
Assessed Coursework
Course Name Advanced Systems Programming (M)

Coursework Number Summative exercise 2
Deadline Time: 4:30pm Date: 4 March 2019

% Contribution to final
course mark

10%

Solo or Group ü Solo ü Group
Anticipated Hours 10

Submission Instructions

Submit via Moodle, following instructions in the lab
hand-out

Please Note: This Coursework cannot be Re-Assessed

Code of Assessment Rules for Coursework Submission

Deadlines for the submission of coursework which is to be formally assessed will be published in course
documentation, and work which is submitted later than the deadline will be subject to penalty as set out below.

The primary grade and secondary band awarded for coursework which is submitted after the published deadline will
be calculated as follows:

(i) in respect of work submitted not more than five working days after the deadline
a. the work will be assessed in the usual way;
b. the primary grade and secondary band so determined will then be reduced by two secondary bands

for each working day (or part of a working day) the work was submitted late.
(ii) work submitted more than five working days after the deadline will be awarded Grade H.

Penalties for late submission of coursework will not be imposed if good cause is established for the late submission.
You should submit documents supporting good cause via MyCampus.

Penalty for non-adherence to Submission Instructions is 2 bands

You must complete an “Own Work” form via https://studentltc.dcs.gla.ac.uk/

for all coursework

Advanced Systems Programming (M) 2018-2019 – Exercise 2
Dr Colin Perkins, School of Computing Science, University of Glasgow

11 February 2019

Introduction
The Advanced Systems Programming (M) course uses the Rust
programming language (https://rust-lang.org/) to help
illustrate several advanced topics in systems programming. One
such topic is concurrent programming. A key feature needed
to make effective use of a modern multicore processor is safe
concurrency. This exercise explores concurrent programming in
Rust. It is a summative exercise that is worth 10% of the marks
for this course.

Networked Applications and the DNS
Many networked applications operate in a client-server manner.
Clients connect to the server, make a request, wait for a response
to be received, and then disconnect. The server is generally
identified by a domain name, such as www.glasgow.ac.uk,
and clients must perform a DNS lookup to resolve that domain
name to an IP address before they can establish a connection to
the server.

A DNS lookup can return multiple IP addresses for a domain
name. This can occur when multiple hosts serve requests for a
popular service, spreading the load between them, or when a
server is reachable using both IPv4 and IPv6.

Write a program, dnslookup, using the Rust programming
language, that takes a list of one or more domain names on the
command line, and performs a DNS lookup for each name. After
each DNS lookup, your program should print out the list of IP
addresses returned, with each address prefixed with the domain
name and address type. For example, if asked to resolve the
name www.google.com, your program might print the following:

$./dnslookup www.google.com
www.google.com IPv6 2a00:1450:4009:801::2004
www.google.com IPv4 172.217.23.36
$

The Linux machines in the Boyd Orr 720 laboratory have IPv6
enabled, and can resolve IPv6 addresses. Rust provides various
implementations of the trait std::net::ToSocketAddrs in the
standard library that can be used to perform DNS lookups.

This part of the exercise is preparatory work. You do not need
to submit your dnslookup program, and it is not assessed.

Making Sequential Connections
Once a client has resolved the domain name for the server into
a list of IP addresses, it tries to establish a connection. The
way this is typically taught is that the client assumes the DNS
lookup returns the addresses in order of preference, and tries to

connect to each address in turn, stopping when a connection is
successfully established.

The dnslookup example given previously showed an IPv6
and an IPv4 address being returned from the DNS lookup. In this
case, the client would try to connect to the IPv6 address of the
server since this was returned first in the list then, if that failed,
try to connect to the IPv4 address.

Using the Rust programming language, write a new program,
seqcon, to perform a DNS lookup for a domain name given on
the command line, and to establish a connection that server. Your
program should iterate over the list of IP addresses returned from
the DNS lookup, and try to connect to each address in turn on
TCP port 80 (the HTTP port). This should continue until either a
connection is successfully established, or all of the IP addresses
of the server have been tried. Once it successfully establishes
a connection, your program should print of the IP address to
which it connected, then immediately close the connection without
sending any data (that is, your program checks connectivity,
rather than making a useful request).

It is likely that the code you wrote for the dnslookup program
will be useful when developing the seqcon program.

This part of the exercise is preparatory work. You do not need
to submit your seqcon program, and it is not assessed.

Making Concurrent Connections

The problem with trying to connect to each address of a server
in turn is that it can be slow if the server is not reachable on
some addresses. For example, in some cases it can take tens
of seconds for a connection request to timeout if blocked by a
firewall. A better approach is to try to connect to all the addresses
concurrently, proceed with the first that successfully connects,
and close all the other connections. This uses more resources,
as it attempts to open multiple connections in parallel, but can
be much faster to connect.

Using the Rust programming language, write a program,
concon, to perform a DNS lookup for a domain name given
on the command line, and to establish a connection to that server
using concurrent connection requests. This program should be
structured using three types of thread, communicating using
std::sync::mpsc::channel channels, as shown in Figure 1.
This needs one channel per connection attempt thread to connect
it to the main thread, and a single channel (where the transmit
side has been duplicated using clone()) to link the connection
attempt threads to the connected client thread.

• The main thread should perform the DNS lookup for the
domain name specified on the command line. It should
create a single connected client thread, then one connection
attempt thread for each IP address returned by the DNS

1

Main Thread

Connection
Attempt

Connection
Attempt

Connection
Attempt

Connection
Attempt

Connected
Client

1. Perform DNS lookup
2. Create other threads
3. Pass IP addresses to
 Connection Attempt threads

Concurrent connection
establishment threads

Thread representing
established connection

Figure 1: Concurrent connection architecture

lookup, and connect them using MPSC channels as shown
in Figure 1. Once all the threads have been created, it
should send a message to each connection attempt thread
instructing it to attempt to connect to one of the IP addresses
returned from the DNS lookup.

• Each connection attempt thread listens on its input chan-
nel for a message containing an IP address to which
it should connect. When such a message is received,
it tries to connect to port 80 on that address using
std::net::TcpStream::connect. If the connection
succeeds, it sends to TcpStream object down the chan-
nel to the connected client thread and then exits. If the
connection does not succeed, it simply exits.

• The connected client thread waits for connections (i.e.,
TcpStream objects) sent to its input channel. It prints the
peer address of the first connection it receives, then closes
the connection (a real client would send the request at this
point, but it is not necessary to do so in this exercise). For
all other connections, it simply closes the connection.

The goal is to demonstrate the concurrency primitives in Rust,
showing how threads can be spawned and howmessage passing
can be used to pass data between threads. The concon program
you write must be submitted for assessment.

Submission

You must submit the source code for your concon program for
assessment. Create a directory named concon-matric, where
matric is replaced by your seven digit numeric matriculation
number (note: 7-digits only, do not include the first letter of your
surname). Put a copy of the source code for your concon pro-
gram into this directory. Do not include compiled binaries (i.e., run
cargo clean before copying the files into the concon-matric
directory). Create a zip archive of the directory, as a file called
concon-matric.zip. Submit the zip archive via Moodle.

As an example, if your matriculation number was 1234567, you
would perform the following steps to create the zip archive, after
copying your source code into the concon-1234567 directory:

zip -r concon-1234567.zip concon-1234567/

Check carefully that your zip archive extracts into the correct
subdirectory, contains only the requested files, and has the correct
filename.

Assessment and Marking Scheme
This exercise is worth 10% of the mark for this course. You must
submit your report before 4:30pm on 4 March 2019. Following the
University code of assessment, late submissions will be accepted
for up to 5 working days beyond this due date. Late submissions
will receive a two band penalty for each working day, or part
thereof, the submission is late. Submissions that are received
more than five working days after the due date will be awarded a
band of H.

Submissions that are not made via Moodle, that have the
wrong filename, that have a zip archive that extracts into the
wrong directory or that otherwise do not follow the submission
instructions will be subject to a 2 band penalty. This penalty is
in addition to any late submission penalty. This penalty will be
strictly enforced.

Marks will be awarded based on inspection of the source code,
and on compiling and running the concon program, as follows:

• Up to [2 marks] for compiling without errors or warnings
using the Rust compiler installed on the Linux machines in
the Boyd Orr 720 lab.

• Up to [8 marks] for successful operation of the program,
including the ability to perform DNS lookups and to race
IPv4 and IPv6 connection attempts. Your programwill be run
using the following commands on one of the lab machines
in Boyd Orr 720:

unzip concon-$MATRIC.zip
cd concon-$MATRIC
cargo run $DNSNAME

where the variables $MATRIC and $DNSNAME will be set to
your matriculation number and the domain name to look-up.

• Up to [10 marks] for the design and implementation of the
main thread. This will include correct initialisation of the
other threads, correct use of channels to communicate
between the threads, correctly performing the DNS lookup,
and correctly passing the IP addresses to the connection
attempt threads.

• Up to [6 marks] for the design and implementation of the
connection attempt threads. This will include correct hand-
ling the input and output channels, correctly establishing a
connection and passing the TcpStream to the connected
client thread.

• Up to [4 marks] for the design and implementation of the
connected client thread. This will include looping to receive
multiple connections from the connection attempt threads,
printing the peer address of the first successful connection,
and closing connections when no longer needed.

The result will be a numeric mark out of 30. This numeric mark
will be converted to a percentage, then the percentage will be
converted to a band on the 22-point University of Glasgow scale
using the standard translation table for the School of Computing
Science. Any applicable penalty for late submission and/or for
not following submission instructions will then be applied, and a
band will be returned. A brief written justification for the band will
also be supplied.

2

