
TAPS Working Group B. Trammell

Internet-Draft ETH Zurich

Intended status: Informational C. Perkins

Expires: September 9, 2017 University of Glasgow

 T. Pauly

 Apple Inc.

 M. Kuehlewind

 ETH Zurich

 March 08, 2017

Post Sockets, An Abstract Programming Interface for the Transport Layer

 draft-trammell-taps-post-sockets-00

Abstract

 This document describes Post Sockets, an asynchronous abstract

 programming interface for the atomic transmission of messages in an

 inherently multipath environment. Post replaces connections with

 long-lived associations between endpoints, with the possibility to

 cache cryptographic state in order to reduce amortized connection

 latency. We present this abstract interface as an illustration of

 what is possible with present developments in transport protocols

 when freed from the strictures of the current sockets API.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the

 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering

 Task Force (IETF). Note that other groups may also distribute

 working documents as Internet-Drafts. The list of current Internet-

 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months

 and may be updated, replaced, or obsoleted by other documents at any

 time. It is inappropriate to use Internet-Drafts as reference

 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on September 9, 2017.

Copyright Notice

 Copyright (c) 2017 IETF Trust and the persons identified as the

 document authors. All rights reserved.

Trammell, et al. Expires September 9, 2017 [Page 1]

Internet-Draft Post Sockets March 2017

 This document is subject to BCP 78 and the IETF Trust’s Legal

 Provisions Relating to IETF Documents

 (http://trustee.ietf.org/license-info) in effect on the date of

 publication of this document. Please review these documents

 carefully, as they describe your rights and restrictions with respect

 to this document. Code Components extracted from this document must

 include Simplified BSD License text as described in Section 4.e of

 the Trust Legal Provisions and are provided without warranty as

 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 3

 2. Abstractions and Terminology 5

 2.1. Message Carrier . 6

 2.1.1. Listener . 7

 2.1.2. Source . 8

 2.1.3. Sink . 8

 2.1.4. Responder . 8

 2.1.5. Stream . 8

 2.2. Message . 8

 2.2.1. Lifetime and Partial Reliability 9

 2.2.2. Priority . 10

 2.2.3. Dependence . 10

 2.2.4. Idempotence . 10

 2.2.5. Immediacy . 10

 2.2.6. Additional Events 10

 2.3. Association . 11

 2.4. Remote . 11

 2.5. Local . 12

 2.6. Transient . 12

 2.7. Path . 12

 2.8. Policy Context . 13

 3. Abstract Programming Interface 14

 3.1. Example Connection Patterns 15

 3.1.1. Client-Server . 15

 3.1.2. Client-Server with Happy Eyeballs and 0-RTT

 establishment . 16

 3.1.3. Peer to Peer with Network Address Translation 17

 3.1.4. Multicast Receiver 17

 3.2. Implementation Considerations 17

 3.2.1. Message Framing and Deframing 18

 3.2.2. Message Size Limitations 18

 3.2.3. Backpressure . 18

 4. Acknowledgments . 19

 5. References . 19

 5.1. Normative References 19

 5.2. Informative References 19

Trammell, et al. Expires September 9, 2017 [Page 2]

Internet-Draft Post Sockets March 2017

 Appendix A. API sketch in Golang 21

 Authors’ Addresses . 25

1. Introduction

 The BSD Unix Sockets API’s SOCK_STREAM abstraction, by bringing

 network sockets into the UNIX programming model, allowing anyone who

 knew how to write programs that dealt with sequential-access files to

 also write network applications, was a revolution in simplicity. It

 would not be an overstatement to say that this simple API is the

 reason the Internet won the protocol wars of the 1980s. SOCK_STREAM

 is tied to the Transmission Control Protocol (TCP), specified in 1981

 [RFC0793]. TCP has scaled remarkably well over the past three and a

 half decades, but its total ubiquity has hidden an uncomfortable

 fact: the network is not really a file, and stream abstractions are

 too simplistic for many modern application programming models.

 In the meantime, the nature of Internet access, and the variety of

 Internet transport protocols, is evolving. The challenges that new

 protocols and access paradigms present to the sockets API and to

 programming models based on them inspire the design elements of a new

 approach

 Many end-user devices are connected to the Internet via multiple

 interfaces, which suggests it is time to promote the paths by which

 two endpoints are connected to each other to a first-order object.

 While implicit multipath communication is available for these

 multihomed nodes in the present Internet architecture with the

 Multipath TCP extension (MPTCP) [RFC6824], MPTCP was specifically

 designed to hide multipath communication from the application for

 purposes of compatibility. Since many multihomed nodes are connected

 to the Internet through access paths with widely different properties

 with respect to bandwidth, latency and cost, adding explicit path

 control to MPTCP’s API would be useful in many situations.

 Applications also need control over cooperation with path elements

 via mechanisms such as that proposed by the Path Layer UDP Substrate

 (PLUS) effort (see [I-D.trammell-plus-statefulness] and

 [I-D.trammell-plus-abstract-mech]).

 Another trend straining the traditional layering of the transport

 stack associated with the SOCK_STREAM interface is the widespread

 interest in ubiquitous deployment of encryption to guarantee

 confidentiality, authenticity, and integrity, in the face of

 pervasive surveillance [RFC7258]. Layering the most widely deployed

 encryption technology, Transport Layer Security (TLS), strictly atop

 TCP (i.e., via a TLS library such as OpenSSL that uses the sockets

 API) requires the encryption-layer handshake to happen after the

 transport-layer handshake, which increases connection setup latency

Trammell, et al. Expires September 9, 2017 [Page 3]

Internet-Draft Post Sockets March 2017

 on the order of one or two round-trip times, an unacceptable delay

 for many applications. Integrating cryptographic state setup and

 maintenance into the path abstraction naturally complements efforts

 in new protocols (e.g. QUIC [I-D.ietf-quic-transport]) to mitigate

 this strict layering.

 To meet these challenges, we present the Post-Socket Application

 Programming Interface (API), described in detail in this work. Post

 is designed to be language, transport protocol, and architecture

 independent, allowing applications to be written to a common abstract

 interface, easily ported among different platforms, and used even in

 environments where transport protocol selection may be done

 dynamically, as proposed in the IETF’s Transport Services working

 group.

 Post replaces the traditional SOCK_STREAM abstraction with an Message

 abstraction, which can be seen as a generalization of the Stream

 Control Transmission Protocol’s [RFC4960] SOCK_SEQPACKET service.

 Messages are sent and received on Carriers, which logically group

 Messages for transmission and reception. For backward compatibility,

 these Carriers can also be opened as Streams, presenting a file-like

 interface to the network as with SOCK_STREAM.

 Post replaces the notions of a socket address and connected socket

 with an Association with a remote endpoint via set of Paths.

 Implementation and wire format for transport protocol(s) implementing

 the Post API are explicitly out of scope for this work; these

 abstractions need not map directly to implementation-level concepts,

 and indeed with various amounts of shimming and glue could be

 implemented with varying success atop any sufficiently flexible

 transport protocol.

 The key features of Post as compared with the existing sockets API

 are:

 o Explicit Message orientation, with framing and atomicity

 guarantees for Message transmission.

 o Asynchronous reception, allowing all receiver-side interactions to

 be event-driven.

 o Explicit support for multistreaming and multipath transport

 protocols and network architectures.

 o Long-lived Associations, whose lifetimes may not be bound to

 underlying transport connections. This allows associations to

 cache state and cryptographic key material to enable fast

 resumption of communication, and for the implementation of the API

Trammell, et al. Expires September 9, 2017 [Page 4]

Internet-Draft Post Sockets March 2017

 to explicitly take care of connection establishment mechanics such

 as connection racing [RFC6555] and peer-to-peer rendezvous

 [RFC5245].

 o Transport protocol stack independence, allowing applications to be

 written in terms of the semantics best for the application’s own

 design, separate from the protocol(s) used on the wire to achieve

 them. This enables applications written to a single API to make

 use of transport protocols in terms of the features they provide,

 as in [I-D.ietf-taps-transports].

 This work is the synthesis of many years of Internet transport

 protocol research and development. It is inspired by concepts from

 the Stream Control Transmission Protocol (SCTP) [RFC4960], TCP Minion

 [I-D.iyengar-minion-protocol], and MinimaLT[MinimaLT], among other

 transport protocol modernization efforts. We present Post Sockets as

 an illustration of what is possible with present developments in

 transport protocols when freed from the strictures of the current

 sockets API. While much of the work for building parts of the

 protocols needed to implement Post are already ongoing in other IETF

 working groups (e.g. MPTCP, QUIC, TLS), we argue that an abstract

 programming interface unifying access all these efforts is necessary

 to fully exploit their potential.

2. Abstractions and Terminology

Trammell, et al. Expires September 9, 2017 [Page 5]

Internet-Draft Post Sockets March 2017

 +===============+

 | Message |

 +===============+

 | ^ initiate() listen()

 send() ready() | |

 V | V V

 +======================+ accept() +============+

 | |<---+------| |

 | Carrier | | | Listener |

 | |----+ | |

 +======================+ +============+

 | | |

 | | |

 | +=======================+

 | | | durable end-to-end

 | | Association | state via many paths/

 | | | policies and prefs

 | +=======================+

 | | |

 | | |

 | +=========+ +=========+

 | | Local | | Remote |

 | +=========+ +=========+

 | | |

 +===========+ +==========+

 ephemeral | | | |

 transport & | Transient |------->| Path | properties of

 crypto state | | | | address pair

 +===========+ +==========+

 Figure 1: Abstractions and relationships in Post Sockets

 Post is based on a small set of abstractions, centered around a

 Message Carrier as the entry point for an application to the

 networking API. The relationships among them are shown in

 Figure Figure 1 and detailed in this section.

2.1. Message Carrier

 A Message Carrier (or simply Carrier) is a transport protocol stack-

 independent interface for sending and receiving messages between an

 application and a remote endpoint; it is roughly analogous to a

 socket in the present sockets API.

 Sending a Message over a Carrier is driven by the application, while

 receipt is driven by the arrival of the last packet that allows the

 Message to be assembled, decrypted, and passed to the application.

Trammell, et al. Expires September 9, 2017 [Page 6]

Internet-Draft Post Sockets March 2017

 Receipt is therefore asynchronous; given the different models for

 asynchronous I/O and concurrency supported by different platforms, it

 may be implemented in any number of ways. The abstract API provides

 only for a way for the application to register how it wants to handle

 incoming messages.

 All the Messages sent to a Message Carrier will be received on the

 corresponding Message Carrier at the remote endpoint, though not

 necessarily reliably or in order, depending on Message properties and

 the underlying transport protocol stack.

 A Message Carrier that is backed by current transport protocol stack

 state (such as a TCP connection; see Section 2.6) is said to be

 "active": messages can be sent and received over it. A Message

 Carrier can also be "dormant": there is long-term state associated

 with it (via the underlying Association; see Section 2.3), and it may

 be able to reactivated, but messages cannot be sent and received

 immediately.

 If supported by the underlying transport protocol stack, a Message

 Carrier may be forked: creating a new Message Carrier associated with

 a new Message Carrier at the same remote endpoint. The semantics of

 the usage of multiple Message Carriers based on the same Association

 are application-specific. When a Message Carrier is forked, its

 corresponding Message Carrier at the remote endpoint receives a fork

 request, which it must accept in order to fully establish the new

 carrier. Multiple message carriers between endpoints are implemented

 differently by different transport protocol stacks, either using

 multiple separate transport-layer connections, or using multiple

 streams of multistreaming transport protocols.

 To exchange messages with a given remote endpoint, an application may

 initiate a Message Carrier given its remote (see Section 2.4 and

 local (see Section 2.5) identities; this is an equivalent to an

 active open. There are five special cases of Message Carriers, as

 well, supporting different initiation and interaction patterns,

 defined in the subsections below.

2.1.1. Listener

 A Listener is a special case of Message Carrier which only responds

 to requests to create a new Carrier from a remote endpoint, analogous

 to a server or listening socket in the present sockets API. Instead

 of being bound to a specific remote endpoint, it is bound only to a

 local identity; however, its interface for accepting fork requests is

 identical to that for fully fledged Message Carriers.

Trammell, et al. Expires September 9, 2017 [Page 7]

Internet-Draft Post Sockets March 2017

2.1.2. Source

 A Source is a special case of Message Carrier over which messages can

 only be sent, intended for unidirectional applications such as

 multicast transmitters. Sources cannot be forked, and need not

 accept forks.

2.1.3. Sink

 A Sink is a special case of Message Carrier over which messages can

 only be received, intended for unidirectional applications such as

 multicast receivers. Sinks cannot be forked, and need not accept

 forks.

2.1.4. Responder

 A Responder is a special case of Message Carrier which may receive

 messages from many remote sources, for cases in which an application

 will only ever send Messages in reply back to the source from which a

 Message was received. This is a common implementation pattern for

 servers in client-server applications. A Responder’s receiver gets a

 Message, as well as a Source to send replies to. Responders cannot

 be forked, and need not accept forks.

2.1.5. Stream

 A Message Carrier may be irreversibly morphed into a Stream, in order

 to provide a strictly ordered, reliable service as with SOCK_STREAM.

 Morphing a Message Carrier into a Stream should return a "file-like

 object" as appropriate for the platform implementing the API.

 Typically, both ends of a communication using a stream service will

 morph their respective Message Carriers independently before sending

 any Messages.

 Writing a byte to a Stream will cause it to be received by the

 remote, in order, or will cause an error condition and termination of

 the stream if the byte cannot be delivered. Due to the strong

 sequential dependence on a stream, streams must always be reliable

 and ordered. A Message Carrier may only be morphed to a Stream if it

 uses transport protocol stack that provides reliable, ordered

 service, and only before it is used to send a Message.

2.2. Message

 A Message is an atomic unit of communication between applications. A

 Message that cannot be delivered in its entirety within the

 constraints of the network connectivity and the requirements of the

 application is not delivered at all.

Trammell, et al. Expires September 9, 2017 [Page 8]

Internet-Draft Post Sockets March 2017

 Messages can represent both relatively small structures, such as

 requests in a request/response protocol such as HTTP; as well as

 relatively large structures, such as files of arbitrary size in a

 filesystem.

 In the general case, there is no mapping between a Message and

 packets sent by the underlying protocol stack on the wire: the

 transport protocol may freely segment messages and/or combine

 messages into packets. However, a message may be marked as

 immediate, which will cause it to be sent in a single packet, if it

 will fit.

 This implies that both the sending and receiving endpoint, whether in

 the application layer or the transport layer, must guarantee storage

 for the full size of an Message.

 Messages are sent over and received from Message Carriers (see

 Section 2.1).

 On sending, Messages have properties that allow the application to

 specify its requirements with respect to reliability, ordering,

 priority, idempotence, and immediacy; these are described in detail

 below. Messages may also have arbitrary properties which provide

 additional information to the underlying transport protocol stack on

 how they should be handled, in a protocol-specific way. These stacks

 may also deliver or set properties on received messages, but in the

 general case a received messages contains only a sequence of ordered

 bytes.

2.2.1. Lifetime and Partial Reliability

 A Message may have a "lifetime" - a wallclock duration before which

 the Message must be available to the application layer at the remote

 end. If a lifetime cannot be met, the Message is discarded as soon

 as possible. Messages without lifetimes are sent reliably if

 supported by the transport protocol stack. Lifetimes are also used

 to prioritize Message delivery.

 There is no guarantee that a Message will not be delivered after the

 end of its lifetime; for example, a Message delivered over a strictly

 reliable transport will be delivered regardless of its lifetime.

 Depending on the transport protocol stack used to transmit the

 message, these lifetimes may also be signaled to path elements by the

 underlying transport, so that path elements that realize a lifetime

 cannot be met can discard frames containing the Messages instead of

 forwarding them.

Trammell, et al. Expires September 9, 2017 [Page 9]

Internet-Draft Post Sockets March 2017

2.2.2. Priority

 Messages have a "niceness" - a priority among other messages sent

 over the same Message Carrier in an unbounded hierarchy most

 naturally represented as a non-negative integer. By default,

 Messages are in niceness class 0, or highest priority. Niceness

 class 1 Messages will yield to niceness class 0 Messages sent over

 the same Carrier, class 2 to class 1, and so on. Niceness may be

 translated to a priority signal for exposure to path elements (e.g.

 DSCP codepoint) to allow prioritization along the path as well as at

 the sender and receiver. This inversion of normal schemes for

 expressing priority has a convenient property: priority increases as

 both niceness and lifetime decrease. A Message may have both a

 niceness and a lifetime - Messages with higher niceness classes will

 yield to lower classes if resource constraints mean only one can meet

 the lifetime.

2.2.3. Dependence

 A Message may have "antecedents" - other Messages on which it

 depends, which must be delivered before it (the "successor") is

 delivered. The sending transport uses deadlines, niceness, and

 antecedents, along with information about the properties of the Paths

 available, to determine when to send which Message down which Path.

2.2.4. Idempotence

 A sending application may mark a Message as "idempotent" to signal to

 the underlying transport protocol stack that its application

 semantics make it safe to send in situations that may cause it to be

 received more than once (i.e., for 0-RTT session resumption as in TCP

 Fast Open, TLS 1.3, and QUIC).

2.2.5. Immediacy

 A sending application may mark a Message as "immediate" to signal to

 the underlying transport protocol stack that its application

 semantics require it to be placed in a single packet, on its own,

 instead of waiting to be combined with other messages or parts

 thereof (i.e., for media transports and interactive sessions with

 small messages).

2.2.6. Additional Events

 Senders may also be asynchronously notified of three events on

 Messages they have sent: that the Message has been transmitted, that

 the Message has been acknowledged by the receiver, or that the

Trammell, et al. Expires September 9, 2017 [Page 10]

Internet-Draft Post Sockets March 2017

 Message has expired before transmission/acknowledgment. Not all

 transport protocol stacks will support all of these events.

2.3. Association

 An Association contains the long-term state necessary to support

 communications between a Local (see Section 2.5) and a Remote (see

 Section 2.4) endpoint, such as cryptographic session resumption

 parameters or rendezvous information; information about the policies

 constraining the selection of transport protocols and local

 interfaces to create Transients (see Section 2.6) to carry Messages;

 and information about the paths through the network available

 available between them (see Section 2.7).

 All Message Carriers are bound to an Association. New Message

 Carriers will reuse an Association if they can be carried from the

 same Local to the same Remote over the same Paths; this re-use of an

 Association may implies the creation of a new Transient.

2.4. Remote

 A Remote represents information required to establish and maintain a

 connection with the far end of an Association: name(s), address(es),

 and transport protocol parameters that can be used to establish a

 Transient; transport protocols to use; information about public keys

 or certificate authorities used to identify the remote on connection

 establishment; and so on. Each Association is associated with a

 single Remote, either explicitly by the application (when created by

 the initiation of a Message Carrier) or a Listener (when created by

 forking a Message Carrier on passive open).

 A Remote may be resolved, which results in zero or more Remotes with

 more specific information. For example, an application may want to

 establish a connection to a website identified by a URL

 https://www.example.com. This URL would be wrapped in a Remote and

 passed to a call to initiate a Message Carrier. The first pass

 resolution might parse the URL, decomposing it into a name, a

 transport port, and a transport protocol to try connecting with. A

 second pass resolution would then look up network-layer addresses

 associated with that name through DNS, and store any certificates

 available from DANE. Once a Remote has been resolved to the point

 that a transport protocol stack can use it to create a Transient, it

 is considered fully resolved.

Trammell, et al. Expires September 9, 2017 [Page 11]

Internet-Draft Post Sockets March 2017

2.5. Local

 A Local represents all the information about the local endpoint

 necessary to establish an Association or a Listener: interface, port,

 and transport protocol stack information, as well as certificates and

 associated private keys to use to identify this endpoint.

2.6. Transient

 A Transient represents a binding between a Message Carrier and the

 instance of the transport protocol stack that implements it. As an

 Association contains long-term state for communications between two

 endpoints, a Transient contains ephemeral state for a single

 transport protocol over a single Path at a given point in time.

 A Message Carrier may be served by multiple Transients at once, e.g.

 when implementing multipath communication such that the separate

 paths are exposed to the API by the underlying transport protocol

 stack. Each Transient serves only one Message Carrier, although

 multiple Transients may share the same underlying protocol stack;

 e.g. when multiplexing Carriers over streams in a multistreaming

 protocol.

 Transients are generally not exposed by the API to the application,

 though they may be accessible for debugging and logging purposes.

2.7. Path

 A Path represents information about a single path through the network

 used by an Association, in terms of source and destination network

 and transport layer addresses within an addressing context, and the

 provisioning domain [RFC7556] of the local interface. This

 information may be learned through a resolution, discovery, or

 rendezvous process (e.g. DNS, ICE), by measurements taken by the

 transport protocol stack, or by some other path information discovery

 mechanism. It is used by the transport protocol stack to maintain

 and/or (re-)establish communications for the Association.

 The set of available properties is a function of the transport

 protocol stacks in use by an association. However, the following

 core properties are generally useful for applications and transport

 layer protocols to choose among paths for specific Messages:

 o Maximum Transmission Unit (MTU): the maximum size of an Message’s

 payload (subtracting transport, network, and link layer overhead)

 which will likely fit into a single frame. Derived from signals

 sent by path elements, where available, and/or path MTU discovery

 processes run by the transport layer.

Trammell, et al. Expires September 9, 2017 [Page 12]

Internet-Draft Post Sockets March 2017

 o Latency Expectation: expected one-way delay along the Path.

 Generally provided by inline measurements performed by the

 transport layer, as opposed to signaled by path elements.

 o Loss Probability Expectation: expected probability of a loss of

 any given single frame along the Path. Generally provided by

 inline measurements performed by the transport layer, as opposed

 to signaled by path elements.

 o Available Data Rate Expectation: expected maximum data rate along

 the Path. May be derived from passive measurements by the

 transport layer, or from signals from path elements.

 o Reserved Data Rate: Committed, reserved data rate for the given

 Association along the Path. Requires a bandwidth reservation

 service in the underlying transport protocol stack.

 o Path Element Membership: Identifiers for some or all nodes along

 the path, depending on the capabilities of the underlying network

 layer protocol to provide this.

 Path properties are generally read-only. MTU is a property of the

 underlying link-layer technology on each link in the path; latency,

 loss, and rate expectations are dynamic properties of the network

 configuration and network traffic conditions; path element membership

 is a function of network topology. In an explicitly multipath

 architecture, application and transport layer requirements can be met

 by having multiple paths with different properties to select from.

 Transport protocol stacks can also provide signaling to devices along

 the path, but this signaling is derived from information provided to

 the Message abstraction.

2.8. Policy Context

 A Local and a Remote is not necessarily enough to establish a Message

 Carrier between two endpoints. For instance, an application may

 require or prefer certain transport features (see

 [I-D.ietf-taps-transports]) in the transport protocol stacks used by

 the Transients underlying the Carrier; it may also prefer Paths over

 one interface to those over another (e.g. WiFi access over LTE when

 roaming on a foreign LTE network, due to cost). These policies are

 expressed in a Policy Context bound to an Association. Multiple

 policy contexts may be active at once; e.g. a system Policy Context

 expressing administrative preferences about interface and protocol

 selection, an application Policy Context expressing transport feature

 information. The expression of policy contexts and the resolution of

 conflicts among Policy Contexts is currently implementation-specific;

Trammell, et al. Expires September 9, 2017 [Page 13]

Internet-Draft Post Sockets March 2017

 note that these are equivalent to the Policy API in the NEAT

 architeture [NEAT].

3. Abstract Programming Interface

 We now turn to the design of an abstract programming interface to

 provide a simple interface to Post’s abstractions, constrained by the

 following design principles:

 o Flexibility is paramount. So is simplicity. Applications must be

 given as many controls and as much information as they may need,

 but they must be able to ignore controls and information

 irrelevant to their operation. This implies that the "default"

 interface must be no more complicated than BSD sockets, and must

 do something reasonable.

 o Reception is an inherently asynchronous activity. While the API

 is designed to be as platform-independent as possible, one key

 insight it is based on is that an Message receiver’s behavior in a

 packet-switched network is inherently asynchronous, driven by the

 receipt of packets, and that this asynchronicity must be reflected

 in the API. The actual implementation of receive and event

 handling will need to be aligned to the method a given platform

 provides for asynchronous I/O.

 o A new API cannot be bound to a single transport protocol and

 expect wide deployment. As the API is transport-independent and

 may support runtime transport selection, it must impose the

 minimum possible set of constraints on its underlying transports,

 though some API features may require underlying transport features

 to work optimally. It must be possible to implement Post over

 vanilla TCP in the present Internet architecture.

 The API we design from these principles is centered around a Carrier,

 which can be created actively via initiate() or passively via a

 listen(); the latter creates a Listener from which new Carriers can

 be accept()ed. Messages may be created explicitly and passed to this

 Carrier, or implicitly through a simplified interface which uses

 default message properties (reliable transport without priority or

 deadline, which guarantees ordered delivery over a single Carrier

 when the underlying transport protocol stack supports it).

 The current state of API development is illustrated as a set of

 interfaces and function prototypes in the Go programming language in

 Appendix A; future revisions of this document will give more a more

 abstract specification of the API as development completes.

Trammell, et al. Expires September 9, 2017 [Page 14]

Internet-Draft Post Sockets March 2017

3.1. Example Connection Patterns

 Here, we illustrate the usage of the API outlined in Appendix A for

 common connection patterns. Note that error handling is ignored in

 these illustrations for ease of reading.

3.1.1. Client-Server

 Here’s an example client-server application. The server echoes

 messages. The client sends a message and prints what it receives.

 The client in Figure 2 connects, sends a message, and sets up a

 receiver to print messages received in response. The carrier is

 inactive after the Initiate() call; the Send() call blocks until the

 carrier can be activated.

 // connect to a server given a remote

 func sayHello() {

 carrier := Initiate(local, remote)

 carrier.Send([]byte("Hello!"))

 carrier.Ready(func (msg InMessage) {

 fmt.Println(string([]byte(msg))

 return false

 })

 carrier.Close()

 }

 Figure 2: Example client

 The server in Figure 3 creates a Listener, which accepts Carriers and

 passes them to a server. The server echos the content of each

 message it receives.

Trammell, et al. Expires September 9, 2017 [Page 15]

Internet-Draft Post Sockets March 2017

 // run a server for a specific carrier, echo all its messages

 func runMyServerOn(carrier Carrier) {

 carrier.Ready(func (msg InMessage) {

 carrier.Send(msg)

 })

 }

 // accept connections forever, spawn servers for them

 func acceptConnections() {

 listener := Listen(local)

 listener.Accept(func(carrier Carrier) bool {

 go runMyServerOn(carrier)

 return true

 })

 }

 Figure 3: Example server

 The Responder allows the server to be significantly simplified, as

 shown in Figure 4.

 func echo(msg InMessage, reply Sink) {

 reply.Send(msg)

 }

 Respond(local, echo)

 Figure 4: Example responder

3.1.2. Client-Server with Happy Eyeballs and 0-RTT establishment

 The fundamental design of a client need not change at all for happy

 eyeballs [RFC6555] (selection of multiple potential protocol stacks

 through connection racing); this is handled by the Post Sockets

 implementation automatically. If this connection racing is to use

 0-RTT data (i.e., as provided by TCP Fast Open [RFC7413], the client

 must mark the outgoing message as idempotent.

Trammell, et al. Expires September 9, 2017 [Page 16]

Internet-Draft Post Sockets March 2017

// connect to a server given a remote

func sayHelloQuickly() {

 carrier := Initiate(local, remote)

 carrier.SendMsg(OutMessage{Content: []byte("Hello!"), Idempotent: true}, nil,

 carrier.Ready(func (msg InMessage) {

 fmt.Println(string([]byte(msg)))

 return false

 })

 carrier.Close()

}

3.1.3. Peer to Peer with Network Address Translation

 In the client-server examples shown above, the Remote given to the

 Initiate call refers to the name and port of the server to connect

 to. This need not be the case, however; a Remote may also refer to

 an identity and a rendezvous point for rendezvous as in ICE

 [RFC5245]. Here, each peer does its own Initiate call

 simultaneously, and the result on each side is a Carrier attached to

 an appropriate Association.

3.1.4. Multicast Receiver

 A multicast receiver is implemented using a Sink attached to a Local

 encapsulating a multicast address on which to receive multicast

 datagrams. The following example prints messages received on the

 multicast address forever.

 func receiveMulticast() {

 sink = NewSink(local)

 sink.Ready(func (msg InMessage) {

 fmt.Println(string([]byte(msg)))

 return true

 })

 }

3.2. Implementation Considerations

 Here we discuss an incomplete list of API implementation

 considerations that have arisen with experimentation with the

 prototype in Appendix A.

Trammell, et al. Expires September 9, 2017 [Page 17]

Internet-Draft Post Sockets March 2017

3.2.1. Message Framing and Deframing

 An obvious goal of Post Sockets is interoperability with non-Post

 Sockets endpoints: a Post Sockets endpoint using a given protocol

 stack must be able to communicate with another endpoint using the

 same protocol stack, but not using Post Sockets. This implies that

 the underlying transport protocol stack must support object framing,

 in order to delimit Messages carried by protocol stacks that are not

 themselves message-oriented.

 Another goal of Post Sockets is to work over unmodified TCP. We

 could simply define a Message Carrier over TCP to support only stream

 morphing, but this would fall far short of our goal to transport

 independence. Another approach is to recognize that almost every

 protocol using TCP already has its own message delimiters, and to

 allow the receiver of a Message to provide a deframing primitive to

 the API. Experimentation with the best way to achieve this within

 Post Sockets is underway.

3.2.2. Message Size Limitations

 Ideally, Messages can be of infinite size. However, protocol stacks

 and protocol stack implementations may impose their own limits on

 message sizing; For example, SCTP [RFC4960] and TLS

 [I-D.ietf-tls-tls13] impose record size limitations of 64kB and 16kB,

 respectively. Message sizes may also be limited by the available

 buffer at the receiver, since a Message must be fully assembled by

 the transport layer before it can be passed on to the application

 layer. Since not every transport protocol stack implements the

 signaling necessary to negotiate or expose message size limitations,

 these are currently configured out of band, and are probably best

 exposed through the policy context.

 A truly infinite message service - e.g. large file transfer where

 both endpoints have committed persistent storage to the message - is

 probably best realized as a layer above Post Sockets, and may be

 added as a new type of Message Carrier to a future revision of this

 document.

3.2.3. Backpressure

 Regardless of how asynchronous reception is implemented, it is

 important for an application to be able to apply receiver

 backpressure, to allow the protocol stack to perform receiver flow

 control. Depending on how asynchronous I/O works in the platform,

 this could be implemented by having a maximum number of concurrent

 receive callbacks, for example.

Trammell, et al. Expires September 9, 2017 [Page 18]

Internet-Draft Post Sockets March 2017

4. Acknowledgments

 Many thanks to Laurent Chuat and Jason Lee at the Network Security

 Group at ETH Zurich for contributions to the initial design of Post

 Sockets. Thanks to Joe Hildebrand, Martin Thomson, and Michael Welzl

 for their feedback, as well as the attendees of the Post Sockets

 workshop in February 2017 in Zurich for the discussions, which have

 improved the design described herein.

 This work is partially supported by the European Commission under

 Horizon 2020 grant agreement no. 688421 Measurement and Architecture

 for a Middleboxed Internet (MAMI), and by the Swiss State Secretariat

 for Education, Research, and Innovation under contract no. 15.0268.

 This support does not imply endorsement.

5. References

5.1. Normative References

 [I-D.ietf-taps-transports]

 Fairhurst, G., Trammell, B., and M. Kuehlewind, "Services

 provided by IETF transport protocols and congestion

 control mechanisms", draft-ietf-taps-transports-14 (work

 in progress), December 2016.

5.2. Informative References

 [I-D.ietf-quic-transport]

 Iyengar, J. and M. Thomson, "QUIC: A UDP-Based Multiplexed

 and Secure Transport", draft-ietf-quic-transport-01 (work

 in progress), January 2017.

 [I-D.ietf-tls-tls13]

 Rescorla, E., "The Transport Layer Security (TLS) Protocol

 Version 1.3", draft-ietf-tls-tls13-18 (work in progress),

 October 2016.

 [I-D.iyengar-minion-protocol]

 Jana, J., Cheshire, S., and J. Graessley, "Minion - Wire

 Protocol", draft-iyengar-minion-protocol-02 (work in

 progress), October 2013.

 [I-D.trammell-plus-abstract-mech]

 Trammell, B., "Abstract Mechanisms for a Cooperative Path

 Layer under Endpoint Control", draft-trammell-plus-

 abstract-mech-00 (work in progress), September 2016.

Trammell, et al. Expires September 9, 2017 [Page 19]

Internet-Draft Post Sockets March 2017

 [I-D.trammell-plus-statefulness]

 Kuehlewind, M., Trammell, B., and J. Hildebrand,

 "Transport-Independent Path Layer State Management",

 draft-trammell-plus-statefulness-02 (work in progress),

 December 2016.

 [MinimaLT]

 Petullo, W., Zhang, X., Solworth, J., Bernstein, D., and

 T. Lange, "MinimaLT, Minimal-latency Networking Through

 Better Security", May 2013.

 [NEAT] Grinnemo, K-J., Tom Jones, ., Gorry Fairhurst, ., David

 Ros, ., Anna Brunstrom, ., and . Per Hurtig, "Towards a

 Flexible Internet Transport Layer Architecture", June

 2016.

 [RFC0793] Postel, J., "Transmission Control Protocol", STD 7,

 RFC 793, DOI 10.17487/RFC0793, September 1981,

 <http://www.rfc-editor.org/info/rfc793>.

 [RFC4960] Stewart, R., Ed., "Stream Control Transmission Protocol",

 RFC 4960, DOI 10.17487/RFC4960, September 2007,

 <http://www.rfc-editor.org/info/rfc4960>.

 [RFC5245] Rosenberg, J., "Interactive Connectivity Establishment

 (ICE): A Protocol for Network Address Translator (NAT)

 Traversal for Offer/Answer Protocols", RFC 5245,

 DOI 10.17487/RFC5245, April 2010,

 <http://www.rfc-editor.org/info/rfc5245>.

 [RFC6555] Wing, D. and A. Yourtchenko, "Happy Eyeballs: Success with

 Dual-Stack Hosts", RFC 6555, DOI 10.17487/RFC6555, April

 2012, <http://www.rfc-editor.org/info/rfc6555>.

 [RFC6824] Ford, A., Raiciu, C., Handley, M., and O. Bonaventure,

 "TCP Extensions for Multipath Operation with Multiple

 Addresses", RFC 6824, DOI 10.17487/RFC6824, January 2013,

 <http://www.rfc-editor.org/info/rfc6824>.

 [RFC7258] Farrell, S. and H. Tschofenig, "Pervasive Monitoring Is an

 Attack", BCP 188, RFC 7258, DOI 10.17487/RFC7258, May

 2014, <http://www.rfc-editor.org/info/rfc7258>.

 [RFC7413] Cheng, Y., Chu, J., Radhakrishnan, S., and A. Jain, "TCP

 Fast Open", RFC 7413, DOI 10.17487/RFC7413, December 2014,

 <http://www.rfc-editor.org/info/rfc7413>.

Trammell, et al. Expires September 9, 2017 [Page 20]

Internet-Draft Post Sockets March 2017

 [RFC7556] Anipko, D., Ed., "Multiple Provisioning Domain

 Architecture", RFC 7556, DOI 10.17487/RFC7556, June 2015,

 <http://www.rfc-editor.org/info/rfc7556>.

Appendix A. API sketch in Golang

 The following sketch is a snapshot of an API currently under

 development in Go, available at https://github.com/mami-project/

 postsocket. The details of the API are still under development; once

 the API definition stabilizes, this will be expanded into prose in a

 future revision of this draft.

// The interface to path information is TBD

type Path interface{}

// An association encapsulates an endpoint pair and the set of paths between them

type Association interface {

 Local() Local

 Remote() Remote

 Paths() []Path

}

// A message together with with metadata needed to send it

type OutMessage struct {

 // The content of this message, as a byte array

 Content []byte

 // The niceness of this message. 0 is highest priority.

 Niceness uint

 // The lifetime of this message. After this duration, the message may expire.

 Lifetime time.Duration

 // Pointers to messages that must be sent before this one.

 Antecedent []*OutMessage

 // True if the message is safe to send such that it may be received multiple

 Idempotent bool

}

// A message received from a stream

type InMessage []byte

// A Carrier is a transport protocol stack-independent interface for sending and

// receiving messages between an application and a remote endpoint; it is roughly

// analogous to a socket in the present sockets API.

type Carrier interface {

 // Send a byte array on this Carrier as a message with default metadata

 // and no notifications.

 Send(buf []byte) error

 // Send a message on this Carrier. The optional onSent function will be

Trammell, et al. Expires September 9, 2017 [Page 21]

Internet-Draft Post Sockets March 2017

 // called when the protocol stack instance has sent the message. The

 // optional onAcked function will be called when the receiver has

 // acknowledged the message. The optional onExpired function will be

 // called if the message’s lifetime expired before the message coult be

 // sent. If the Carrier is not active, attempt to activate the Carrier

 // before sending.

 Sendmsg(msg *OutMessage, onSent func(), onAcked func(), onExpired func()) err

 // Signal that an application is ready to receive messages via a given callba

 // Messages will be given to the callback until it returns false, or until th

 // Carrier is closed.

 Ready(receive func(InMessage) bool) error

 // Retrieve the Association over which this Carrier is running.

 Association() *Association

 // Retrieve the active Transients over which this carrier is running, if acti

 Transients() []Transient

 // Determine whether the Carrier is currently active

 IsActive() bool

 // Ensure that the Carrier is active and ready to send and receive messages.

 // Attempts to bring up at least one Transient.

 Activate(isActive func()) error

 // Terminate the Carrier

 Close()

 // Mutate to a file-like object

 AsStream() io.ReadWriteCloser

 // Attempt to fork a new Carrier for communicating with the same Remote

 Fork() (Carrier, error)

 // Signal that an application is ready to accept forks via a given callback.

 // Forked carriers will be given to the callback until it returns false or

 // until the Carrier is closed.

 Accept(accept func(Carrier) bool) error

}

// Initiate a Carrier from a given Local to a given Remote. Returns a new

// Carrier, which may be bound to an existing or a new Association. The

// initiated Carrier is not yet active.

func Initiate(local Local, remote Remote) (Carrier, error)

type Listener interface {

 // Signal that an application is ready to accept forks via a given callback.

Trammell, et al. Expires September 9, 2017 [Page 22]

Internet-Draft Post Sockets March 2017

 // Accept will terminate when the callback returns false, or until the

 // Listener is closed.

 Accept(accept func(Carrier) bool) error

 // Terminate this Listener

 Close()

}

// Create a Listener on a given Local which will pass new Carriers to the

// given channel until that channel is closed.

func Listen(local Local) (Listener, error)

// A Source is a unidirectional, send-only Carrier.

type Source interface {

 // Send a byte array on this Source as a message with default metadata

 // and no notifications.

 Send(buf []byte) error

 // Send a message on this Source. The optional onSent function will be

 // called when the protocol stack instance has sent the message. The

 // optional onAcked function will be called when the receiver has

 // acknowledged the message. The optional onExpired function will be

 // called if the message’s lifetime expired before the message coult be

 // sent. If the Source is not active, attempt to activate the Source

 // before sending.

 Sendmsg(msg *OutMessage, onSent func(), onAcked func(), onExpired func()) err

 // Retrieve the Association over which this Source is running.

 Association() *Association

 // Determine whether the Source is currently active

 IsActive() bool

 // Ensure that the Source is active and ready to send messages.

 // Attempts to bring up at least one Transient.

 Activate() error

 // Terminate the Source

 Close()

}

// Initiate a Source from a given Local to a given Remote. Returns a new

// Source, which may be bound to an existing or a new Association. The

// initiated Source is not yet active.

func NewSource(local Local, remote Remote) (Source, error)

// A Sink is a unidirectional, receive-only Carrier, bound only to a local.

type Sink interface {

Trammell, et al. Expires September 9, 2017 [Page 23]

Internet-Draft Post Sockets March 2017

 // Signal that an application is ready to receive messages via a given callba

 // Messages will be given to the callback until it returns false, or until th

 // Sink is closed.

 Ready(receive func(InMessage) bool) error

 // Retrieve the Association over which this Sink is running.

 Association() *Association

 // Terminate the Sink

 Close()

}

// Initiate a Sink on a given Local. Returns a new

// Sink, which may be bound to an existing or a new Association.

func NewSink(local Local) (Sink, error)

// Initiate a Responder on a given Local. For each incoming Message, calls the

// respond function with the Message and a Sink to send replies to. Calls the

// Responder until it returns False, then terminates

func Respond(local Local, respond func(msg InMessage, reply Sink) bool) error

// A local identity

type Local struct {

 // A string identifying an interface or set of interfaces to accept messages

 Interface string

 // A transport layer port

 Port int

 // A set of zero or more end entity certificates, together with private

 // keys, to identify this application with.

 Certificates []tls.Certificate

}

// Encapsulate a remote identity. Since the contents of a Remote are highly

// dependent on its level of resolution; some examples are below.

type Remote interface {

 // Resolve this Remote Identity to a

 Resolve() ([]RemoteIdentity, error)

 // Returns True if the Remote is completely resolved; i.e., cannot be resol

 Complete() bool

}

// Remote consisting of a URL

type URLRemote struct {

 URL string

}

// Remote encapsulating a name and port number

type NamedEndpointRemote struct {

Trammell, et al. Expires September 9, 2017 [Page 24]

Internet-Draft Post Sockets March 2017

 Hostname string

 Port int

}

// Remote encapsulating an IP address and port number

type IPEndpointRemote struct {

 Address net.IP

 Port int

}

// Remote encapsulating an IP address and port number, and a set of presented cer

type IPEndpointCertRemote struct {

 Address net.IP

 Port int

 Certificates []tls.Certificate

}

Authors’ Addresses

 Brian Trammell

 ETH Zurich

 Gloriastrasse 35

 8092 Zurich

 Switzerland

 Email: ietf@trammell.ch

 Colin Perkins

 University of Glasgow

 School of Computing Science

 Glasgow G12 8QQ

 United Kingdom

 Email: csp@csperkins.org

 Tommy Pauly

 Apple Inc.

 1 Infinite Loop

 Cupertino, California 95014

 United States of America

 Email: tpauly@apple.com

Trammell, et al. Expires September 9, 2017 [Page 25]

Internet-Draft Post Sockets March 2017

 Mirja Kuehlewind

 ETH Zurich

 Gloriastrasse 35

 8092 Zurich

 Switzerland

 Email: mirja.kuehlewind@tik.ee.ethz.ch

Trammell, et al. Expires September 9, 2017 [Page 26]

