
Overview of Real-Time Scheduling

Real-Time and Embedded Systems (M)
Lecture 3



C
op

yr
ig

ht
 ©

 2
00

6 
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll 
rig

ht
s r

es
er

ve
d.

Lecture Outline

• Overview of real-time scheduling algorithms
– Clock-driven
– Weighted round-robin
– Priority-driven

• Dynamic vs. static
• Deadline scheduling: EDF and LST
• Validation

• Outline relative strengths, weaknesses

Material corresponds to chapter 4 of Liu’s book



C
op

yr
ig

ht
 ©

 2
00

6 
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll 
rig

ht
s r

es
er

ve
d.

Approaches to Real-Time Scheduling

Different classes of scheduling algorithm used in real-time systems:
• Clock-driven

– Primarily used for hard real-time systems where all properties of all jobs
are known at design time, such that offline scheduling techniques can be
used

• Weighted round-robin
– Primarily used for scheduling real-time traffic in high-speed, switched

networks

• Priority-driven
– Primarily used for more dynamic real-time systems with a mix of time-

based and event-based activities, where the system must adapt to changing
conditions and events

Look at the properties of each in turn…



C
op

yr
ig

ht
 ©

 2
00

6 
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll 
rig

ht
s r

es
er

ve
d.

Clock-Driven Scheduling

• Decisions about what jobs execute when are made at specific time
instants
– These instants are chosen before the system begins execution
– Usually regularly spaced, implemented using a periodic timer interrupt

• Scheduler awakes after each interrupt, schedules the job to execute for the next
period, then blocks itself until the next interrupt

• E.g. the helicopter example with an interrupt every 1/180
th of a second

• E.g. the furnace control example, with an interrupt every 100ms

• Typically in clock-driven systems:
– All parameters of the real-time jobs are fixed and known
– A schedule of the jobs is computed off-line and is stored for use at run-

time; as a result, scheduling overhead at run-time can be minimized
– Simple and straight-forward, not flexible

[Will discuss in more detail in lecture 4]



C
op

yr
ig

ht
 ©

 2
00

6 
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll 
rig

ht
s r

es
er

ve
d.

• Regular round-robin scheduling is commonly used for scheduling
time-shared applications
– Every job joins a FIFO queue when it is ready for execution
– When the scheduler runs, it schedules the job at the head of the queue to

execute for at most one time slice
• Sometimes called a quantum – typically O(tens of ms)

– If the job has not completed by the end of its quantum, it is preempted and
placed at the end of the queue

– When there are n ready jobs in the queue, each job gets one slice every n
time slices (n time slices is called a round)

– Only limited use in real-time systems

Weighted Round-Robin Scheduling



C
op

yr
ig

ht
 ©

 2
00

6 
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll 
rig

ht
s r

es
er

ve
d.

Weighted Round-Robin Scheduling

• In weighted round robin each job Ji is assigned a weight wi; the
job will receive wi consecutive time slices each round, and the
duration of a round is
– Equivalent to regular round robin if all weights equal 1
– Simple to implement, since it doesn’t require a sorted priority queue

• Partitions capacity between jobs according to some ratio
• Offers throughput guarantees

– Each job makes a certain amount of progress each round

! 

w
i

i=1

n

"



C
op

yr
ig

ht
 ©

 2
00

6 
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll 
rig

ht
s r

es
er

ve
d.

Weighted Round-Robin Scheduling

• By giving each job a fixed fraction of the processor time, a round-
robin scheduler may delay the completion of every job
– A precedence constrained job may be assigned processor time, even while

it waits for its predecessor to complete; a job can’t take the time assigned
to its successor to finish earlier

– Not an issue for jobs that can incrementally consume output from their
predecessor, since they execute concurrently in a pipelined fashion

• E.g. Jobs communicating using UNIX pipes
• E.g. Wormhole switching networks, where message transmission is carried out

in a pipeline fashion and a downstream switch can begin to transmit an earlier
portion of a message, without having to wait for the arrival of the later portion

• Weighted round-robin is primarily used for real-time networking;
will discuss more in lecture 17



C
op

yr
ig

ht
 ©

 2
00

6 
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll 
rig

ht
s r

es
er

ve
d.

Priority-Driven Scheduling

• Assign priorities to jobs, based on some algorithm
• Make scheduling decisions based on the priorities, when events

such as releases and job completions occur
– Priority scheduling algorithms are event-driven
– Jobs are placed in one or more queues; at each event, the ready job with the

highest priority is executed
– The assignment of jobs to priority queues, along with rules such a whether

preemption is allowed, completely defines a priority scheduling algorithm

• Priority-driven algorithms make locally optimal decisions about
which job to run
– Locally optimal scheduling decisions are often not globally optimal
– Priority-driven algorithms never intentionally leave any resource idle

• Leaving a resource idle is not locally optimal



C
op

yr
ig

ht
 ©

 2
00

6 
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll 
rig

ht
s r

es
er

ve
d.

Example: Priority-Driven Scheduling

• Consider the following task:
– Jobs J1, J2, …, J8, where Ji had higher priority than Jk if i < k

– Jobs are scheduled on two processors P1 and P2

– Jobs communicate via shared memory, so communication cost is negligible
– The schedulers keep one common priority queue of ready jobs
– All jobs are preemptable; scheduling decisions are made whenever some

job becomes ready for execution or a job completes

J5 4/2

J1 0/3

J2 0/1 J3 0/2 J4 0/2

J6 0/4

J7 0/4 J8 0/1

Release time

Execution time



C
op

yr
ig

ht
 ©

 2
00

6 
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll 
rig

ht
s r

es
er

ve
d.

Example: Priority-Driven Scheduling

7

2

10

11

12

9

8

6

5

4

3

1

0

Time P2 CompletedReady to runNot yet
released

Released but not
yet ready to run

P1

J5 4/2

J1 0/3

J2 0/1 J3 0/2 J4 0/2

J6 0/4

J7 0/4 J8 0/1

Release time

Execution time



C
op

yr
ig

ht
 ©

 2
00

6 
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll 
rig

ht
s r

es
er

ve
d.

Example: Priority-Driven Scheduling

• Note: The ability to preempt lower priority jobs slowed down the
overall completion of the task
– This is not a general rule, but shows that priority scheduling results can be

non-intuitive
– Different priority scheduling algorithms can have very different properties

• Tracing execution of jobs using tables is an effective way to
demonstrate correctness for systems with periodic tasks and
fixed timing constraints, execution times, resource usage
– Show that the system enters a repeating pattern of execution, and each

hyper-period of that pattern meets all deadlines
– Proof by exhaustive simulation

• Provided the system has a manageably small number of jobs



C
op

yr
ig

ht
 ©

 2
00

6 
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll 
rig

ht
s r

es
er

ve
d.

• Most scheduling algorithms used in non real-time systems are
priority-driven
– First-In-First-Out
– Last-In-First-Out
– Shortest-Execution-Time-First
– Longest-Execution-Time-First

• Real-time priority scheduling assigns priorities based on deadline
or some other timing constraint:
– Earliest deadline first
– Least slack time first
– Etc.

Assign priority based on release time

Assign priority based on execution time

Priority-Driven Scheduling



C
op

yr
ig

ht
 ©

 2
00

6 
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll 
rig

ht
s r

es
er

ve
d.

Priority Scheduling Based on Deadlines

• Earliest deadline first (EDF)
– Assign priority to jobs based on deadline
– Earlier the deadline, higher the priority
– Simple, just requires knowledge of deadlines

• Least Slack Time first (LST)
– A job Ji has deadline di, execution time ei, and was released at time ri

– At time t < di:
• Remaining execution time trem = ei - (t - ri)
• Slack time tslack = di - t - trem

– Assign priority to jobs based on slack time, tslack

– The smaller the slack time, the higher the priority
– More complex, requires knowledge of execution times and deadlines

• Knowing the actual execution time is often difficult a priori, since it depends
on the data, need to use worst case estimates (⇒ poor performance)



C
op

yr
ig

ht
 ©

 2
00

6 
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll 
rig

ht
s r

es
er

ve
d.

Optimality of EDF and LST

• These algorithms are optimal
– i.e. they will always produce a feasible schedule if one exists
– Constraints: on a single processor, as long as preemption is allowed and

jobs do not contend for resources



C
op

yr
ig

ht
 ©

 2
00

6 
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll 
rig

ht
s r

es
er

ve
d.

1. Any feasible schedule can be transformed into an EDF schedule
• If Ji is scheduled to execute before Jk, but Ji’s deadline is later than Jk’s either:

• The release time of Jk is after the Ji completes ⇒ they’re already in EDF order
• The release time of Jk is before the end of the interval in which Ji executes:

• Swap Ji and Jk (this is always possible, since Ji’s deadline is later than Jk’s)

• Move any jobs following idle periods forward into the idle period

⇒ the result is an EDF schedule

2. So, if EDF fails to produce a feasible schedule, no feasible schedule exists
• If a feasible schedule existed it could be transformed into an EDF schedule,

contradicting the statement that EDF failed to produce a feasible schedule
[Proof for LST is similar]

Optimality of EDF and LST: Proof

Ji Jk

dk dirk

JiJkJk

Jk JiJk



C
op

yr
ig

ht
 ©

 2
00

6 
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll 
rig

ht
s r

es
er

ve
d.

Non-Optimality of EDF and LST

• Neither algorithm is optimal if jobs are non-preemptable or if
there is more than one processor
– The book has examples which demonstrate EDF and LST producing

infeasible schedules in these cases
– Proof-by-counterexample

• EDF and LST are simple priority-driven scheduling algorithms;
introduced to show how we can reason about such algorithms
– Lectures 5-8 discuss other priority-driven scheduling algorithms



C
op

yr
ig

ht
 ©

 2
00

6 
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll 
rig

ht
s r

es
er

ve
d.

Dynamic vs. Static Priority Scheduling

• If jobs are scheduled on multiple processors, and a job can be 
dispatched from the priority run queue to any of the processors,
the system is dynamic

• A job migrates if it starts execution on one processor and is
resumed on a different processor

• If jobs are partitioned into subsystems, and each subsystem is
bound statically to a processor, we have a static system

• Expect static systems to have inferior performance (in terms of
overall response time of the jobs) relative to dynamic systems
– But it is possible to validate static systems, whereas this is not always true

for dynamic systems
– For this reason, most hard real time systems are static



C
op

yr
ig

ht
 ©

 2
00

6 
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll 
rig

ht
s r

es
er

ve
d.

Effective Release Times and Deadlines

• Sometimes the release time of a job may be later than that of its
successors, or its deadline may be earlier than that specified for
its predecessors

• This makes no sense: derive an effective release time or effective
deadline consistent with all precedence constraints, and schedule
using that
– Effective release time

• If a job has no predecessors, its effective release time is its release time
• If it has predecessors, its effective release time is the maximum of its release

time and the effective release times of its predecessors
– Effective deadline

• If a job has no successors, its effective deadline is its deadline
• It if has successors, its effective deadline is the minimum of its deadline and

the effective deadline of its successors



C
op

yr
ig

ht
 ©

 2
00

6 
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll 
rig

ht
s r

es
er

ve
d.

Effective Release Times and Deadlines

• Note: definition of effective deadline does not take into account
execution time of successor jobs
– Would be more accurate, and needs to be done on multiprocessor systems
– But: unnecessary on single processor with preemptable jobs

– Feasible to schedule any set of jobs according to their actual release times
and deadline, iff feasible to schedule according to effective release times
and deadlines

• Ignore precedence constraints, schedule using effective release times and
deadlines as if all jobs independent

• Resulting schedule might meet deadlines but not precedence constraints
– If so, always possible to swap order of jobs within the schedule to meet deadlines

and precedence constraints



C
op

yr
ig

ht
 ©

 2
00

6 
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll 
rig

ht
s r

es
er

ve
d.

Validating Priority-Driven Scheduling

• Priority-driven scheduling has many advantages over clock-
driven scheduling
– Better suited to applications with varying time and resource requirements,

since needs less a priori information
– Run-time overheads are small

• But not widely used until recently, since difficult to validate
– Scheduling anomalies can occur for multiprocessor or non-preemptable

systems, or those which share resources
• Reducing the execution time of a job in a task can increase the total response

time of the task (see book for example)
• Not sufficient to show correctness with worse-case execution times, need to

simulate with all possible execution times for all jobs comprising a task
– Can be proved that anomalies do not occur for independent, preemptable,

jobs with fixed release times executed using any priority-driven scheduler
on a single processor

• Various stronger results exist for particular priority-driven algorithms



C
op

yr
ig

ht
 ©

 2
00

6 
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll 
rig

ht
s r

es
er

ve
d.

Summary

• Have outlined different approaches to scheduling:
– Clock-driven
– Weighted round-robin
– Priority-driven

and some of their constraints

• Next session will be a tutorial to review the material covered to
date, before we move onto detailed discussion of scheduling

• Problem set 1 now available: due at 9:00am on 22nd January


