
Resource Access Control (2)

Real-Time and Embedded Systems (M)
Lecture 14

C
op

yr
ig

ht
 ©

 2
00

6
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll
rig

ht
s r

es
er

ve
d.

Lecture Outline

• Resources access control (cont’d):
– Enhancing the priority ceiling protocol

• Stack-based priority ceiling protocol
• Ceiling priority protocol

– Resource access control for dynamic priority systems
– Effects on scheduling

• Implementing resource access control
– Locking primitives

• Semaphores
• Mutexes
• Typical priority inheritance features

– Messages, signals and events
• Priority inheritance features for messaging

C
op

yr
ig

ht
 ©

 2
00

6
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll
rig

ht
s r

es
er

ve
d.

J3

J2

J1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
J5

19 20

J4

Enhancing the Priority Ceiling Protocol

• The basic priority ceiling protocol gives good performance, but
the defining rules are complex

• Also, can result in high context
switch overheads due to frequent
blocking if many jobs contend
for resources

• This has led to two modifications to the protocol:
– The stack-based priority ceiling protocol
– The ceiling priority protocol

C
op

yr
ig

ht
 ©

 2
00

6
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll
rig

ht
s r

es
er

ve
d.

Stack-Based Priority Ceiling Protocol

• Based on original work to allow jobs to share a run-time stack,
extended to control access to other resources

• Defining rules:
– Ceiling: When all resources are free, Π(t) = Ω; Π(t) updated each time a

resource is allocated or freed
• Π(t) current priority ceiling of all resources in currently use
• Ω non-existing lowest priority level

– Scheduling:
• After a job is released, it is blocked from starting execution until its assigned

priority is higher than Π(t)
• Non-blocked jobs are scheduled in a pre-emptive priority manner
• Tasks never self-yield

– Allocation: Whenever a job requests a resource, it is allocated the resource
• The allocation rule looks greedy, but the scheduling rule is not

C
op

yr
ig

ht
 ©

 2
00

6
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll
rig

ht
s r

es
er

ve
d.

Π= Ω 2 2 2 2 Ω 2 Ω 1 Ω Ω Ω Ω Ω 1 1 1 1 Ω Ω Ω

Stack-Based Priority-Ceiling Protocol

[; 4]560J5

[; 4 [; 1.5]]462J4

324J3

[; 1]235J2

[; 1]137J1

Critical SectionsπieiriJob

J3

J2

J1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
J5

19 20

J4

Context switches are reduced
compared to the basic priority
ceiling protocol; no jobs finish
later, but many jobs start laterJobs blocked

from starting
since πi < Π

• Consider an example system, with
parameters are shown on the right →

• Jobs J1, J2, J4 and J5 attempt to lock their
first resource after one unit of execution;
J4 accesses after an additional 2
units of execution

C
op

yr
ig

ht
 ©

 2
00

6
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll
rig

ht
s r

es
er

ve
d.

Stack-Based Priority Ceiling Protocol

• Characteristics:
– When a job starts to run, all the resource it will ever need are free (since

otherwise the ceiling would be ≥ priority)
• No job ever blocks waiting for a resource once its execution has begun
• Implies low context switch overhead

– When a job is pre-empted, all the resources the pre-empting job will
require are free, ensuring it will run to completion

• Deadlock can never occur
– Longest blocking time provably not worse than the basic priority ceiling

protocol
• i.e. not worse than the duration of one critical section

C
op

yr
ig

ht
 ©

 2
00

6
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll
rig

ht
s r

es
er

ve
d.

Ceiling Priority Protocol

• A similar algorithm is the ceiling priority protocol
• Defining rules:

– Scheduling:
• Every job executes at its assigned priority when it does not hold any resource.

Jobs of the same priority are scheduled on a FIFO basis
• The priority of each job holding resources is equal to the highest of the priority

ceilings of all resources held by the job
– Allocation: whenever a job requests a resource, it is allocated

• When jobs never self-yield, gives identical schedules to the stack-
based priority ceiling protocol

• Again, simpler than the basic priority ceiling protocol

C
op

yr
ig

ht
 ©

 2
00

6
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll
rig

ht
s r

es
er

ve
d.

Choice of Priority Ceiling Protocol

• If tasks never self yield, the stack based priority ceiling protocol
is a better choice than the basic priority ceiling protocol
– Simpler
– Reduce number of context switches
– Can also be used to allow sharing of the run-time stack, to save memory

resources

• Both give better performance than priority inheritance protocol
– Assuming fixed priority scheduling, resource usage known in advance

C
op

yr
ig

ht
 ©

 2
00

6
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll
rig

ht
s r

es
er

ve
d.

T1 = (2, 0.9)
T2 = (5, 2.3)

EDF
0 1 2 3 4 5 6 7 8

T2

T1

π(T1) = 1 π(T1) = 2 π(T1) = 1

Resources in Dynamic Priority Systems

• The priority ceiling protocols assume fixed priority scheduling
• In a dynamic priority system, the priorities each periodic tasks

change over time, while the set of resources required by each task
remains constant
– As a consequence, the priority ceiling of each resource changes over time
– Example:

– What happens if T1 uses resource X, but T2 does not?
• Priority ceiling of X is 1 for 0 ≤ t ≤ 4, becomes 2 for 4 ≤ t ≤ 5, etc. even though

the set of resources required by the tasks remains unchanged

C
op

yr
ig

ht
 ©

 2
00

6
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll
rig

ht
s r

es
er

ve
d.

Resources in Dynamic Priority Systems

• If a system is job-level fixed priority, but task-level dynamic
priority, a priority ceiling protocol can still be applied
– Each job in a task has a fixed priority once it is scheduled, but may be

scheduled at different priority to other jobs in the task
• Example: Earliest Deadline Scheduling

– Update the priority ceilings of all jobs each time a new job is introduced;
use until updated on next job release

• Has been proven to work and have the same properties as priority
ceiling protocol in fixed priority systems
– But: very inefficient, since priority ceilings updated frequently
– May be better to use priority inheritance protocol, accept longer blocking

C
op

yr
ig

ht
 ©

 2
00

6
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll
rig

ht
s r

es
er

ve
d.

Maximum Duration of Blocking

• Assume J1 and J2 contend for a resource, R, where J1 is the higher
priority job

• Worst case blocking time tends towards the duration of J2’s
critical section over R

• When using priority inheritance protocol, J2 might be transitively
blocked for the duration of the next priority job’s critical section
– Worst case: it is blocked by every other lower priority job, for the full

duration of each lower priority job’s critical section

J1

J2

Blocking time

J2 pre-empted immediately
after it locks resource R

C
op

yr
ig

ht
 ©

 2
00

6
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll
rig

ht
s r

es
er

ve
d.

Maximum Duration of Blocking

• The priority ceiling protocols implement avoidance blocking, and
so do not exhibit transient blocking
– Block for at most the duration of one low priority critical section

• Direct blocking: low priority jobs locks resource; can be blocked for up to the
duration of the critical section of that job

• Avoidance blocking: resource is free, but priority ceiling rules deny access

• Calculate worst case blocking duration:
– Simple:

• Assume can block for duration of longest critical section of lower priority jobs
• Probably overestimates blocking duration; likely not too significant

– More efficient:
• Trace direct conflicts with lower priority jobs, find longest critical section
• Trace indirect conflicts with lower priority jobs that may inherit priority and

cause avoidance blocking, find longest critical section
• Greatest of these is maximum possible blocking time

C
op

yr
ig

ht
 ©

 2
00

6
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll
rig

ht
s r

es
er

ve
d.

Effects on Schedulability Tests

• Jobs which block due to resource access impact schedulability
• How to adjust schedulability test?

– Incorporate maximum blocking time as part of execution time of job;
schedulability test then runs as normal

– Priority ceiling protocols clearly preferred where possible

C
op

yr
ig

ht
 ©

 2
00

6
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll
rig

ht
s r

es
er

ve
d.

Implementing Resource Access Control

• Have focussed on resource access control algorithms which can
be implemented by an operating system

• How are these made available to applications?
– Some implemented by the operating system
– Some implemented at the application level

C
op

yr
ig

ht
 ©

 2
00

6
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll
rig

ht
s r

es
er

ve
d.

Resource Types and Locking

• Program objects and data structures
• Files
• Devices
• Network interfaces

Access arbitrated
by the operating
system

Need to be locked by
applications to ensure
exclusive access

Semaphores

Mutexes

Condition Variables

Provided by language or operating system –
focus on POSIX as a representative example

Message Queues

C
op

yr
ig

ht
 ©

 2
00

6
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll
rig

ht
s r

es
er

ve
d.

POSIX Semaphores

• Semaphores provide a simple locking abstraction:

• Embed a semaphore within an object for resource access control:

• Example of a feature with no special real-time features or priority
control

int sem_init(sem_t *sem, int inter_process, unsigned init_val);
int sem_destroy(sem_t *sem);

int sem_wait(sem_t *sem);
int sem_trywait(sem_t *sem);
int sem_post(sem_t *sem);

struct my_object {
sem_t lock;
char *data; // For example…
int data_len;

}
struct my_object *m = malloc(sizeof(my_object));
sem_init(&m->lock, 1, 1);

C
op

yr
ig

ht
 ©

 2
00

6
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll
rig

ht
s r

es
er

ve
d.

POSIX Mutexes

• A higher level locking mechanism for real-time applications is a
POSIX mutex, which controls priority during resource access
– As with semaphores, a mutex is embedded in an object at a location of the

programmers choosing to control access to that object/resource
– Basic API:
int pthread_mutex_init(pthread_mutex_t *mutex, pthread_mutexattr_t *attr);
int pthread_mutex_destroy(pthread_mutex_t *mutex);

int pthread_mutex_lock(pthread_mutex_t *mutex);
int pthread_mutex_trylock(pthread_mutex_t *mutex);
int pthread_mutex_unlock(pthread_mutex_t *mutex);

int pthread_mutexattr_init(pthread_mutexattr_t *attr);
int pthread_mutexattr_destroy(pthread_mutexattr_t *attr);

int pthread_mutexattr_setprotocol(pthread_mutex_attr_t *attr, int proto);
int pthread_mutexattr_getprotocol(pthread_mutex_attr_t *attr, int *proto);

C
op

yr
ig

ht
 ©

 2
00

6
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll
rig

ht
s r

es
er

ve
d.

POSIX Mutexes: Priority Inheritance

• Can specify the resource access protocol for a mutex:
– Use pthread_mutexattr_setprotocol() during mutex creation

• PTHREAD_PRIO_INHERIT Priority inheritance protocol applies
• PTHREAD_PRIO_PROTECT Priority ceiling protocol applies
• PTHREAD_PRIO_NONE Priority remains unchanged

– If the priority ceiling protocol is used, can adjust the ceiling to match
changes in thread priority (e.g. dynamic priority scheduling):
• pthread_mutexattr_getprioceiling(…)
• pthread_mutexattr_setprioceiling(…)

• Used with POSIX real-time scheduling:
– Allow implementation of fixed priority scheduling with a known resource

access control protocol
– Controls priority inversion, scheduling; allows reasoning about a system

C
op

yr
ig

ht
 ©

 2
00

6
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll
rig

ht
s r

es
er

ve
d.

• POSIX also defines a condition variable API:

• Combine a condition variable with a mutex to wait for a condition
to be satisfied:

int pthread_cond_init(pthread_cond_t *cond, pthread_condattr_t *attr);
int pthread_cond_destroy(pthread_cond_t *cond);

int pthread_cond_wait(pthread_cond_t *cond, pthread_mutex_t *mutex);
int pthread_cond_timedwait(pthread_cond_t *cond, pthread_mutex_t *mutex
 struct timespec *wait_time);

int pthread_cond_signal(pthread_cond_t *cond);
int pthread_cond_broadcast(pthread_cond_t *cond);

lock associated mutex
while (condition not satisfied) {

wait on condition variable
}
do work
unlock associated mutex

POSIX Condition Variables

(timed wait with priority inheritance)

C
op

yr
ig

ht
 ©

 2
00

6
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll
rig

ht
s r

es
er

ve
d.

Messages, Signals and Events

• In addition to controlling access to resources, tasks often need to
communicate information to other tasks

• Can be implemented using a shared data structure – a resource –
that is managed as described previously
– Example: a queue protected by a mutex and condition variable
– Requires synchronisation between tasks

• But may want to communicate with another task without explicit
synchronisation step
– Send another task a message
– Signal another task that an event has occurred

C
op

yr
ig

ht
 ©

 2
00

6
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll
rig

ht
s r

es
er

ve
d.

POSIX Message Queues

• A message queue abstraction provided for this purpose:

• Blocking mq_send() and mq_receive() typical
– Can be set to non-blocking, if desired
– Receiver can be signalled when data arrives, rather than blocking

• Messages have priority, inserted in the queue in priority order
– Messages with equal priority are delivered in FIFO order

mpd_t mq_open(char *mqname, int flags, mode_t mode,
 struct mq_attr attrs);
int mq_close(mpd_t mq);
int mq_unlink(char *mqname);

int mq_send(mpd_t mq, char *msg, size_t len, unsigned prio);
int mq_receive(mqd_t mq, char *msg, size_t len, unsigned *prio);

int mq_setattr(pqd_t mq, struct mq_attr *new, struct mq_attr *old);
int mq_getattr(mpd_t mq, struct mq_attr *buf);

C
op

yr
ig

ht
 ©

 2
00

6
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll
rig

ht
s r

es
er

ve
d.

Message Based Priority Inheritance

• Messages not read until receiving thread executes mq_receive()
• Problem:

– Sending a high priority message to a low priority thread
– The thread will not be scheduled to receive the message

• Solution: message based priority inheritance
– Assume message priorities map to task priorities
– When a task is sent a message, it provides a one-shot work thread to

process that message, which inherits the priority of the message
– Allows message processing to be scheduled as any other job
– Implemented by some RTOS (e.g. QNX); not common

• Typically simulate using a queue with a priority inheriting mutex

C
op

yr
ig

ht
 ©

 2
00

6
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll
rig

ht
s r

es
er

ve
d.

Signalling Events

• Need a way of signalling a task that an event has occurred
– Completion of asynchronous I/O request
– Expiration of a timer
– Receipt of a message
– Etc.

• Many different approaches:
– Unix signals

• Event number N has occurred; no parameters; unreliable (non-queued)
– POSIX signals

• Allow data to be piggybacked onto the signal (a void * pointer)
• Signals are queued, and not lost if a second signal arrives while the first is

being processed
• Signals are prioritised

– Windows asynchronous procedure call and event loop

C
op

yr
ig

ht
 ©

 2
00

6
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll
rig

ht
s r

es
er

ve
d.

Signalling Events

• Signals are delivered asynchronously at high priority
– As a result of a timer event
– As a result of a kernel operation completing
– As a result of action by another process

• High overhead: require a kernel trap, context switch, etc
• Add unpredictable delay

– Executing process is delayed when a signal occurs, by the time taken to
switch to the signal handler of the signalled task, run the signal handler,
and switch back to the original task

• May be better to use synchronous communication where possible
in real time systems, since easier to predict

C
op

yr
ig

ht
 ©

 2
00

6
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll
rig

ht
s r

es
er

ve
d.

Implementation Summary

• As seen, many approaches to implementing resource access
control

• POSIX provides useful baseline functionality
– Priority scheduling abstraction, to implement Rate Monotonic schedules
– A mutex abstraction using either priority inheritance or priority ceiling

protocols to arbitrate resource access

• Similar, sometimes more advanced features, provided by other
real-time operating systems
– E.g The Ada language supports resource access control with the priority

ceiling protocol
– E.g. QNX support message based priority inheritance

C
op

yr
ig

ht
 ©

 2
00

6
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll
rig

ht
s r

es
er

ve
d.

Summary

• Illustrated operation of additional resource access control
protocols, simplifying priority ceiling protocol

• Discussed impact on schedulability
• Described some methods to implement resource access control:

– Use of POSIX real-time extensions and mutexes for locking, to directly
implement the ideas described

– Other mechanisms: semaphores, message queues, signals, etc.

