Real-Time on General Purpose
Systems

Real-Time and Embedded Systems (M)
Lecture 12

UNIVERSITY [&
of
GLASGOW &

Lecture Outline

« Real-time on general purpose systems
« Need for flexible applications
« Implementation strategies

* Scheduling

Material corresponds to parts of chapters 10 and 12 of Liu’s book

Real-Time on General Purpose Systems

* Many real-time systems built using a general purpose operating
system, not an RTOS
— Internet telephony; streaming audio and video; set-top boxes running Linux

— DVD player software

* Operating system may provide limited real-time support, but not
engineered for robust real-time operation, with many sources of
unpredictability

— Virtual memory and/or disk activity
— Limited timer resolution
— Limited scheduler granularity

* Need to engineer applications around these constraints

— Consider how to make your application flexible

Flexible Computation

* Some real-time applications must tolerate fluctuation in available
resources or workload
— A real-time network server may receive more traffic than expected
— A failure may divert load onto a backup system

— Real-time performance may degrade due to load from non-real-time tasks
sharing the processor

* A real-time system has two degrees of flexibility when 1t becomes
impossible to meet all deadlines
— GQGraceful degradation in timeliness

— G@raceful degradation in quality

Flexible Computation: Timeliness

* A task has an (/, L) deadline 1f at least / > 0 jobs among any
consecutive set L > [must complete before their deadline

— The parameter L is the failure window of the task; clearly a spectrum of
requirements
— A hard real-time task has (1, 1) deadlines

— A soft real-time task has (0, L) deadlines

« Depending on the application, systems may degrade by relaxing
their deadlines, allowing some tasks to complete late
— Not generally desirable, but suitable for applications with fixed resource
demands and flexible timing requirements

« Example: a DVD player running on a general purpose operating system might
pause if the system 1s overloaded, rather than dropping frames

— Often requires statistical analysis of performance, to estimate probability of
missing deadline

Flexible Computation: Quality

« Some applications can trade-off, at run time, quality of results for
the amount of time and resources used to produce those results

« As asystem moves into overload, A
it gracefully degrades rather than >
suddenly failing :
e Assumption: a timely result of poor <
quality 1s better than a high quality, -
Load

but late, result

« Examples:

— A telephony application might prefer a brief glitch in output, rather than a
pause that leaves the other party wondering what’s happening

— An air traffic control system should deliver a timely collision warning with
estimated location, rather than an exact warning, delivered too late

Implementing Flexible Computation

« Jobs are divided into an optional part and a mandatory part

— With sufficient resources, both mandatory and optional parts complete;
a precise result

— With limited resources, the optional component is discarded, giving an
imprecise result

* Assumption: possible to subdivide a job, produce meaningful
approximate answers

« How to implement?
— Sieve method
— Milestone method
— Multiple version method

Sieve Method

» A flexible task has a mixture of mandatory and optional jobs

 When overloaded, some optional jobs discarded
— If they were optional, why include them in the system?
— Useful for applications which periodically refresh state

« Example: video compression

— Predicted frames can be discarded on overload

Intermediate (predicted) frames Full frame
AL

A A A

Time

Milestone Method

« The system regularly checkpoints the result of the optional job as
a set of milestones; when deadline reached, job terminates and
latest milestone retrieved

* A monotone 1s a job with optional component that can be stopped
any time; quality of result always increases with longer execution

— Iterative numerical computation

— Iterative statistical computation :‘E
— Layered video encoding g
e
Time
* Longer execution of a non-monotonic job
may not improve results g
— E.g. approximation algorithms that don’t always g
converge .-

Time

Multiple Versions

* The flexible job can be implemented as multiple versions:
— Primary 1s high quality, but has a larger execution time and resource usage

— Alternates are lower quality, but execute quicker or use fewer resources

e [...or provide fault tolerance]

SChedunng/'I ARGy I\
Decision

—po—plAltematel I—}O—}

I Alternate 2 I

* The scheduler must make an a priori decision on which version to
execute, based on load at the start of the job

— Requires more intelligence in the scheduler than sieve or milestone
methods

 Little gain from having more than one alternate

Implementing Flexible Computation

* Which i1s best?

— Sieve method
— Milestone method
— Multiple version method

« It depends... sieve and multiple versions easiest to implement,
milestones likely gives best results

* But: highly application dependent — what is the problem domain?
What algorithm?

Workload Model

* To schedule flexible computations, need a workload model
e Definitions:

— As usual a task, 7, 1s comprised of a series of jobs J,

— Each flexible job, J, 1s logically decomposed into a chain of two jobs, M,
and O, which are the mandatory and optional components

— The release times and deadlines of M, and O, are the same as J; but O, 1s
dependent on M,

— Executiontimee=e¢e,, + e,

J=(2,5] M=(2,5] 0=(2,5]
(o) O »O

* A generalisation of the model used previously:
— non-flexible jobs scheduled as-if e, 1s zero

Workload Model

» Jobs are scheduled so mandatory tasks meet their deadline:

— A schedule for a flexible application is valid if J. 1s allocated processor
time at least equal to e, and at most equal to e

— The schedule is feasible if each job 1s allocated at least e,, units of
processor time before its deadline

— Exactly the same definitions we saw 1n lecture 2 for non-flexible tasks,
adapted to allow for e,

* Optional components of each job execute if there 1s time before
the deadline

— An optional job completes it if receives e, before the deadline
— An optional job shouldn’t execute beyond its deadline
* May be terminated, and revert to the last milestone

* May be pre-empted, and continue to execute at low priority if killing the job
would leave the system inconsistent

Dependent Jobs

« Assumption: the execution time of a job 1s independent of the
previous jobs

« In some systems, saving time in an early job — by skipping its
optional component — makes a later job 1n the task take longer

— Often occurs if errors are cumulative: eventually need to run the full
computation periodically, to bring the error back to an acceptable level

« Need to take this into account when building the schedule, by
modelling both branches of the task graph

—-———1—I | — 11— I —] —
\ SR oam g m—g /
Optional part Later task
skipped to ™ takes longer

meet deadline to execute

Jobs with 0/1 Constraints

 If the sieve or alternate methods used, no point running part of an
optional component

— The optional component has a 0/1 constraint; either runs to completion, or
not at all

— For optional jobs according to the sieve method:

* When the optional jobs becomes eligible to run, make a choice to run the job
based on available execution time

— For optional jobs according to the alternate method:
* Model the alternates as mandatory and optional parts

* Let e, be execution time of the alternate, e, be the difference in execution time
between primary and alternate

* After scheduling the mandatory part for e, , the optional part is scheduled. If e,
available before its deadline, this corresponds to the primary version being
scheduled. Otherwise, only the alternate can be scheduled

Criteria of Optimality

* Correctness: find a feasible schedule that ensures all mandatory
jobs complete

* Quality of result: fit in as many optional jobs as possible, reduce
error 1n the result

— Measure the error according to some domain specific metric
— Clearly desirable if the error function is convex; may influence choice of

algorithm
A concave

=

= linear

- convex

>
€m € Processor
| > .
v~ time

Optional component
runs to reduce error

Criteria of Optimality

Try to reduce the error in the result... which error:
* The sum of the total errors for all jobs?
e The maximum error for an individual job?

* The average error for all jobs?

Heavily application/domain dependent... no general guidelines

Scheduling Flexible Applications

« How to schedule flexible applications?

* Two approaches:
— On-line

— Off-line scheduling and/or heuristics

Off-line Scheduling

Given a set of mandatory and optional tasks, an off-line algorithm
aims to derive a static schedule that minimises some particular error
metric

— Can be executed during design, with hard coded schedule

— Can be executed at run-time, as a result of a significant mode change that
causes more tasks to run

* Generally reduces to linear programming/constraint optimisation
problem
« Exponential time complexity, unrealistic for typical error functions

— 0/1 constraints

— non-linear error functions

On-line Heuristic Scheduling

* All useful scheduling algorithms for flexible applications use
heuristics or are otherwise imprecise

 Two general approaches: mandatory first and slack stealing

— Mandatory first algorithms schedule the mandatory parts of the system
with higher priority than the optional parts

» Use fixed priority algorithm, like rate monotonic, to schedule mandatory parts

* Then schedule optional parts to minimise error:

— dynamic least-attained-time suitable if error functions are convex, since
diminishing returns for tasks that have attained most time

— dynamic best-incremental-return suitable if knowledge of error functions, since run
the task which will most reduce the error

» If don’t know error functions (common case):
— Rate monotonic or earliest deadline schedule of optional parts
— Earliest deadline always achieves zero average error, if possible
— Slack stealing run optional tasks in slack time of mandatory tasks,
dynamically according to EDF

— Both seek to schedule mandatory parts as normal, fit in optional parts

Summary

« Flexible applications useful if system can be overloaded

* Typically only useful on soft real time systems, generally running
on a general purpose operating system
— Otherwise, engineer the system to avoid overload

— Implication: don’t have good scheduling support
» Given knowledge of current time/deadline, application decides to shed work

— sieve, incremental with milestones, alternate algorithm
* Very much heuristic driven, rather than explicitly scheduled
 Inherently imprecise, and difficult to reason about

« If you’re building these systems:
— program defensively
— measure behaviour
— adapt accordingly, based on domain specific heuristics and error functions

