
Implementing Scheduling Algorithms

Real-Time and Embedded Systems (M)
Lecture 9

C
op

yr
ig

ht
 ©

 2
00

6
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll
rig

ht
s r

es
er

ve
d.

Lecture Outline

• Implementing real time systems
– Key concepts and constraints
– System architectures:

• Cyclic executive
• Microkernel with priority scheduler

• Implementing scheduling algorithms
– Jobs, tasks, and threads
– Priority scheduling of periodic tasks

• Rate monotonic
• Earliest deadline first

– Priority scheduling of aperiodic and sporadic tasks

C
op

yr
ig

ht
 ©

 2
00

6
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll
rig

ht
s r

es
er

ve
d.

Implementing Real Time Systems

• Key fact from scheduler theory: need predictable behaviour
– Raw performance less critical than consistent and predictable performance;

hence focus on scheduling algorithms, schedulability tests
– Don’t want to fairly share resources – be unfair to ensure deadlines met

• Need to run on a wide range of – often custom – hardware
– Often resource constrained:

• limited memory, CPU, power consumption, size, weight, budget
– Embedded and may be difficult to upgrade

• Closed set of applications, trusted code
• Strong reliability requirements – may be safety critical
• How to upgrade software in a car engine? A DVD player? After you shipped

millions of devices?

C
op

yr
ig

ht
 ©

 2
00

6
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll
rig

ht
s r

es
er

ve
d.

Implications on Operating Systems

• General purpose operating systems not well suited for real time
– Assume plentiful resources, fairly shared amongst untrusted users
– Exactly the opposite of an RTOS!

• Instead want an operating system that is:
– Small and light on resources
– Predictable
– Customisable, modular and extensible
– Reliable

…and that can be demonstrated or proven to be so

C
op

yr
ig

ht
 ©

 2
00

6
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll
rig

ht
s r

es
er

ve
d.

Implications on Operating Systems

• Real-time operating systems typically either cyclic executive or
microkernel designs, rather than a traditional monolithic kernel
– Limited and well defined functionality
– Easier to demonstrate correctness
– Easier to customise

• Provide rich scheduling primitives
• Provide rich support for concurrency
• Expose low-level system details to the applications

– Control of scheduling
– Power awareness
– Interaction with hardware devices

C
op

yr
ig

ht
 ©

 2
00

6
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll
rig

ht
s r

es
er

ve
d.

Cyclic Executive

• The simplest real-time systems use a “nanokernel” design
– Provides a minimal time service: scheduled clock pulse with fixed period
– No tasking, virtual memory/memory protection, etc.
– Allows implementation of a static cyclic schedule, provided:

• Tasks can be scheduled in a frame-based manner
• All interactions with hardware to be done on a polled basis

• Operating system becomes a single task cyclic executive
setup timer
c = 0;
while (1) {

suspend until timer expires
 c++;

do tasks due every cycle
if (((c+0) % 2) == 0) do tasks due every 2nd cycle
if (((c+1) % 3) == 0) {

do tasks due every 3rd cycle, with phase 1
}
...

}

C
op

yr
ig

ht
 ©

 2
00

6
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll
rig

ht
s r

es
er

ve
d.

Microkernel Architecture

• Cyclic executive widely used in low-end embedded devices
– 8 bit processors with kilobytes of memory
– Often programmed in C via cross-compiler, or assembler
– Simple hardware interactions
– Fixed, simple, and static task set to execute
– Clock driven scheduler

• But… many real-time embedded systems more complex, need a
sophisticated operating system with priority scheduling

• Common approach: a microkernel with priority scheduler
– Configurable and robust, since architected around interactions between

cooperating system servers, rather than a monolithic kernel with ad-hoc
interactions

C
op

yr
ig

ht
 ©

 2
00

6
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll
rig

ht
s r

es
er

ve
d.

Microkernel Architecture

• A microkernel RTOS typically provides a number of features:
– Scheduling
– Timing services, interrupt handling, support for hardware interaction
– System calls with predictable timing behaviour
– Messaging, signals and events
– Synchronization and locking
– Memory protection

• These features often differ from non-RTOS environments
– This lecture discussing scheduler implementation
– Next few lectures discuss programming APIs and other features

C
op

yr
ig

ht
 ©

 2
00

6
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll
rig

ht
s r

es
er

ve
d.

Scheduler Implementation

• Clock driven scheduling trivial to implement via cyclic executive

• Other scheduling algorithms need operating system support:
– System calls to create, destroy, suspend and resume tasks
– Implement tasks as either threads or processes

• Processes (with separate address space and memory protection) not always
supported by the hardware, and often not useful

– Scheduler with multiple priority levels, range of periodic task scheduling
algorithms, support for aperiodic tasks, support for sporadic tasks with
acceptance tests, etc.

C
op

yr
ig

ht
 ©

 2
00

6
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll
rig

ht
s r

es
er

ve
d.

Jobs, Tasks and Threads

• A system comprises a set of tasks, each task is a series of jobs
– Tasks are typed, have various parameters (φ, p, e, D), react to events, etc.
– Acceptance test performed before admitting new tasks

• A thread is the basic unit of work handled by the scheduler
– Threads are the instantiation of tasks that have been admitted to the system
– [If separate address space, discuss processes, but no scheduler changes]

• How are tasks and jobs mapped onto threads and managed by the
scheduler?

C
op

yr
ig

ht
 ©

 2
00

6
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll
rig

ht
s r

es
er

ve
d.

Periodic Tasks

• Real time tasks defined to execute periodically
T = (φ, p, e, D)

• Two implementation strategies:
– Thread instantiated by system each period, runs single job

• A periodic thread ⇒ supported by some RTOS
• Clean abstraction:

– A function that runs periodically
– System handles timing

• High overhead due to repeated thread instantiation
– Thread pools can mitigate overhead

– Thread instantiated once, performs job, sleeps until next period, repeats
• Lower overhead, but relies on programmer to handle timing

– Pushes conceptual burden of handling timing onto programmer
• Hard to avoid timing drift due to sleep overruns
• Most common approach

C
op

yr
ig

ht
 ©

 2
00

6
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll
rig

ht
s r

es
er

ve
d.

Sporadic and Aperiodic Tasks

• Event list triggers sporadic and aperiodic tasks
– Might be external (hardware) interrupts
– Might be signalled by another task

• Several implementation strategies:
– Job runs as interrupt/signal handler

• Correctness problems; discussed in lecture 7
• Handler often used to instantiate sporadic thread or queue job for server task

– Thread instantiated by system when job released
• Not well supported for user-level jobs, often used within the kernel

– E.g. for device drivers; network processing
• Requires scheduler assistance; high overheads unless thread pool used

– Job queued for server task
• A background server (simple, widely implemented)
• A bandwidth preserving server (useful, but hard to implement)

C
op

yr
ig

ht
 ©

 2
00

6
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll
rig

ht
s r

es
er

ve
d.

Thread States and Transitions

• States represent evolution of thread execution:
– Sleeping ⇒ Periodic thread queued between cycles
– Ready ⇒ Queued at some priority, waiting to run
– Executing ⇒ Running on a processor
– Blocked ⇒ Queued waiting for a resource

• Transitions happen according to scheduling policy, resource
access, external events

Sleeping

Ready

Executing

Blocked

Thread created Thread destroyed

Resource availability

End of cycle

Start of cycle

Sc
he

du
le

C
op

yr
ig

ht
 ©

 2
00

6
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll
rig

ht
s r

es
er

ve
d.

Mapping States onto Queues

Sleeping

Ready

Executing

Blocked

Sleeping Ready BlockedExecuting

Abstract states…

…realised as
a set of queues

C
op

yr
ig

ht
 ©

 2
00

6
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll
rig

ht
s r

es
er

ve
d.

Building a Priority Scheduler

Sleeping Ready BlockedExecuting

• How to use such a system to implement…
– Periodic fixed priority tasks (RM and DM)
– Periodic dynamic priority tasks (EDF and LST)
– Sporadic and aperiodic tasks

C
op

yr
ig

ht
 ©

 2
00

6
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll
rig

ht
s r

es
er

ve
d.

Sleeping Ready BlockedExecuting

Building a Priority Scheduler

• Vary number of queues, queue selection policy, service discipline
– How to decide which queue holds a newly released thread?
– How are the queues ordered?
– From which queue is the next job to execute taken?

C
op

yr
ig

ht
 ©

 2
00

6
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll
rig

ht
s r

es
er

ve
d.

Sleeping Ready BlockedExecuting

…

Fixed Priority Scheduling

• Provide several ready queues, each representing a priority level:
– Tasks inserted according to priority
– FIFO or round-robin servicing

• RR task budget depleted on each clock interrupt; yield when budget exhausted
• FIFO tasks run until sleep, block or yield

– Run task at the head of highest priority queue with ready tasks

• Used to implement rate monotonic or deadline monotonic

C
op

yr
ig

ht
 ©

 2
00

6
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll
rig

ht
s r

es
er

ve
d.

Ready

…

BlockedExecutingSleeping

Deadline monotonic
scheduler similar

Fixed Priority Scheduling: Rate Monotonic

• Assign fixed priorities to tasks based on their period, p
– short period ⇒ higher priority

• Implementation:
– Task resides in sleep queue until released at phase, φ
– When released, task inserted into a FIFO ready queue
– One ready queue for each distinct priority
– Run task at the head of the highest priority queue with ready tasks

C
op

yr
ig

ht
 ©

 2
00

6
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll
rig

ht
s r

es
er

ve
d.

• When building a rate monotonic system, ensure there are as many
ready queues as priority levels

• May be limited by the operating system if present, and need
priority levels than there are queues provided

Practical Considerations: Limited Queues

T1

T2

T3

T4

T5

T6

!

e
k

T
k
"T

E
(i)

#

• Implication: non-distinct priorities

• Some tasks will be delayed relative to the
“correct” schedule
– A set of tasks TE(i) is mapped to the same

priority queue as task Ti
– This may delay Ti up to

• Schedulable utilization of system will be
reduced

C
op

yr
ig

ht
 ©

 2
00

6
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll
rig

ht
s r

es
er

ve
d.

Uniform mapping
Q = | Ωn / Ωs |

tasks map onto each
system priority level

Constant Ratio mapping
k = (πi-1+1)/πi

tasks where k is a constant map to
each system priority with weight, πi

π1 = 1

π2 = 4

π3 = 10

1
2
3
4
5
6
7
8
9

Constant ratio mapping better preserves execution times of high
priority jobs

Practical Considerations: Limited Queues

• How to map a set of tasks needing Ωn priorities onto a set of Ωs
priority levels, where Ωs < Ωn?

C
op

yr
ig

ht
 ©

 2
00

6
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll
rig

ht
s r

es
er

ve
d.

Ready

…

BlockedExecutingSleeping

…

Blocking on Multiple Events

• Typically there are several reasons why tasks may block
– Disk I/O, network, inter-process communication, …

⇒Use multiple blocked queues

• This is a typical priority scheduler provided by most RTOS

C
op

yr
ig

ht
 ©

 2
00

6
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll
rig

ht
s r

es
er

ve
d.

Dynamic Priority Scheduling

• Thread priority can change during execution
• Implies that threads move between ready queues

– Search through the ready queues to find the thread changing it’s priority
– Remove from the ready queue
– Calculate new priority
– Insert at end of new ready queue

• Expensive operation:
– O(N) where N is the number of tasks
– Suitable for system reconfiguration or priority inheritance when the rate of

change of priorities is slow
– Naïve implementation of EDF or LST scheduling inefficient, since require

frequent priority changes
• Too computationally expensive
• Alternative implementation strategies possible…

C
op

yr
ig

ht
 ©

 2
00

6
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll
rig

ht
s r

es
er

ve
d.

Earliest Deadline First Scheduling

• To directly support EDF scheduling:
– When each thread is created, its relative deadline is specified
– When a thread is released, its absolute deadline is calculated from it’s

relative deadline and release time

• Could maintain a single ready queue:
– Conceptually simple, threads ordered by absolute deadline
– Inefficient if many active threads, since scheduling decision involves

walking the queue of N tasks

C
op

yr
ig

ht
 ©

 2
00

6
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll
rig

ht
s r

es
er

ve
d.

Ready

…

BlockedExecutingSleeping

…

ED
F

Q
ue

ue

Earliest Deadline First Scheduling

• Maintain a ready queue for each relative deadline
– Tasks enter these queues in order of release
– Ω′ < N queues

• Maintain a queue, sorted by absolute deadline, pointing to tasks at the head of
each ready queue
– Updated when tasks complete; when tasks added to empty ready queue
– Always execute the task at the head of this queue
– More efficient, since only perform a linear scan through active tasks

C
op

yr
ig

ht
 ©

 2
00

6
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll
rig

ht
s r

es
er

ve
d.

Scheduling Sporadic Tasks

• Straight-forward to schedule using EDF:
– Add to separate queue of ready sporadic tasks on release
– Perform acceptance test
– If accepted, insert into the EDF queue according to deadline

• Difficult if using fixed priority scheduling:
– Need a bandwidth preserving server

Ready BlockedExecutingSleeping

…

ED
F

Q
ue

ue

Acceptance testSporadic

C
op

yr
ig

ht
 ©

 2
00

6
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll
rig

ht
s r

es
er

ve
d.

Scheduling Aperiodic Tasks

• Trivial to implement in as a background server, using a single
lowest priority queue
– All the problems described in lecture 7:

• Excessive delay of aperiodic jobs
• Potential for priority inversion if the aperiodic jobs use resources

– Most operating systems have exactly this issue with idle-priority jobs

– Better to use a bandwidth preserving server

C
op

yr
ig

ht
 ©

 2
00

6
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll
rig

ht
s r

es
er

ve
d.

Bandwidth Preserving Servers

• Server scheduled as a periodic task, with some priority
– When ready and selected to execute, given scheduling quantum equal to

the current budget
• Runs until pre-empted or blocked; or
• Runs until the quantum expires, sleeps until replenished

– At each scheduling event in the system
• Update budget consumption considering:

– time for which the BP server has executed
– time for which other tasks have executed
– algorithm depends on BP server type

• Replenish budget if necessary
• Keep remaining budget in the thread control block
• Fairly complex calculations, e.g. for sporadic server

• Not widely supported… typically have to use background server

C
op

yr
ig

ht
 ©

 2
00

6
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll
rig

ht
s r

es
er

ve
d.

Summary

• Implementing real time systems
– Key concepts and constraints
– System architectures:

• Cyclic executive
• Microkernel with priority scheduler

• Implementing scheduling algorithms
– Jobs, tasks, and threads
– Priority scheduling of periodic tasks

• Rate monotonic
• Earliest deadline first

– Priority scheduling of aperiodic and sporadic tasks

• Next lecture: practical real time operating systems and languages

C
op

yr
ig

ht
 ©

 2
00

6
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll
rig

ht
s r

es
er

ve
d.

Tutorial Example (2)

T1

T2

TS

Busy intervals of TH

0.25
0.50

0 105 15 20 25 30
T3

4 7

1) C1; R2 ⇒ te = MAX(tr, BEGIN) = 0; replenish at te+ps = 5
2) Replenished due to previous R2; executes according to C1

R2 ⇒ te = tf = 5 since END < tf; replenish at te+ps=10
3) Job A1 ends, but Ts continues according to C2
4) Replenished early due to R3(b)
5) C1; R2 ⇒ te = MAX(tr, BEGIN) = 12; replenish at te+ps=17
6) Budget exhausted (R3(a) does not apply, already replenished at step 4)
7) Replenished early due to R3(b)
8) C1; R2 ⇒ te = MAX(tr, BEGIN) = 15; replenish at te+ps=19
9) C2
10) Replenished early due to R3(b)
11) C1; R2 ⇒ te = MAX(tr, BEGIN) = 18; replenish at te+ps=23
12) Replenished early due to R3(b)
13) C1

1 2 3 5 86 9 10 11 12 13

