

 entity. Whenever an Mbus entity has not heard for a time span of

 n_dead*(t_hello+t_dither) from another Mbus entity it may consider

 this entity to have failed (or have quit silently). Note that no

 need for any action is necessarily implied from this observation.

8.2 mbus.bye

 Syntax:

 Parameters: - none -

 An Mbus entity that is about to terminate (or "detach" from the

 Mbus) SHOULD announce this by transmitting a BYE message.

 The BYE message MUST be sent unreliably to all receivers.

8.3 mbus.quit

 Syntax:

 mbus.quit()

 Parameters: - none -

 The QUIT message is used to request other entities to terminate

 themselves (and detach from the Mbus). Whether this request is

 honoured by receiving entities or not is up to the discretion of the

 application.

 The QUIT message can be multicast or sent reliably via unicast to a

 single Mbus entity or a group of entities.

8.4 mbus.waiting

 Syntax:

 mbus.waiting(condition)

 Parameters:

 symbol condition

 The condition parameter is used to indicate that the entity

 transmitting this message is waiting for a particular event to

Ott, et. al. Expires July 3, 2000 [Page 19]

Internet-Draft A Message Bus for Local Coordination January 2000

 occur.

 The WAITING messages may be broadcast to all Mbus entities,

 multicast an arbitrary subgroup, or unicast to a particular peer.

 Transmission of the WAITING message MUST be unreliable and hence has

 to be repeated at an application-defined interval (until the

 condition is satisfied).

 If an application wants to indicate that it is waiting for several

 conditions to be met, several WAITING messages are sent (possibly

 included in the same Mbus payload). Note that HELLO and WAITING

 messages may also be transmitted in a single Mbus payload.

8.5 mbus.go

 Syntax:

 mbus.go(condition)

 Parameters:

 symbol condition

 This parameter specifies which condition is met.

 The GO message is sent by an Mbus entity to "unblock" another Mbus

 entity -- the latter of which has indicated that it is waiting for a

 certain condition to be met. Only a single condition can be

 specified per GO message. If several conditions are satisfied

 simultaneously multiple GO messages MAY be combined in a single Mbus

 payload.

 The GO message MUST be sent reliably via unicast to the Mbus entity

 to unblock.

Ott, et. al. Expires July 3, 2000 [Page 20]

Internet-Draft A Message Bus for Local Coordination January 2000

9. Timer and Counters

 The following values for timers and counters mentioned in this

 document SHOULD be used by implementations:

 +----------------+------------------+

 |Timer / Counter | Value |

 +----------------+------------------+

 |t_hello | 1 second |

 |t_dither | 100 milliseconds |

 |n_dead | 5 |

 +----------------+------------------+

 As the Mbus is designed for a local system architecture it is not

 considered necessary to provide dynamic adaptation of these timers

 and counters to the number of Mbus entities.

Ott, et. al. Expires July 3, 2000 [Page 21]

Internet-Draft A Message Bus for Local Coordination January 2000

10. Mbus Security

10.1 Security Model

 In order to prevent accidental or malicious disturbance of Mbus

 communications through messages originated by applications from

 other users message authentication is deployed (Section 10.2). For

 each message a digest is calculated based on the value of a shared

 secret key value. Receivers of messages can check if the sender

 belongs to the same Mbus security domain by re-calculating the

 digest and comparing it to the received value. Only if both values

 are equal the messages must be processed further. In order to allow

 different simultaneous Mbus sessions at a given scope and to

 compensate defective implementations of host local multicast ([18])

 message authentication MUST be provided by conforming

 implementations.

 Privacy of Mbus message transport can be achieved by optionally

 using symmetric encryption methods (Section 10.3). Each message can

 be encrypted using an additional shared secret key and a symmetric

 encryption algorithm. Encryption is OPTIONAL for applications, i.e.

 it is allowed to configure an Mbus domain not to use encryption. But

 conforming implementations MUST provide the possibility to use

 message encryption (see below).

 Message authentication and encryption can be parameterized by

 certain values, e.g. by the algorithms to apply or by the keys to

 use. These parameters (amongst others) are defined in an Mbus

 configuration entity that is accessible to all Mbus entities that

 participate in an Mbus session. In order to achieve interoperability

 conforming implementations SHOULD consider the given Mbus

 configuration entity. Section 11 defines the mandatory and optional

 parameters as well as storage procedures for different platforms.

 Only in cases where none of the options for configuration entities

 mentioned in Section 11 is applicable alternative methods of

 configuring Mbus protocol entities MAY be deployed.

10.2 Message Authentication

 Either MD5 [14] or SHA-1 [15] SHOULD be used for message

 authentication codes (MACs). An implementation MAY provide SHA-1,

 whereas MD5 MUST be implemented. To generate keyed hash values the

 algorithm described in RFC2104[4] MUST be applied with hash values

 truncated to 96 bits (12 bytes). The resulting hash values MUST be

 Base64 encoded (16 characters). The HMAC algorithm works with both,

 MD5 and SHA-1.

 HMAC values, regardless of the algorithm, MUST therefore always

 consist of 16 Base64-encoded characters.

Ott, et. al. Expires July 3, 2000 [Page 22]

Internet-Draft A Message Bus for Local Coordination January 2000

 Hash keys MUST have a length of 96 bit (12 bytes), that are 16

 Base64-encoded characters.

10.3 Encryption

 Either DES, 3DES (triple DES) or IDEA SHOULD be used for encryption.

 Encryption MAY be neglected for applications, e.g. in situations

 where license regulations, export or encryption laws would be

 offended otherwise. However, the implementation of DES is

 RECOMMENDED as a baseline. DES implementations MUST use the DES

 Cipher Block Chaining (CBC) mode. For algorithms requiring

 en/decryption data to be padded to certain boundaries octets with a

 value of 0 SHOULD be used for padding characters. The padding

 characters MUST be appended after calculating the message digest

 when encoding and MUST be erased before recalculating the message

 digest when decoding. IDEA uses 128-bit keys (24 Base64-encoded

 characters). DES keys (56 bits) MUST be encoded as 8 octets as

 described in RFC1423[12], resulting in 12 Base64-encoded characters.

 The mandatory subset of algorithms that MUST be provided by

 implementations is DES and MD5.

 See Section 11 for a specification of notations for Base64-strings.

Ott, et. al. Expires July 3, 2000 [Page 23]

Internet-Draft A Message Bus for Local Coordination January 2000

11. Mbus Configuration

 An implementation MUST be configurable by the following parameters:

 Configuration version

 The version number of the given configuration entity. Version

 numbers allow implementations to check if they can process the

 entries of a given configuration entity. Version number are

 integer values. The version number for the version specified

 here is 1.

 Encryption key

 The secret key used for message encryption.

 Hash key

 The hash key used for message authentication.

 Scope

 The Internet scope to be used for sent messages.

 The upper parameters are mandatory and MUST be present in every Mbus

 configuration entity.

 The following parameters are optional. When they are present they

 MUST be honoured but when they are not present implementations

 SHOULD fall back to the predefined default values (as defined in

 Transport (Section 6)):

 Address

 The non-standard multicast address to use for message

 transport.

 Port

 The non-standard port number to use for message transport.

 Two distinct facilities for parameter storage are considered: For

 Unix-like systems a configuration file SHOULD be used and for

 Windows-95/98/NT/2000 systems a set of registry entries is defined

 that SHOULD be used.

 The syntax of the values for the respective parameter entries

 remains the same for both configuration facilities. The following

 defines a set of ABNF (see RFC2234[13]) productions that are later

Ott, et. al. Expires July 3, 2000 [Page 24]

Internet-Draft A Message Bus for Local Coordination January 2000

 referenced for the definitions for the configuration file syntax and

 registry entries:

 algo-id = "NOENCR" / "DES" / "3DES" / "IDEA" /

 "HMAC-MD5-96" / "HMAC-SHA1-96"

 scope = "HOSTLOCAL" / "LINKLOCAL"

 key = base64string

 version_number = 1*10DIGIT

 base64string = *(ALPHA / DIGIT / "+" / "/" / "=")

 key_value = "(" algo-id "," key ")"

 ipv4_addr = ipv4_octet 3*3("." ipv4_octet)

 ipv4_octet = 1*3DIGIT

 port = 1*5DIGIT

 A key entry MUST be specified using this notation:

 "("algo-id","base64string")"

 algo-id is one of the character strings specified above. For

 algo-id=‘‘NOENCR’’ the other fields are ignored. The de- limiting

 commas MUST always be present though.

 A Base64 string consists of the characters defined in the Base64

 char-set (see RFC1521[5]) including all eventual padding characters,

 i.e. the length of Base64-string is always a multiple of 4.

 The version_number parameter specifies a version number for the used

 configuration entity.

11.1 File based parameter storage

 The file name for a Mbus configuration file is ".mbus" in the user’s

 home-directory. If an environment variable called MBUS is defined

 implementations SHOULD interpret the value of this variable as a

 fully qualified file name that is to be used for the configuration

 file. Implementations MUST ensure that this file has appropriate

 file permissions that prevent other users to read or write it. The

 file MUST exist before a conference is initiated. Its contents MUST

 be UTF-8 encoded and MUST be structured as follows:

Ott, et. al. Expires July 3, 2000 [Page 25]

Internet-Draft A Message Bus for Local Coordination January 2000

 mbus-file = mbus-topic LF *(entry LF)

 mbus-topic = "[MBUS]"

 entry = 1*(version_info / hashkey_info

 / encryptionkey_info / scope_info

 / port_info / address_info)

 version_info = "CONFIG_VERSION=" version_number

 hashkey_info = "HASHKEY=" key_value

 encrkey_info = "ENCRYPTIONKEY=" key_value

 scope_info = "SCOPE=" scope

 port_info = "PORT=" port

 address_info = "ADDRESS=" ipv4_addr

 The following entries are defined: CONFIG_VERSION, HASHKEY,

 ENCRYPTIONKEY, SCOPE, PORT, ADDRESS.

 The entries CONFIG_VERSION, HASHKEY and ENCRYPTIONKEY are mandatory,

 they MUST be present in every Mbus configuration file. The order of

 entries is not significant.

 An example Mbus configuration file:

 [MBUS]

 CONFIG_VERSION=1

 HASHKEY=(HMAC-MD5-96,MTIzMTU2MTg5MTEy)

 ENCRYPTIONKEY=(DES,MTIzMTU2MQ==)

 SCOPE=HOSTLOCAL

 ADDRESS=224.255.222.239

 PORT=47000

11.2 Registry based parameter storage

 For systems lacking the concept of a user’s home-directory as a

 place for configuration files the suggested database for

 configuration settings (e.g. the Windows9x-, Windows NT-, Windows

 2000-registry) SHOULD be used. The hierarchy for Mbus related

 registry entries is as follows:

 HKEY_CURRENT_USER\Software\Mbone Applications\Mbus

 The entries in this hierarchy section are:

Ott, et. al. Expires July 3, 2000 [Page 26]

Internet-Draft A Message Bus for Local Coordination January 2000

 +---------------+--------+----------------+

 |Name | Type | ABNF production|

 +---------------+--------+----------------|

 |CONFIG_VERSION | DWORD | version_number |

 |HASHKEY | String | key_value |

 |ENCRYPTIONKEY | String | key_value |

 |SCOPE | String | scope |

 |ADDRESS | String | ipv4_addr |

 |PORT | DWORD | port |

 +---------------+--------+----------------+

 The same syntax for key values as for the file based configuration

 facility MUST be used.

Ott, et. al. Expires July 3, 2000 [Page 27]

Internet-Draft A Message Bus for Local Coordination January 2000

12. Security Considerations

 The Mbus security mechanismns are specified in Section 10.1.

 It should be noted that the Mbus transport specification defines a

 mandatory baseline set of algorithms that have to be supported by

 implementations. This baseline set does not neccessarily provide the

 best security due to the cryptographic weaknesses of the individual

 algorithms. For example, it has been stated in [4] that MD5 had been

 shown to be vulnerable to collision search attacks (although this

 was believed not to compromise the use of MD5 within HMAC

 generation). However, SHA-1 is usually considered to be the

 cryptographically stronger function ([16]).

 Similar remarks can be made on the encryption functions. The base

 specification requires DES, an algorithm that has shown to be

 vulnerable to brute-force attacks ([16], [17]).

 We do not consider the well-known weaknesses of the mentioned

 algorithms a problem:

 o The problem of receiving unauthenticated messages is considered

 to be the main security threat for Mbus communication. We believe

 that HMAC-MD5 is sufficiently secure as a baseline algorithm. For

 application requiring special security concerning authentication

 of messages there is the option of using implementations that

 implement SHA-1.

 o Encryption is optional anyway, i.e. users can decide to have

 their implementations sending clear text Mbus messages. Given the

 local nature of Mbus communication this is feasible for most use

 cases. In case the base DES encryption is not considered

 sufficient there is still the possibility to use implementations

 that implement 3DES or IDEA.

 However, application developers should be aware of incorrect IP

 implementations that do not conform to RFC 1122[2] and do send

 datagrams with TTL values of zero, resulting in Mbus messages sent

 to the local network link although a user might have selected host

 local scope in the Mbus configuration. In these cases the use of

 encryption SHOULD be considered if privacy is desired.

Ott, et. al. Expires July 3, 2000 [Page 28]

Internet-Draft A Message Bus for Local Coordination January 2000

13. IANA Considerations

 The IANA is requested to assign a port number and a multicast

 address. For the time being the tentative multicast address

 224.255.222.239 and the port number 47000 (decimal) SHOULD be used.

Ott, et. al. Expires July 3, 2000 [Page 29]

Internet-Draft A Message Bus for Local Coordination January 2000

References

 [1] Bradner, S., "Key words for use in RFCs to Indicate Requirement

 Levels", RFC 2119, BCP 14, March 1997.

 [2] Braden, R., "Requirements for Internet Hosts -- Communication

 Layers", RFC 1122, October 1989.

 [3] Hinden, R. and S. Deering, "IP Version 6 Addressing

 Architecture", RFC 2373, July 1998.

 [4] Krawczyk, H., Bellare, M. and R. Canetti, "HMAC: Keyed-Hashing

 for Message Authentication", RFC 2104, February 1997.

 [5] Borenstein, N. and N. Freed, "MIME (Multipurpose Internet Mail

 Extensions) Part One: Mechanisms for Specifying and Describing

 the Format of Internet Message Bodies", RFC 1521, September

 1993.

 [6] Handley, M., Crowcroft, J., Bormann, C. and J. Ott, "The

 Internet Multimedia Conferencing Architecture", Internet Draft

 draft-ietf-mmusic-confarch-02.txt, October 1999.

 [7] Schulzrinne, H., Casner, S., Frederick, R. and V. Jacobsen,

 "RTP: A Transport Protocol for Real-Time Applications", RFC

 1889, January 1996.

 [8] Handley, M., Schulzrinne, H., Schooler, E. and J. Rosenberg,

 "SIP: Session Initiation Protocol", RFC 2543, March 1999.

 [9] Handley, M. and V. Jacobsen, "SDP: Session Description

 Protocol", RFC 2327, April 1998.

 [10] Meyer, D., "Administratively Scoped IP Multicast", RFC 2365,

 July 1998.

 [11] Ott, J., Perkins, C. and D. Kutscher, "Requirements for Local

 Conference Control", Internet Draft

 draft-ietf-mmusic-mbus-req-00.txt, December 1999.

 [12] Balenson, D., "Privacy Enhancement for Internet Electronic

 Mail: Part III: Algorithms, Modes, and Identifiers", RFC 1423,

 February 1993.

 [13] Crocker, D. and P. Overell, "Augmented BNF for Syntax

 Specifications: ABNF", RFC 2234, November 1997.

 [14] Rivest, R., "The MD5 Message-Digest Algorithm", RFC 1321,

 April 1992.

Ott, et. al. Expires July 3, 2000 [Page 30]

Internet-Draft A Message Bus for Local Coordination January 2000

 [15] U.S. DEPARTMENT OF COMMERCE/National Institute of Standards

 and Technology, "Secure Hash Standard", FIPS PUB 180-1, April

 1995.

 [16] Schneier, B., "Applied Cryptography", Edition 2, Publisher

 John Wiley & Sons, Inc., 1996.

 [17] distributed.net, "Project DES", WWW

 http://www.distributed.net/des/, 1999.

 [18] Microsoft, "BUG: Winsock Sends IP Packets with TTL 0", WWW

 http://support.microsoft.com/support/kb/articles/Q138/2/68.asp, March 19

 .

Authors’ Addresses

 Joerg Ott

 TZI, Universitaet Bremen

 Bibliothekstr. 1

 Bremen 28359

 Germany

 Phone: +49.421.218-7028

 Fax: +49.421.218-7000

 EMail: jo@tzi.de

 Colin Perkins

 University College London

 Gower Street

 London WC1E 6BT

 United Kingdom

 EMail: c.perkins@cs.ucl.ac.uk

 Dirk Kutscher

 TZI, Universitaet Bremen

 Bibliothekstr. 1

 Bremen 28359

 Germany

 Phone: +49.421.218-7595

 Fax: +49.421.218-7000

 EMail: dku@tzi.de

Ott, et. al. Expires July 3, 2000 [Page 31]

Internet-Draft A Message Bus for Local Coordination January 2000

Appendix A. Mbus Addresses for Conferencing

 For conferencing application 5 address element keys are predefined:

 conf conference identifier

 media media type processed by application

 module module type of Mbus entity in a application

 app application name

 The conf element is used to designate the name of a conference in

 order to distinguish between entities that are present in more than

 one conference. See Transport (Section 6) for further notes

 concerning multiple presences using the Mbus.

 The media element identifies the type of media processed by an

 application. Currently defined values are:

 audio An RTP audio stream

 video An RTP video stream

 workspace A shared workspace

 whiteboard A shared whiteboard

 editor A shared text editor

 sap A session announcement tool, using SAP

 sip A session invitation tool, using SIP

 h323 An ITU-T H.323 conference controller

 rtsp An RTSP session controller

 control A local coordination entity

 Other values are likely to be defined at a later date.

 The module element defines a logical part of an application. The

 value ‘ui’ denotes the user-interface of an application, and the

 value ‘engine’ defines a media/protocol engine, and ‘transcoder’

 defines a media transcoder. Other values may be defined in future.

 The app element identifies the application being used (e.g.: rat,

 vic, etc.).

 The instance element is used to distinguish several instances of the

 same application. This is a per-instance-unique identifier, which is

 not necessarily an integer. Many Unix applications will use the

 process-id (PID) number, although this is not a requirement. Note

 that if an end system is spread across several hosts, the instance

 MUST NOT be the process-id, unless e.g.. the host name or its IP

 address are included as well. Section 8 defines a bootstrap

 procedure ensuring that entities can track the abandoning and

 restarting of application instances as long as unique instance

 values are being used.

Ott, et. al. Expires July 3, 2000 [Page 32]

Internet-Draft A Message Bus for Local Coordination January 2000

 The following examples illustrate how to make use of the addresses:

 +----------------------------+--------------------------------------+

 |(conf:test media:audio | The user interface of |

 |module:ui app:rat | the rat application with |

 |id:4711-99@134.102.218.45) | the given id is taking |

 | | part in conference test |

 +----------------------------+--------------------------------------+

 |(media:workspace module:ui) | The user interfaces of |

 | | all workspace applications |

 +----------------------------+--------------------------------------+

 |(media:audio) | All audio applications |

 +----------------------------+--------------------------------------+

 |(app:rat) | All instances of the rat application |

 +----------------------------+--------------------------------------+

 |() | All entities |

 +----------------------------+--------------------------------------+

Ott, et. al. Expires July 3, 2000 [Page 33]

Internet-Draft A Message Bus for Local Coordination January 2000

Full Copyright Statement

 Copyright (C) The Internet Society (2000). All Rights Reserved.

 This document and translations of it may be copied and furnished to

 others, and derivative works that comment on or otherwise explain it

 or assist in its implmentation may be prepared, copied, published

 and distributed, in whole or in part, without restriction of any

 kind, provided that the above copyright notice and this paragraph

 are included on all such copies and derivative works. However, this

 document itself may not be modified in any way, such as by removing

 the copyright notice or references to the Internet Society or other

 Internet organizations, except as needed for the purpose of

 developing Internet standards in which case the procedures for

 copyrights defined in the Internet Standards process must be

 followed, or as required to translate it into languages other than

 English.

 The limited permissions granted above are perpetual and will not be

 revoked by the Internet Society or its successors or assigns.

 This document and the information contained herein is provided on an

 "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING

 TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING

 BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION

 HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF

 MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Acknowledgement

 Funding for the RFC editor function is currently provided by the

 Internet Society.

Ott, et. al. Expires July 3, 2000 [Page 34]

