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Abstract

   This document describes Post Sockets, an asynchronous abstract

   programming interface for the atomic transmission of messages in an

   inherently multipath environment.  Post replaces connections with

   long-lived associations between endpoints, with the possibility to

   cache cryptographic state in order to reduce amortized connection

   latency.  We present this abstract interface as an illustration of

   what is possible with present developments in transport protocols

   when freed from the strictures of the current sockets API.

Status of This Memo

   This Internet-Draft is submitted in full conformance with the

   provisions of BCP 78 and BCP 79.

   Internet-Drafts are working documents of the Internet Engineering

   Task Force (IETF).  Note that other groups may also distribute

   working documents as Internet-Drafts.  The list of current Internet-

   Drafts is at http://datatracker.ietf.org/drafts/current/.

   Internet-Drafts are draft documents valid for a maximum of six months

   and may be updated, replaced, or obsoleted by other documents at any

   time.  It is inappropriate to use Internet-Drafts as reference

   material or to cite them other than as "work in progress."
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   This document is subject to BCP 78 and the IETF Trust’s Legal

   Provisions Relating to IETF Documents

   (http://trustee.ietf.org/license-info) in effect on the date of

   publication of this document.  Please review these documents

   carefully, as they describe your rights and restrictions with respect
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   include Simplified BSD License text as described in Section 4.e of
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1.  Introduction

   The BSD Unix Sockets API’s SOCK_STREAM abstraction, by bringing

   network sockets into the UNIX programming model, allowing anyone who

   knew how to write programs that dealt with sequential-access files to

   also write network applications, was a revolution in simplicity.  It

   would not be an overstatement to say that this simple API is the

   reason the Internet won the protocol wars of the 1980s.  SOCK_STREAM

   is tied to the Transmission Control Protocol (TCP), specified in 1981

   [RFC0793].  TCP has scaled remarkably well over the past three and a

   half decades, but its total ubiquity has hidden an uncomfortable

   fact: the network is not really a file, and stream abstractions are

   too simplistic for many modern application programming models.

   In the meantime, the nature of Internet access, and the variety of

   Internet transport protocols, is evolving.  The challenges that new

   protocols and access paradigms present to the sockets API and to

   programming models based on them inspire the design elements of a new

   approach

   Many end-user devices are connected to the Internet via multiple

   interfaces, which suggests it is time to promote the paths by which

   two endpoints are connected to each other to a first-order object.

   While implicit multipath communication is available for these

   multihomed nodes in the present Internet architecture with the

   Multipath TCP extension (MPTCP) [RFC6824], MPTCP was specifically

   designed to hide multipath communication from the application for

   purposes of compatibility.  Since many multihomed nodes are connected

   to the Internet through access paths with widely different properties

   with respect to bandwidth, latency and cost, adding explicit path

   control to MPTCP’s API would be useful in many situations.

   Applications also need control over cooperation with path elements

   via mechanisms such as that proposed by the Path Layer UDP Substrate

   (PLUS) effort (see [I-D.trammell-plus-statefulness] and

   [I-D.trammell-plus-abstract-mech]).

   Another trend straining the traditional layering of the transport

   stack associated with the SOCK_STREAM interface is the widespread

   interest in ubiquitous deployment of encryption to guarantee

   confidentiality, authenticity, and integrity, in the face of

   pervasive surveillance [RFC7258].  Layering the most widely deployed

   encryption technology, Transport Layer Security (TLS), strictly atop

   TCP (i.e., via a TLS library such as OpenSSL that uses the sockets

   API) requires the encryption-layer handshake to happen after the

   transport-layer handshake, which increases connection setup latency
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   on the order of one or two round-trip times, an unacceptable delay

   for many applications.  Integrating cryptographic state setup and

   maintenance into the path abstraction naturally complements efforts

   in new protocols (e.g.  QUIC [I-D.ietf-quic-transport]) to mitigate

   this strict layering.

   To meet these challenges, we present the Post-Socket Application

   Programming Interface (API), described in detail in this work.  Post

   is designed to be language, transport protocol, and architecture

   independent, allowing applications to be written to a common abstract

   interface, easily ported among different platforms, and used even in

   environments where transport protocol selection may be done

   dynamically, as proposed in the IETF’s Transport Services working

   group.

   Post replaces the traditional SOCK_STREAM abstraction with an Message

   abstraction, which can be seen as a generalization of the Stream

   Control Transmission Protocol’s [RFC4960] SOCK_SEQPACKET service.

   Messages are sent and received on Carriers, which logically group

   Messages for transmission and reception.  For backward compatibility,

   these Carriers can also be opened as Streams, presenting a file-like

   interface to the network as with SOCK_STREAM.

   Post replaces the notions of a socket address and connected socket

   with an Association with a remote endpoint via set of Paths.

   Implementation and wire format for transport protocol(s) implementing

   the Post API are explicitly out of scope for this work; these

   abstractions need not map directly to implementation-level concepts,

   and indeed with various amounts of shimming and glue could be

   implemented with varying success atop any sufficiently flexible

   transport protocol.

   The key features of Post as compared with the existing sockets API

   are:

   o  Explicit Message orientation, with framing and atomicity

      guarantees for Message transmission.

   o  Asynchronous reception, allowing all receiver-side interactions to

      be event-driven.

   o  Explicit support for multistreaming and multipath transport

      protocols and network architectures.

   o  Long-lived Associations, whose lifetimes may not be bound to

      underlying transport connections.  This allows associations to

      cache state and cryptographic key material to enable fast

      resumption of communication, and for the implementation of the API
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      to explicitly take care of connection establishment mechanics such

      as connection racing [RFC6555] and peer-to-peer rendezvous

      [RFC5245].

   o  Transport protocol stack independence, allowing applications to be

      written in terms of the semantics best for the application’s own

      design, separate from the protocol(s) used on the wire to achieve

      them.  This enables applications written to a single API to make

      use of transport protocols in terms of the features they provide,

      as in [I-D.ietf-taps-transports].

   This work is the synthesis of many years of Internet transport

   protocol research and development.  It is inspired by concepts from

   the Stream Control Transmission Protocol (SCTP) [RFC4960], TCP Minion

   [I-D.iyengar-minion-protocol], and MinimaLT[MinimaLT], among other

   transport protocol modernization efforts.  We present Post Sockets as

   an illustration of what is possible with present developments in

   transport protocols when freed from the strictures of the current

   sockets API.  While much of the work for building parts of the

   protocols needed to implement Post are already ongoing in other IETF

   working groups (e.g.  MPTCP, QUIC, TLS), we argue that an abstract

   programming interface unifying access all these efforts is necessary

   to fully exploit their potential.

2.  Abstractions and Terminology
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           +===============+

           |    Message    |

           +===============+

                 |    ^     initiate()       listen()

             send()  ready()    |               |

                 V    |         V               V

           +======================+  accept() +============+

           |                      |<---+------|            |

           |       Carrier        |    |      |  Listener  |

           |                      |----+      |            |

           +======================+           +============+

                       |        |               |

                       |        |               |

                       | +=======================+

                       | |                       | durable end-to-end

                       | |      Association      | state via many paths/

                       | |                       | policies and prefs

                       | +=======================+

                       |                 |      |

                       |                 |      |

                       |         +=========+  +=========+

                       |         |  Local  |  | Remote  |

                       |         +=========+  +=========+

                       |                 |      |

                  +===========+        +==========+

        ephemeral |           |        |          |

      transport & | Transient |------->|   Path   | properties of

     crypto state |           |        |          | address pair

                  +===========+        +==========+

         Figure 1: Abstractions and relationships in Post Sockets

   Post is based on a small set of abstractions, centered around a

   Message Carrier as the entry point for an application to the

   networking API.  The relationships among them are shown in

   Figure Figure 1 and detailed in this section.

2.1.  Message Carrier

   A Message Carrier (or simply Carrier) is a transport protocol stack-

   independent interface for sending and receiving messages between an

   application and a remote endpoint; it is roughly analogous to a

   socket in the present sockets API.

   Sending a Message over a Carrier is driven by the application, while

   receipt is driven by the arrival of the last packet that allows the

   Message to be assembled, decrypted, and passed to the application.
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   Receipt is therefore asynchronous; given the different models for

   asynchronous I/O and concurrency supported by different platforms, it

   may be implemented in any number of ways.  The abstract API provides

   only for a way for the application to register how it wants to handle

   incoming messages.

   All the Messages sent to a Message Carrier will be received on the

   corresponding Message Carrier at the remote endpoint, though not

   necessarily reliably or in order, depending on Message properties and

   the underlying transport protocol stack.

   A Message Carrier that is backed by current transport protocol stack

   state (such as a TCP connection; see Section 2.6) is said to be

   "active": messages can be sent and received over it.  A Message

   Carrier can also be "dormant": there is long-term state associated

   with it (via the underlying Association; see Section 2.3), and it may

   be able to reactivated, but messages cannot be sent and received

   immediately.

   If supported by the underlying transport protocol stack, a Message

   Carrier may be forked: creating a new Message Carrier associated with

   a new Message Carrier at the same remote endpoint.  The semantics of

   the usage of multiple Message Carriers based on the same Association

   are application-specific.  When a Message Carrier is forked, its

   corresponding Message Carrier at the remote endpoint receives a fork

   request, which it must accept in order to fully establish the new

   carrier.  Multiple message carriers between endpoints are implemented

   differently by different transport protocol stacks, either using

   multiple separate transport-layer connections, or using multiple

   streams of multistreaming transport protocols.

   To exchange messages with a given remote endpoint, an application may

   initiate a Message Carrier given its remote (see Section 2.4 and

   local (see Section 2.5) identities; this is an equivalent to an

   active open.  There are five special cases of Message Carriers, as

   well, supporting different initiation and interaction patterns,

   defined in the subsections below.

2.1.1.  Listener

   A Listener is a special case of Message Carrier which only responds

   to requests to create a new Carrier from a remote endpoint, analogous

   to a server or listening socket in the present sockets API.  Instead

   of being bound to a specific remote endpoint, it is bound only to a

   local identity; however, its interface for accepting fork requests is

   identical to that for fully fledged Message Carriers.
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2.1.2.  Source

   A Source is a special case of Message Carrier over which messages can

   only be sent, intended for unidirectional applications such as

   multicast transmitters.  Sources cannot be forked, and need not

   accept forks.

2.1.3.  Sink

   A Sink is a special case of Message Carrier over which messages can

   only be received, intended for unidirectional applications such as

   multicast receivers.  Sinks cannot be forked, and need not accept

   forks.

2.1.4.  Responder

   A Responder is a special case of Message Carrier which may receive

   messages from many remote sources, for cases in which an application

   will only ever send Messages in reply back to the source from which a

   Message was received.  This is a common implementation pattern for

   servers in client-server applications.  A Responder’s receiver gets a

   Message, as well as a Source to send replies to.  Responders cannot

   be forked, and need not accept forks.

2.1.5.  Stream

   A Message Carrier may be irreversibly morphed into a Stream, in order

   to provide a strictly ordered, reliable service as with SOCK_STREAM.

   Morphing a Message Carrier into a Stream should return a "file-like

   object" as appropriate for the platform implementing the API.

   Typically, both ends of a communication using a stream service will

   morph their respective Message Carriers independently before sending

   any Messages.

   Writing a byte to a Stream will cause it to be received by the

   remote, in order, or will cause an error condition and termination of

   the stream if the byte cannot be delivered.  Due to the strong

   sequential dependence on a stream, streams must always be reliable

   and ordered.  A Message Carrier may only be morphed to a Stream if it

   uses transport protocol stack that provides reliable, ordered

   service, and only before it is used to send a Message.

2.2.  Message

   A Message is an atomic unit of communication between applications.  A

   Message that cannot be delivered in its entirety within the

   constraints of the network connectivity and the requirements of the

   application is not delivered at all.

Trammell, et al.        Expires September 9, 2017               [Page 8]



Internet-Draft                Post Sockets                    March 2017

   Messages can represent both relatively small structures, such as

   requests in a request/response protocol such as HTTP; as well as

   relatively large structures, such as files of arbitrary size in a

   filesystem.

   In the general case, there is no mapping between a Message and

   packets sent by the underlying protocol stack on the wire: the

   transport protocol may freely segment messages and/or combine

   messages into packets.  However, a message may be marked as

   immediate, which will cause it to be sent in a single packet, if it

   will fit.

   This implies that both the sending and receiving endpoint, whether in

   the application layer or the transport layer, must guarantee storage

   for the full size of an Message.

   Messages are sent over and received from Message Carriers (see

   Section 2.1).

   On sending, Messages have properties that allow the application to

   specify its requirements with respect to reliability, ordering,

   priority, idempotence, and immediacy; these are described in detail

   below.  Messages may also have arbitrary properties which provide

   additional information to the underlying transport protocol stack on

   how they should be handled, in a protocol-specific way.  These stacks

   may also deliver or set properties on received messages, but in the

   general case a received messages contains only a sequence of ordered

   bytes.

2.2.1.  Lifetime and Partial Reliability

   A Message may have a "lifetime" - a wallclock duration before which

   the Message must be available to the application layer at the remote

   end.  If a lifetime cannot be met, the Message is discarded as soon

   as possible.  Messages without lifetimes are sent reliably if

   supported by the transport protocol stack.  Lifetimes are also used

   to prioritize Message delivery.

   There is no guarantee that a Message will not be delivered after the

   end of its lifetime; for example, a Message delivered over a strictly

   reliable transport will be delivered regardless of its lifetime.

   Depending on the transport protocol stack used to transmit the

   message, these lifetimes may also be signaled to path elements by the

   underlying transport, so that path elements that realize a lifetime

   cannot be met can discard frames containing the Messages instead of

   forwarding them.
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2.2.2.  Priority

   Messages have a "niceness" - a priority among other messages sent

   over the same Message Carrier in an unbounded hierarchy most

   naturally represented as a non-negative integer.  By default,

   Messages are in niceness class 0, or highest priority.  Niceness

   class 1 Messages will yield to niceness class 0 Messages sent over

   the same Carrier, class 2 to class 1, and so on.  Niceness may be

   translated to a priority signal for exposure to path elements (e.g.

   DSCP codepoint) to allow prioritization along the path as well as at

   the sender and receiver.  This inversion of normal schemes for

   expressing priority has a convenient property: priority increases as

   both niceness and lifetime decrease.  A Message may have both a

   niceness and a lifetime - Messages with higher niceness classes will

   yield to lower classes if resource constraints mean only one can meet

   the lifetime.

2.2.3.  Dependence

   A Message may have "antecedents" - other Messages on which it

   depends, which must be delivered before it (the "successor") is

   delivered.  The sending transport uses deadlines, niceness, and

   antecedents, along with information about the properties of the Paths

   available, to determine when to send which Message down which Path.

2.2.4.  Idempotence

   A sending application may mark a Message as "idempotent" to signal to

   the underlying transport protocol stack that its application

   semantics make it safe to send in situations that may cause it to be

   received more than once (i.e., for 0-RTT session resumption as in TCP

   Fast Open, TLS 1.3, and QUIC).

2.2.5.  Immediacy

   A sending application may mark a Message as "immediate" to signal to

   the underlying transport protocol stack that its application

   semantics require it to be placed in a single packet, on its own,

   instead of waiting to be combined with other messages or parts

   thereof (i.e., for media transports and interactive sessions with

   small messages).

2.2.6.  Additional Events

   Senders may also be asynchronously notified of three events on

   Messages they have sent: that the Message has been transmitted, that

   the Message has been acknowledged by the receiver, or that the
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   Message has expired before transmission/acknowledgment.  Not all

   transport protocol stacks will support all of these events.

2.3.  Association

   An Association contains the long-term state necessary to support

   communications between a Local (see Section 2.5) and a Remote (see

   Section 2.4) endpoint, such as cryptographic session resumption

   parameters or rendezvous information; information about the policies

   constraining the selection of transport protocols and local

   interfaces to create Transients (see Section 2.6) to carry Messages;

   and information about the paths through the network available

   available between them (see Section 2.7).

   All Message Carriers are bound to an Association.  New Message

   Carriers will reuse an Association if they can be carried from the

   same Local to the same Remote over the same Paths; this re-use of an

   Association may implies the creation of a new Transient.

2.4.  Remote

   A Remote represents information required to establish and maintain a

   connection with the far end of an Association: name(s), address(es),

   and transport protocol parameters that can be used to establish a

   Transient; transport protocols to use; information about public keys

   or certificate authorities used to identify the remote on connection

   establishment; and so on.  Each Association is associated with a

   single Remote, either explicitly by the application (when created by

   the initiation of a Message Carrier) or a Listener (when created by

   forking a Message Carrier on passive open).

   A Remote may be resolved, which results in zero or more Remotes with

   more specific information.  For example, an application may want to

   establish a connection to a website identified by a URL

   https://www.example.com.  This URL would be wrapped in a Remote and

   passed to a call to initiate a Message Carrier.  The first pass

   resolution might parse the URL, decomposing it into a name, a

   transport port, and a transport protocol to try connecting with.  A

   second pass resolution would then look up network-layer addresses

   associated with that name through DNS, and store any certificates

   available from DANE.  Once a Remote has been resolved to the point

   that a transport protocol stack can use it to create a Transient, it

   is considered fully resolved.
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2.5.  Local

   A Local represents all the information about the local endpoint

   necessary to establish an Association or a Listener: interface, port,

   and transport protocol stack information, as well as certificates and

   associated private keys to use to identify this endpoint.

2.6.  Transient

   A Transient represents a binding between a Message Carrier and the

   instance of the transport protocol stack that implements it.  As an

   Association contains long-term state for communications between two

   endpoints, a Transient contains ephemeral state for a single

   transport protocol over a single Path at a given point in time.

   A Message Carrier may be served by multiple Transients at once, e.g.

   when implementing multipath communication such that the separate

   paths are exposed to the API by the underlying transport protocol

   stack.  Each Transient serves only one Message Carrier, although

   multiple Transients may share the same underlying protocol stack;

   e.g. when multiplexing Carriers over streams in a multistreaming

   protocol.

   Transients are generally not exposed by the API to the application,

   though they may be accessible for debugging and logging purposes.

2.7.  Path

   A Path represents information about a single path through the network

   used by an Association, in terms of source and destination network

   and transport layer addresses within an addressing context, and the

   provisioning domain [RFC7556] of the local interface.  This

   information may be learned through a resolution, discovery, or

   rendezvous process (e.g.  DNS, ICE), by measurements taken by the

   transport protocol stack, or by some other path information discovery

   mechanism.  It is used by the transport protocol stack to maintain

   and/or (re-)establish communications for the Association.

   The set of available properties is a function of the transport

   protocol stacks in use by an association.  However, the following

   core properties are generally useful for applications and transport

   layer protocols to choose among paths for specific Messages:

   o  Maximum Transmission Unit (MTU): the maximum size of an Message’s

      payload (subtracting transport, network, and link layer overhead)

      which will likely fit into a single frame.  Derived from signals

      sent by path elements, where available, and/or path MTU discovery

      processes run by the transport layer.
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   o  Latency Expectation: expected one-way delay along the Path.

      Generally provided by inline measurements performed by the

      transport layer, as opposed to signaled by path elements.

   o  Loss Probability Expectation: expected probability of a loss of

      any given single frame along the Path.  Generally provided by

      inline measurements performed by the transport layer, as opposed

      to signaled by path elements.

   o  Available Data Rate Expectation: expected maximum data rate along

      the Path.  May be derived from passive measurements by the

      transport layer, or from signals from path elements.

   o  Reserved Data Rate: Committed, reserved data rate for the given

      Association along the Path.  Requires a bandwidth reservation

      service in the underlying transport protocol stack.

   o  Path Element Membership: Identifiers for some or all nodes along

      the path, depending on the capabilities of the underlying network

      layer protocol to provide this.

   Path properties are generally read-only.  MTU is a property of the

   underlying link-layer technology on each link in the path; latency,

   loss, and rate expectations are dynamic properties of the network

   configuration and network traffic conditions; path element membership

   is a function of network topology.  In an explicitly multipath

   architecture, application and transport layer requirements can be met

   by having multiple paths with different properties to select from.

   Transport protocol stacks can also provide signaling to devices along

   the path, but this signaling is derived from information provided to

   the Message abstraction.

2.8.  Policy Context

   A Local and a Remote is not necessarily enough to establish a Message

   Carrier between two endpoints.  For instance, an application may

   require or prefer certain transport features (see

   [I-D.ietf-taps-transports]) in the transport protocol stacks used by

   the Transients underlying the Carrier; it may also prefer Paths over

   one interface to those over another (e.g.  WiFi access over LTE when

   roaming on a foreign LTE network, due to cost).  These policies are

   expressed in a Policy Context bound to an Association.  Multiple

   policy contexts may be active at once; e.g. a system Policy Context

   expressing administrative preferences about interface and protocol

   selection, an application Policy Context expressing transport feature

   information.  The expression of policy contexts and the resolution of

   conflicts among Policy Contexts is currently implementation-specific;
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   note that these are equivalent to the Policy API in the NEAT

   architeture [NEAT].

3.  Abstract Programming Interface

   We now turn to the design of an abstract programming interface to

   provide a simple interface to Post’s abstractions, constrained by the

   following design principles:

   o  Flexibility is paramount.  So is simplicity.  Applications must be

      given as many controls and as much information as they may need,

      but they must be able to ignore controls and information

      irrelevant to their operation.  This implies that the "default"

      interface must be no more complicated than BSD sockets, and must

      do something reasonable.

   o  Reception is an inherently asynchronous activity.  While the API

      is designed to be as platform-independent as possible, one key

      insight it is based on is that an Message receiver’s behavior in a

      packet-switched network is inherently asynchronous, driven by the

      receipt of packets, and that this asynchronicity must be reflected

      in the API.  The actual implementation of receive and event

      handling will need to be aligned to the method a given platform

      provides for asynchronous I/O.

   o  A new API cannot be bound to a single transport protocol and

      expect wide deployment.  As the API is transport-independent and

      may support runtime transport selection, it must impose the

      minimum possible set of constraints on its underlying transports,

      though some API features may require underlying transport features

      to work optimally.  It must be possible to implement Post over

      vanilla TCP in the present Internet architecture.

   The API we design from these principles is centered around a Carrier,

   which can be created actively via initiate() or passively via a

   listen(); the latter creates a Listener from which new Carriers can

   be accept()ed.  Messages may be created explicitly and passed to this

   Carrier, or implicitly through a simplified interface which uses

   default message properties (reliable transport without priority or

   deadline, which guarantees ordered delivery over a single Carrier

   when the underlying transport protocol stack supports it).

   The current state of API development is illustrated as a set of

   interfaces and function prototypes in the Go programming language in

   Appendix A; future revisions of this document will give more a more

   abstract specification of the API as development completes.
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3.1.  Example Connection Patterns

   Here, we illustrate the usage of the API outlined in Appendix A for

   common connection patterns.  Note that error handling is ignored in

   these illustrations for ease of reading.

3.1.1.  Client-Server

   Here’s an example client-server application.  The server echoes

   messages.  The client sends a message and prints what it receives.

   The client in Figure 2 connects, sends a message, and sets up a

   receiver to print messages received in response.  The carrier is

   inactive after the Initiate() call; the Send() call blocks until the

   carrier can be activated.

   // connect to a server given a remote

   func sayHello() {

       carrier := Initiate(local, remote)

       carrier.Send([]byte("Hello!"))

       carrier.Ready(func (msg InMessage) {

           fmt.Println(string([]byte(msg))

           return false

       })

       carrier.Close()

   }

                         Figure 2: Example client

   The server in Figure 3 creates a Listener, which accepts Carriers and

   passes them to a server.  The server echos the content of each

   message it receives.
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   // run a server for a specific carrier, echo all its messages

   func runMyServerOn(carrier Carrier) {

       carrier.Ready(func (msg InMessage) {

           carrier.Send(msg)

       })

   }

   // accept connections forever, spawn servers for them

   func acceptConnections() {

       listener := Listen(local)

       listener.Accept(func(carrier Carrier) bool {

           go runMyServerOn(carrier)

           return true

       })

   }

                         Figure 3: Example server

   The Responder allows the server to be significantly simplified, as

   shown in Figure 4.

   func echo(msg InMessage, reply Sink) {

       reply.Send(msg)

   }

   Respond(local, echo)

                        Figure 4: Example responder

3.1.2.  Client-Server with Happy Eyeballs and 0-RTT establishment

   The fundamental design of a client need not change at all for happy

   eyeballs [RFC6555] (selection of multiple potential protocol stacks

   through connection racing); this is handled by the Post Sockets

   implementation automatically.  If this connection racing is to use

   0-RTT data (i.e., as provided by TCP Fast Open [RFC7413], the client

   must mark the outgoing message as idempotent.
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// connect to a server given a remote

func sayHelloQuickly() {

    carrier := Initiate(local, remote)

    carrier.SendMsg(OutMessage{Content: []byte("Hello!"), Idempotent: true}, nil,

    carrier.Ready(func (msg InMessage) {

        fmt.Println(string([]byte(msg)))

        return false

    })

    carrier.Close()

}

3.1.3.  Peer to Peer with Network Address Translation

   In the client-server examples shown above, the Remote given to the

   Initiate call refers to the name and port of the server to connect

   to.  This need not be the case, however; a Remote may also refer to

   an identity and a rendezvous point for rendezvous as in ICE

   [RFC5245].  Here, each peer does its own Initiate call

   simultaneously, and the result on each side is a Carrier attached to

   an appropriate Association.

3.1.4.  Multicast Receiver

   A multicast receiver is implemented using a Sink attached to a Local

   encapsulating a multicast address on which to receive multicast

   datagrams.  The following example prints messages received on the

   multicast address forever.

   func receiveMulticast() {

       sink = NewSink(local)

       sink.Ready(func (msg InMessage) {

           fmt.Println(string([]byte(msg)))

           return true

       })

   }

3.2.  Implementation Considerations

   Here we discuss an incomplete list of API implementation

   considerations that have arisen with experimentation with the

   prototype in Appendix A.
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3.2.1.  Message Framing and Deframing

   An obvious goal of Post Sockets is interoperability with non-Post

   Sockets endpoints: a Post Sockets endpoint using a given protocol

   stack must be able to communicate with another endpoint using the

   same protocol stack, but not using Post Sockets.  This implies that

   the underlying transport protocol stack must support object framing,

   in order to delimit Messages carried by protocol stacks that are not

   themselves message-oriented.

   Another goal of Post Sockets is to work over unmodified TCP.  We

   could simply define a Message Carrier over TCP to support only stream

   morphing, but this would fall far short of our goal to transport

   independence.  Another approach is to recognize that almost every

   protocol using TCP already has its own message delimiters, and to

   allow the receiver of a Message to provide a deframing primitive to

   the API.  Experimentation with the best way to achieve this within

   Post Sockets is underway.

3.2.2.  Message Size Limitations

   Ideally, Messages can be of infinite size.  However, protocol stacks

   and protocol stack implementations may impose their own limits on

   message sizing; For example, SCTP [RFC4960] and TLS

   [I-D.ietf-tls-tls13] impose record size limitations of 64kB and 16kB,

   respectively.  Message sizes may also be limited by the available

   buffer at the receiver, since a Message must be fully assembled by

   the transport layer before it can be passed on to the application

   layer.  Since not every transport protocol stack implements the

   signaling necessary to negotiate or expose message size limitations,

   these are currently configured out of band, and are probably best

   exposed through the policy context.

   A truly infinite message service - e.g. large file transfer where

   both endpoints have committed persistent storage to the message - is

   probably best realized as a layer above Post Sockets, and may be

   added as a new type of Message Carrier to a future revision of this

   document.

3.2.3.  Backpressure

   Regardless of how asynchronous reception is implemented, it is

   important for an application to be able to apply receiver

   backpressure, to allow the protocol stack to perform receiver flow

   control.  Depending on how asynchronous I/O works in the platform,

   this could be implemented by having a maximum number of concurrent

   receive callbacks, for example.
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Appendix A.  API sketch in Golang

   The following sketch is a snapshot of an API currently under

   development in Go, available at https://github.com/mami-project/

   postsocket.  The details of the API are still under development; once

   the API definition stabilizes, this will be expanded into prose in a

   future revision of this draft.

// The interface to path information is TBD

type Path interface{}

// An association encapsulates an endpoint pair and the set of paths between them

type Association interface {

    Local() Local

    Remote() Remote

    Paths() []Path

}

// A message together with with metadata needed to send it

type OutMessage struct {

    // The content of this message, as a byte array

    Content []byte

    // The niceness of this message. 0 is highest priority.

    Niceness uint

    // The lifetime of this message. After this duration, the message may expire.

    Lifetime time.Duration

    // Pointers to messages that must be sent before this one.

    Antecedent []*OutMessage

    // True if the message is safe to send such that it may be received multiple 

    Idempotent bool

}

// A message received from a stream

type InMessage []byte

// A Carrier is a transport protocol stack-independent interface for sending and

// receiving messages between an application and a remote endpoint; it is roughly

// analogous to a socket in the present sockets API.

type Carrier interface {

    // Send a byte array on this Carrier as a message with default metadata

    // and no notifications.

    Send(buf []byte) error

    // Send a message on this Carrier. The optional onSent function will be
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    // called when the protocol stack instance has sent the message. The

    // optional onAcked function will be called when the receiver has

    // acknowledged the message. The optional onExpired function will be

    // called if the message’s lifetime expired before the message coult be

    // sent. If the Carrier is not active, attempt to activate the Carrier

    // before sending.

    Sendmsg(msg *OutMessage, onSent func(), onAcked func(), onExpired func()) err

    // Signal that an application is ready to receive messages via a given callba

    // Messages will be given to the callback until it returns false, or until th

    // Carrier is closed.

    Ready(receive func(InMessage) bool) error

    // Retrieve the Association over which this Carrier is running.

    Association() *Association

    // Retrieve the active Transients over which this carrier is running, if acti

    Transients() []Transient

    // Determine whether the Carrier is currently active

    IsActive() bool

    // Ensure that the Carrier is active and ready to send and receive messages.

    // Attempts to bring up at least one Transient.

    Activate(isActive func()) error

    // Terminate the Carrier

    Close()

    // Mutate to a file-like object

    AsStream() io.ReadWriteCloser

    // Attempt to fork a new Carrier for communicating with the same Remote

    Fork() (Carrier, error)

    // Signal that an application is ready to accept forks via a given callback.

    // Forked carriers will be given to the callback until it returns false or

    // until the Carrier is closed.

    Accept(accept func(Carrier) bool) error

}

// Initiate a Carrier from a given Local to a given Remote. Returns a new

// Carrier, which may be bound to an existing or a new Association. The

// initiated Carrier is not yet active.

func Initiate(local Local, remote Remote) (Carrier, error)

type Listener interface {

    // Signal that an application is ready to accept forks via a given callback.
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    // Accept will terminate when the callback returns false, or until the

    // Listener is closed.

    Accept(accept func(Carrier) bool) error

    // Terminate this Listener

    Close()

}

// Create a Listener on a given Local which will pass new Carriers to the

// given channel until that channel is closed.

func Listen(local Local) (Listener, error)

// A Source is a unidirectional, send-only Carrier.

type Source interface {

    // Send a byte array on this Source as a message with default metadata

    // and no notifications.

    Send(buf []byte) error

    // Send a message on this Source. The optional onSent function will be

    // called when the protocol stack instance has sent the message. The

    // optional onAcked function will be called when the receiver has

    // acknowledged the message. The optional onExpired function will be

    // called if the message’s lifetime expired before the message coult be

    // sent. If the Source is not active, attempt to activate the Source

    // before sending.

    Sendmsg(msg *OutMessage, onSent func(), onAcked func(), onExpired func()) err

    // Retrieve the Association over which this Source is running.

    Association() *Association

    // Determine whether the Source is currently active

    IsActive() bool

    // Ensure that the Source is active and ready to send messages.

    // Attempts to bring up at least one Transient.

    Activate() error

    // Terminate the Source

    Close()

}

// Initiate a Source from a given Local to a given Remote. Returns a new

// Source, which may be bound to an existing or a new Association. The

// initiated Source is not yet active.

func NewSource(local Local, remote Remote) (Source, error)

// A Sink is a unidirectional, receive-only Carrier, bound only to a local.

type Sink interface {
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    // Signal that an application is ready to receive messages via a given callba

    // Messages will be given to the callback until it returns false, or until th

    // Sink is closed.

    Ready(receive func(InMessage) bool) error

    // Retrieve the Association over which this Sink is running.

    Association() *Association

    // Terminate the Sink

    Close()

}

// Initiate a Sink on a given Local. Returns a new

// Sink, which may be bound to an existing or a new Association.

func NewSink(local Local) (Sink, error)

// Initiate a Responder on a given Local. For each incoming Message, calls the

// respond function with the Message and a Sink to send replies to. Calls the

// Responder until it returns False, then terminates

func Respond(local Local, respond func(msg InMessage, reply Sink) bool) error

// A local identity

type Local struct {

    // A string identifying an interface or set of interfaces to accept messages 

    Interface string

    // A transport layer port

    Port int

    // A set of zero or more end entity certificates, together with private

    // keys, to identify this application with.

    Certificates []tls.Certificate

}

// Encapsulate a remote identity. Since the contents of a Remote are highly

// dependent on its level of resolution; some examples are below.

type Remote interface {

    // Resolve this Remote Identity to a

    Resolve() ([]RemoteIdentity, error)

    // Returns True if the Remote is completely resolved; i.e., cannot be resol

    Complete() bool

}

// Remote consisting of a URL

type URLRemote struct {

    URL string

}

// Remote encapsulating a name and port number

type NamedEndpointRemote struct {
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    Hostname string

    Port     int

}

// Remote encapsulating an IP address and port number

type IPEndpointRemote struct {

    Address net.IP

    Port    int

}

// Remote encapsulating an IP address and port number, and a set of presented cer

type IPEndpointCertRemote struct {

    Address      net.IP

    Port         int

    Certificates []tls.Certificate

}
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