
Real-Time Operating Systems and
Languages (1)

Real-Time and Embedded Systems (M)
Lecture 10

C
op

yr
ig

ht
 ©

 2
00

6
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll
rig

ht
s r

es
er

ve
d.

Lecture Outline

• Real-time operating systems and languages
– Clocks and timing

• Clocks and the concept of time
• Delays and timeouts

– Scheduling

• Informed by examples from:
– C and POSIX
– Real-time Java
– Ada

C
op

yr
ig

ht
 ©

 2
00

6
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll
rig

ht
s r

es
er

ve
d.

The Concept of Time

• Real time systems must have concept of time – but what is time?
– Measure of a time interval

• Accuracy, stability and granularity of the clock source
– Is “one second” a well defined measure?
– Temperature dependencies
– Relativistic effects

• Skew and divergence between multiple clocks
– Distributed systems and clock synchronisation

– Measure of the time of day
• How is the clock synchronised?

– Step changes or gradual skew
– NTP, GPS, etc.

• How are corrections handled?
– Leap seconds
– Changes in daylight saving time rules

• Do any of these issues matter to your application?

C
op

yr
ig

ht
 ©

 2
00

6
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll
rig

ht
s r

es
er

ve
d.

Clocks in Programming Languages

• How to represent time in a programming language?
– Different representations for time intervals versus time of day?

• It there a lossless conversion between the two?
– How to determine accuracy, stability, granularity of the clock?
– How to calculate time differences?
– How to compare times?
– How to specify particular times?

• Recall:
– Some minutes have 61 seconds
– Some calendar times occur twice
– Some calendar times never occur
– Any two clocks likely disagree

C
op

yr
ig

ht
 ©

 2
00

6
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll
rig

ht
s r

es
er

ve
d.

Low resolution clock time in
seconds since 1970.
Conversion to calendar time.

Inconsistent handling of leap
seconds ⇒ accurate delays
across leap second difficult

struct tm {
 int tm_sec; // seconds (0 - 60)
 int tm_min; // minutes (0 - 59)
 int tm_hour; // hours (0 - 23)
 int tm_mday; // day of month (1 - 31)
 int tm_mon; // month of year (0 - 11)
 int tm_year; // year - 1900
 int tm_wday; // day of week (Sunday = 0)
 int tm_yday; // day of year (0 - 365)
 int tm_isdst; // is summer time in effect?
 char *tm_zone; // timezone name
 long tm_gmtoff; // offset from UTC
};
struct tm localtime(time_t t);
time_t mktime(struct tm *t);

time_t time();
double difftime(time_t t1, time_t t2);

POSIX Clock API (1)

• Example of a typical clock API – similar features in Real-Time
Java and Ada

C
op

yr
ig

ht
 ©

 2
00

6
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll
rig

ht
s r

es
er

ve
d.

POSIX Clock API (2)

#include <sys/time.h>

struct timespec {
time_t tv_sec;
long tv_nsec;

};
int clock_gettime(CLOCK_REALTIME, struct timespec *t);
int clock_getres (CLOCK_REALTIME, struct timespec *r);

High resolution clock, counting seconds and nanoseconds since 1970.
Known clock resolution.

int nanosleep(struct timespec *delay, struct timespec *remaining);

Sleep for the interval specified. May return early due to signal (in which case remaining
gives remaining delay). Otherwise will return after the specified delay.

Accuracy of delay not known (and not necessarily correlated to clock_getres() value)

C
op

yr
ig

ht
 ©

 2
00

6
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll
rig

ht
s r

es
er

ve
d.

Time Delays

• In addition to having access to a clock, need ability to:
– Delay execution for a relative period of time

• Delay for t seconds

• Delay for t seconds after event e begins
start = curr_time();
do_action1();
delay(10.0 - (curr_time() - start));
do_action2();

– Delay execution until an arbitrary calendar time
• What does this mean during daylight saving time changeover?

What if pre-empted between these?
Oversleep unless system has a function
delay_until(start+10.0)

May be woken by
signals/interrupts

Job sleeping

Time

Desired wake time

Overshoot due to timer granularity

Runnable RunningRunning

Overshoot

In reality: delay
at least t seconds

C
op

yr
ig

ht
 ©

 2
00

6
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll
rig

ht
s r

es
er

ve
d.

Timeouts

• Synchronous blocking operations can include timeouts
– Synchronisation primitives

• Semaphores, condition variables, mutex locks, etc
– Networking and other I/O calls

• E.g. select() in POSIX

• May also provide an asynchronous timeout signal
– Detect time overruns during execution of periodic task
– In Ada:

– Real-time Java also has overrun handlers

Aborts call to do_stuff() if
not complete after 0.1 seconds

select
 delay 0.1
then abort
 do_stuff();
end select;

C
op

yr
ig

ht
 ©

 2
00

6
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll
rig

ht
s r

es
er

ve
d.

Scheduling

• Scheduling API typically doesn’t support clock-driven scheduling
– Limited to cyclic executives, not usually in full real-time operating systems

• Scheduling API should provide support for priority scheduling of:
– Periodic tasks

• At minimum should support setting thread priorities; time delays
• Useful to allow specification of (φ, p, e, D) tuple

– Aperiodic tasks
• At minimum should support background server
• May support sporadic or deferrable servers; consumption/replenishment rules

– Sporadic tasks
• Should support specification of deadlines, processor time requirements

C
op

yr
ig

ht
 ©

 2
00

6
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll
rig

ht
s r

es
er

ve
d.

Scheduler Case Studies

• Case studies in scheduler API design:
– C and POSIX
– Real-time Java

• Demonstrate the style of scheduler programming API available
• Provide most of the scheduling algorithms we have discussed

C
op

yr
ig

ht
 ©

 2
00

6
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll
rig

ht
s r

es
er

ve
d.

C and POSIX

• IEEE 1003 POSIX
– “Portable Operating System Interface”
– Defines a subset of Unix functionality, various (optional) extensions added

to support real-time scheduling, signals, message queues, etc.
– Widely implemented:

• Unix variants and Linux
• Dedicated real-time operating systems
• Limited support in Windows

• Several POSIX standards for real-time scheduling
– POSIX 1003.1b (“real-time extensions”)
– POSIX 1003.1c (“pthreads”)
– POSIX 1003.1d (“additional real-time extensions”)
– Support a sub-set of scheduler features we have discussed

C
op

yr
ig

ht
 ©

 2
00

6
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll
rig

ht
s r

es
er

ve
d.

#include <stdio.h>
#include <unistd.h>
#ifdef _POSIX_PRIORITY_SCHEDULING

printf("POSIX Process scheduler\n");
#endif
#ifdef _POSIX_THREADS
#ifdef _POSIX_THREAD_PRIORITY_SCHEDULING

printf("POSIX thread schduler\n");
#endif
#endif

Detecting POSIX Support

• If you need to write portable code, e.g. to run on Unix or Linux
systems, you can check the presence of POSIX 1003.1b via pre-
processor defines:

• Access to POSIX real-time extensions is usually privileged on
general purpose systems (e.g. suid root on Unix)
– Remember to drop privileges!

C
op

yr
ig

ht
 ©

 2
00

6
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll
rig

ht
s r

es
er

ve
d.

#include <unistd.h>
#include <sched.h>

struct sched_param {
int sched_priority;
int sched_ss_low_priority;
struct timespec sched_ss_repl_period;
struct timespec sched_ss_init_budget;

};

int sched_setscheduler(pid_t pid, int policy, struct sched_param *p);
int sched_getscheduler(pid_t pid);
int sched_getparam(pid_t pid, struct sched_param *sp);
int sched_setparam(pid_t pid, struct sched_param *sp);

int sched_get_priority_max(int policy);
int sched_get_priority_min(int policy);

int sched_rr_get_interval(pid_t pid, struct timespec *t);

int sched_yield(void);

POSIX Scheduling API (Processes)

C
op

yr
ig

ht
 ©

 2
00

6
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll
rig

ht
s r

es
er

ve
d.

#include <unistd.h>
#include <pthread.h>

int pthread_attr_init(pthread_attr_t *attr);

int pthread_attr_getschedpolicy(pthread_attr_t *attr, int policy);
int pthread_attr_setschedpolicy(pthread_attr_t *attr, int policy);

int pthread_attr_getschedparam(pthread_attr_t *attr, struct sched_param *p);
int pthread_attr_setschedparam(pthread_attr_t *attr, struct sched_param *p);

int pthread_create(pthread_t *thread,
 pthread_attr_t *attr,
 void *(*thread_func)(void*),
 void *thread_arg);
int pthread_exit(void *retval);
int pthread_join(pthread_t thread, void **retval);

POSIX Scheduling API (Threads)

• Thread scheduling API mirrors process scheduling API
– Same scheduling policies, priorities, etc.

C
op

yr
ig

ht
 ©

 2
00

6
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll
rig

ht
s r

es
er

ve
d.

POSIX Scheduling API

• Four scheduling policies:
– SCHED_FIFO Fixed priority, pre-emptive, FIFO scheduler
– SCHED_RR Fixed priority, pre-emptive, round robin scheduler
– SCHED_SPORADIC Sporadic server
– SCHED_OTHER Unspecified (often the default time-sharing scheduler)
– Implementations can support alternative schedulers

• A process can sched_yield() or otherwise block at any time

C
op

yr
ig

ht
 ©

 2
00

6
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll
rig

ht
s r

es
er

ve
d.

POSIX Scheduling API: Priority Scheduler

• POSIX 1003.1b provides (largely) fixed priority scheduling
– Priority can be changed using sched_set_param(), but this is high

overhead and is intended for reconfiguration rather than for dynamic
scheduling

– No direct support for dynamic priority algorithms (e.g. EDF)

• Limited set of priorities:
– Use sched_get_priority_min(), sched_get_priority_max() to

determine the range
– Guarantees at least 32 priority levels

C
op

yr
ig

ht
 ©

 2
00

6
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll
rig

ht
s r

es
er

ve
d.

Using POSIX Scheduling: Rate Monotonic

• Rate monotonic and deadline monotonic schedules can naturally
be implemented using POSIX primitives
1. Assign priorities to tasks in the usual way for RM/DM
2. Query the range of allowed system priorities

sched_get_priority_min()
sched_get_priority_max()

3. Map task set onto system priorities
• Care needs to be taken if there are large numbers of tasks, since some systems

only support a few priority levels
4. Start tasks using assigned priorities and SCHED_FIFO

• No explicit support for indicating deadlines, periods

C
op

yr
ig

ht
 ©

 2
00

6
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll
rig

ht
s r

es
er

ve
d.

struct sched_param {
 int sched_priority;
 int sched_ss_low_priority;
 struct timespec sched_ss_repl_period;
 struct timespec sched_ss_init_budget;
};

Additional sched_ss_…
parameters added for the
sporadic server

POSIX Scheduling API: Sporadic Server

• POSIX 1003.1d defines a hybrid sporadic/background server

• When server has budget, runs at sched_priority, otherwise runs
as a background server at sched_ss_low_priority
– Set sched_ss_low_priority to be lower priority than real-time tasks,

but possibly higher than other non-real-time tasks in the system

• Also defines the replenishment period and the initial budget after
replenishment

C
op

yr
ig

ht
 ©

 2
00

6
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll
rig

ht
s r

es
er

ve
d.

POSIX Scheduling API: EDF

• EDF scheduling is not supported by POSIX

• Conceptually would be simple to add:
– A new scheduling policy
– A new parameter to specify the relative deadline of each task
– But, requires the kernel to implement deadline scheduling

• POSIX grew out of the Unix community
• Unlike priority scheduling, difficult to retro-fit deadline scheduling onto a Unix

kernel…

C
op

yr
ig

ht
 ©

 2
00

6
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll
rig

ht
s r

es
er

ve
d.

Summary of POSIX Scheduling

• Fixed priority scheduling
– Rate monotonic algorithm
– Widely supported

• Sporadic server can be used for aperiodic or sporadic tasks
– Not widely supported on general purpose systems

• No support for earliest deadline scheduling
– Some specialised RTOS support these
– Earliest deadline scheduling more widely used to schedule network packets

C
op

yr
ig

ht
 ©

 2
00

6
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll
rig

ht
s r

es
er

ve
d.

Real-Time Java

• JSR-1: Real-Time Specification for Java
– Version 1.0.1 (August 2004)
– http://www.rtj.org/

• Extends Java with a schedulable interface and RealtimeThread
class, and numerous supporting libraries
– Definition of timing and scheduling parameters

• Periodic tasks
• Aperiodic and sporadic tasks

– Definition of memory requirements
• Extensions to the garbage collection model for real-time operation

[see lecture 18 and 19]

• Requires a modified Java virtual machine
– Due to changes to memory model, garbage collector, thread scheduling

C
op

yr
ig

ht
 ©

 2
00

6
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll
rig

ht
s r

es
er

ve
d.

abstract class ReleaseParameters
{
 RelativeTime cost
 RelativeTime deadline
 AsyncEventHandler overrunHandler
 AsyncEventHandler missHandler
 ...
}

class PeriodicParameters
{
 HighResolutionTime start
 RelativeTime period
 ...
}

class SporadicParameters
{
 RelativeTime minInterarrival
 ...
}

Real-Time Java: Release Parameters

• Class hierarchy to express release
timing parameters

• Supports deadline monitoring:
– missHandler if deadline exceeded

• Supports execution time monitoring:
– cost = needed CPU time
– overrunHandler if execution time

budget exceeded

• Unusual definition of aperiodic and
sporadic tasks
– Aperiodic tasks may have deadline;

sporadic tasks differ because they
also have minimum inter-arrival time

Ex
te

nd
s

class AperiodicParameters
{
 ...
}

C
op

yr
ig

ht
 ©

 2
00

6
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll
rig

ht
s r

es
er

ve
d.

Real-Time Java: Scheduling Parameters

• Abstract Scheduler and SchedulingParameters classes defined
– Allows a range of schedulers to be developed

• Current standards only allow system-defined schedulers; cannot write a new
scheduler without modifying the JVM

• Likely to be extended to provide a pluggable scheduler API in future
– Current standards provide only a pre-emptive priority scheduler

• Conceptually similar to the POSIX priority scheduler
– Presumably to make implementation simpler

• Allows monitoring of execution times; missed deadlines; CPU budgets
• Allows thread priority to be changed programmatically

– Can be used to implement sporadic servers
• Limited support for acceptance tests

C
op

yr
ig

ht
 ©

 2
00

6
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll
rig

ht
s r

es
er

ve
d.

class RealtimeThread extends java.lang.Thread
{
 // ...adds additional constructors to specify
 // ReleaseParameters and SchedulingParameters
 ...

 // ...adds additional methods:
 public void setScheduler(Scheduler s);
 public void schedulePeriodic();
 public boolean waitForNextPeriod();
 ...
}

Real-Time Java: Real time Threads

• The RealtimeThread class extends Thread with extra methods
and parameters
– Direct support for periodic threads

• run() method will be a loop ending in a waitForNextPeriod() call
• Contrast with POSIX APIs which require programmer to calculate explicit

delay each period

C
op

yr
ig

ht
 ©

 2
00

6
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll
rig

ht
s r

es
er

ve
d.

Scheduling

• POSIX and Real-Time Java provide generally similar features
– Pre-emptive priority scheduler for periodic tasks

• Suitable for RM and DM algorithms
• Real-Time Java also provides periodic threads

– Limited support for sporadic and aperiodic tasks
• Sporadic server included in POSIX standards; not widely implemented

• Both have scope for non-standard extensions
– E.g. some RTOS extend POSIX scheduling

C
op

yr
ig

ht
 ©

 2
00

6
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll
rig

ht
s r

es
er

ve
d.

Summary

• Real-time operating systems and languages
– Clocks and timing

• Clocks and the concept of time
• Delays and timeouts

– Scheduling

• Additional reading:
E. A. Lee, “Absolutely Positively on Time: What Would it Take?”, IEEE
Computer, July 2005.

