Resource Access Control (1)

Real-Time and Embedded Systems (M)
Lecture 13

UNIVERSITY Eg
of
GLASGOW o\

Lecture Outline

 Definitions of resources

 Resource access control:
— Non-preemptable critical sections
— Basic priority inheritance protocol

— Basic priority ceiling protocol

« Material corresponds to chapter 8 of Liu’s book

Resources

« Resources may represent:
— Hardware devices such as sensors and actuators
— Disk or memory capacity, buffer space

— Software resources: mutexes, locks, queues, etc.

* Assume a system with p types of resource named R, Ry, ..., R,

— Each resource comprises 7, indistinguishable units

* Resources with a (practically) infinite number of units have no effect on
scheduling; and so are ignored

— Each unit of resource is used in a non-preemptable and mutually exclusive
manner; resources are serially reusable

— If aresource can be used by more than one job at a time, we model that
resource as having many units, each used mutually exclusively

» The system must control access to the resources

Locks and Critical Sections

« Assume a lock-based concurrency control mechanism
— A job wanting to use n, units of resource R, locks L(R,, n,) the resource
— When the job i1s finished with the resources, it unlocks them: U(R,, n,)

— If alock request fails, the requesting job is blocked and loses the processor;
when the requested resource becomes available, it is unblocked

» A job holding a lock cannot be preempted by a higher priority job needing that
lock

* The segment of a job that begins at a lock and ends at a matching
unlock 1s a critical section

— Use the expression [R, n; e] to represent a critical section regarding » units
of R, with the critical section requiring e units of execution time
— Critical sections may nest if a job needs multiple simultaneous resources

* E.g.lock R,, then lock R, then lock R, ..., unlock R;, unlock R,, unlock R, is
represented as [R,, n;; e, [R,, n,; e, [R5, n3; e;]]]

Contention for Resources

* Two jobs conflict with one another if some of the resources they
require are of the same type; they contend for a resource if one
job requests a resource that the other job has already been granted

Preempt J,

PR w B i P PP

Preempt J,

[] [] [] [] [] [] [] >
10 11 12 13 14 15 16 17 18

J, blocks J, blocks
due to lock due to lock
on resource on resource

EDF schedule of J;, J, and
J5 sharing a resource R
protected by locks.

Red lines indicate release
times and deadlines of jobs.
Contention for R delays

the higher priority jobs

Priority Inversion

» Priority inversion occurs when a low-priority job executes while
some ready higher-priority job waits

9/ 10 11 12 13 14 15 16 17 18
Priority inversion

Contention for resources can cause priority inversions to occur,
even 1f the jobs are preemptable, since a lower-priority job
holding a lock on a resource will prevent a higher-priority job
requiring that resource from executing

Deadlock

* Deadlock can result from piecemeal acquisition of resources;
classic example of two jobs needing resources Ry and R

— If one job acquires locks in the order R, then R,, and the other job acquires
them in the opposite order, we can end up with a deadlock

Ja . - R R T T J, wants to access blue after 2 units of
| execution, then red after a further 1 unit
' eadlock

J, wants to access red after 1 unit of
- execution, then blue after a further 3 units

Ind VA . 27 . .

The classic solution 1s to impose a fixed acquisition order over
the set of lockable resources, and all jobs attempt to acquire the
resources in that order (typically LIFO order)

Timing Anomalies

* As seen, contention for resources can cause timing anomalies due
to priority inversion and deadlock

« Unless controlled, these anomalies can be arbitrary duration, and
can seriously disrupt system timing

e (Cannot eliminate these anomalies, but several protocols exist to
control them:
— Non-preemptable Critical Sections
— Priority inheritance protocol
— Basic priority ceiling protocol
— Stack-based priority ceiling protocol

Non-preemptable Critical Sections

e Simplest resource access control protocol: when a jobs acquires a
resource 1t 1s scheduled with highest priority in a non-preemptable

manner

» Priority scheduled: J,

has highest priority.
Shading indicates the

YA I -

critical sections, red
lines indicate release

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

J; locks the resource and significantly
delays execution of the other two jobs

™ times for the jobs.

Disadvantage: every job can be blocked by every lower-priority
job with a critical section, even if there 1s no resource conflict;

very poor timing performance

Priority-Inheritance Protocol

e Aim: to adjust the scheduling priorities of jobs during resource
access, to reduce the duration of timing anomalies

e Constraints:
— Works with any pre-emptive, priority-driven scheduling algorithm
— Does not require any prior knowledge of the jobs’ resource requirements

— Does not prevent deadlock, but if some other mechanism used to prevent
deadlock, ensures that no job can block indefinitely due to uncontrolled

priority inversion

* We discuss the basic priority-inheritance protocol which assumes
there 1s only 1 unit of resource

— The book discusses how to generalize this to arbitrary amounts of
resources

Basic Priority-Inheritance Protocol

e Assumptions (for all of the following protocols):

— Each resource has only 1 unit

— The priority assigned to a job according to a standard scheduling algorithm
is its assigned priority

— At any time ¢, each ready job J, 1s scheduled and executes at its current
priority, m,(¢), which may differ from its assigned priority and may vary
with time

 The current priority st(#) of a job J, may be raised to the higher priority w,(¢) of
another job J,

* In such a situation, the lower-priority job J, 1s said to inherit the priority of the
higher-priority job J,, and J, executes at its inherited priority r,(¢)

Basic Priority-Inheritance Protocol

« Jobs are pre-emptively scheduled on the processor in a priority-
driven manner according to their current priorities
— Atrelease time, the current priority of a job is equal to its assigned priority

— The current priority remains equal to the assigned priority, except when the
priority-inheritance rule is invoked

— Priority-inheritance rule:

« When the requesting job, J, becomes blocked, the job J, which blocks J inherits
the current priority t(¢) of J

* J, executes at its inherited priority until it releases R; at that time, the priority of
J, returns to its priority wt(¢') at the time ¢ when it acquired the resource R

* Resource allocation: when a job J requests a resource R at time ¢:
— If R is free, R 1s allocated to J until J releases it
— If R is not free, the request is denied and .J is blocked
— J1s only denied R if the resource is held by another job

Basic Priority-Inheritance Protocol

* Consider an example system, with Job r, e; D; Critical Sections
];)alr)arfl]etcjs jre slclio;vn on the rlglht ; J, 7 3 7z
 JobsJ,,J,,J, and J4 attempt to loc _
their first resource after one unit of i . : 2 [-’ 1]
execution; J4 accesses [l after an J; 4 2 3
additional 2 units of execution J,) 6 4 | [P 4 _ 1.5]]
J; 0 6 5 [-; 4]

Run with inherited priority

[]
-
0 1 2 3 4 5 6 7 8§ 910 1112713 14 15 16 17 18 19 20

Basic Priority-Inheritance Protocol

Jobs may block for many different reasons...
Transitive blocking:

J5 blocks J, blocks J,
J; preempted by J,
J; blocked because J,
inherits priority of J, J, directly blocked by J; due
to the lock J has on the [
resource

ii
|

Basic Priority-inheritance Protocol

* Properties of the Priority-inheritance Protocol
— Simple to implement, does not require prior knowledge of resource
requirements

— Jobs exhibit different types of blocking
» Direct blocking due to resource locks
* Priority-inheritance blocking
 Transitive blocking

— Deadlock 1s not prevented
» Although it can be prevented by using additional protocols in parallel

— Can reduce blocking time compared to non-preemptable critical sections,
but does not guarantee to minimize blocking

Basic Priority-Ceiling Protocol

* Sometimes desirable to further reduce blocking times due to
resource contention

» The basic priority-ceiling protocol provides a means to do this,
provided:
— The assigned priorities of all jobs are fixed (e.g. RM scheduling, not EDF)

— The resources required by all jobs are known a priori

e Need two additional terms to define the protocol:

— The priority ceiling of any resource R, 1s the highest priority of all the jobs
that require R, and 1s denoted by II(R))

— At any time ¢, the current priority ceiling I1(¢) of the system is equal to the
highest priority ceiling of the resources that are in use at the time

— If all resources are free, I1(¢) is equal to €2, a nonexistent priority level that
is lower than the lowest priority level of all jobs

Basic Priority-Ceiling Protocol

e Scheduling rules:
— Jobs are scheduled in a preemptable priority-driven manner
— On release time, the current priority of a job is equal to its assigned priority

— The current priority remains equal to the assigned priority, except when the
priority-inheritance rule is invoked

e Resource allocation rule:

— When a job J requests a resource R held by another job, the request fails
and the requesting job blocks
— When a job J requests a resource R at time ¢, and that resource is free:
« If.J’s priority m(?) is higher than current priority ceiling I1(7), R is allocated to J

« If.J’s priority m(t) is not higher than current priority ceiling I(t), R 1s allocated
to J only if J 1s the job holding the resource(s) whose priority ceiling is equal to
I1(¢); otherwise, the request is denied, and J becomes blocked

— Unlike priority inheritance: can deny access to an available resource

Basic Priority-Ceiling Protocol

 Priority-inheritance rule:

— When the requesting job, J, becomes blocked, the job J;, which blocks J
inherits the current priority mt(¢) of J

— J, executes at its inherited priority until the time when it releases every
resource whose priority ceiling is equal to or higher than rt(¢); at that time,
the priority of J, returns to its priority ;(¢') at the time # when it was
granted the resource(s)

Basic Priority-Ceiling Protocol

Consider an example system, with Job r; e; | p;, | Ciritical Sections

parameters are shown on the right — | J, 7 3 1 | 7% 1]

Jobs J,, J,, J, and J; attempt to lock their

first resource after one unit of execution; % S 3 2 [-; 1]

J, accesses [fter an additional 2 Js 4 2 3

units of execution J, 0 6 4 | [A 4 B 1.5]]
J, requests blue but is blocked
siznce locked by J, (which J 5 0 6 S [-9 4]

inherits priority 2) ﬁ
Y Y * ¢+ s s & a1 4 : Significant reduction

1n execution time for

—

J, requests red

butisdenied, 7 o -— some ta.sks.compared
since 7, < II 2 — to priority inheritance

KJ-] 1 1 1 1 1 1 1 1 1 1 1 1 L1 l»

T\ /_\ IT remains =1
4 L [] [| [| [| [| [| [| [| '] '] ']

|
7 8 9 10 11 12 13 14 15 16 17 18 19 20
21 2 2 2 @ 1 1 1 1 @ Q@ Q

E

Basic Priority-Ceiling Protocol

« Ifresource access in a system of preemptable, fixed priority jobs
on one processor 1s controlled by the priority-ceiling protocol:
— Deadlock can never occur

— A job can be blocked for at most the duration of one critical section
» There is no transitive blocking under the priority-ceiling protocol

« Daifferences between the priority-inheritance and priority-ceiling
protocols:
— Priority inheritance is greedy, while priority ceiling is not
» The priority ceiling protocol may withhold access to a free resource, causing a

job to be blocked by a lower-priority job which does not hold the requested
resource — termed avoidance blocking

— The priority ceiling protocol forces a fixed order onto resource accesses,
thus eliminating deadlock

Summary

e Defined resources, explaining timing anomalies and the need for
resource access control
 [llustrated operation of three resource access control protocols:
— Non-preemptable critical section

— Basic priority inheritance protocol
— Basic priority ceiling protocol

Tomorrow: more resource access protocols; practical aspects

