University

of Glasgow

Advanced Topics in Systems Programming

Advanced Systems Programming (M)
Lecture 1

©Nolo

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/
http://creativecommons.org/licenses/by-nd/4.0/

Introduction and Course Administration

Colin Perkins | https://csperkins.org/ | Copyright © 2019
BY ND

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Contact Details and Website

e Lecturer and course coordinator:
e Dr Colin Perkins / S101b Lilybank Gardens / colin.perkins@glasgow.ac.uk

 No scheduled office hours — make appointments by email if necessary

e Lecture notes and other materials online:

e https://csperkins.org/teaching/2018-2019/adv-systems-programming/
(or on the School’'s Moodle site)

e Paper handouts and lecture recordings will not be provided

 The act of taking notes helps learning

e The act of revising by reviewing your notes and other textbooks gives a useful additional
perspective on the material, helps you understand the topic in depth

e Lecture recordings discourage questions — it's already hard enough to ask a question in a
large lecture theatre, but still harder when you know it's being recorded

©Nolo

https://csperkins.org/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/

Rationale

e Technology shift: desktop PC — laptop, tablet, smartphone, cloud

 Mobile, power-aware, concurrent, real-time, connected

e But still programmed in C, running some variant of Unix — technology stack
that's becoming increasing limiting

e This course will explore new techniques for safer, more effective,
systems programming

e Programming in an unmanaged environment, where data layout and
performance matter

e QOperating systems kernels, device drivers, low-level networking code

©Nolo

https://csperkins.org/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/

Aims and Objectives

* The course aims to explore the features of modern programming
languages and operating systems that can ease the challenges of

systems programming, considering type systems and run-time
support.

|t will review the research literature on systems programming and
operating system interfaces, discuss the limitations of deployed
systems, and consider how systems programming might evolve to
address the challenges of supporting modern computing systems.

o Particular emphasis will be placed on system correctness and secure
programming, to ensure the resulting systems are safe to use in an
adversarial environment.

@O0

https://csperkins.org/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/

Intended Learning Outcomes (1/2)

e By the end of the course, students should be able to:

e To discuss the advantages and disadvantages of C as a systems programming
language, and to compare and contrast this with a modern systems
programming language, for example Rust; to discuss the role of the type
system, static analysis, and verification tools in systems programming, and
show awareness of how to model system properties using the type system to
avoid errors;

e To discuss the challenges of secure low-level programming and write secure
code in a modern systems programming language to perform systems
programming tasks such as parsing hostile network input; show awareness of
security problems in programs written in C;

e To discuss the advantages and disadvantages of integrating automatic memory
management with the operating system/runtime, to understand the operation of
popular garbage collection algorithms and alternative techniques for memory
management, and know when it might be appropriate to apply such techniques
and managed run-times to real-time systems and/or operating systems;

©Nolo

https://csperkins.org/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/

Intended Learning Outcomes (2/2)

e To understand the impact of heterogeneous multicore systems on operating
systems, compare and evaluate different programming models for concurrent
systems, their implementation, and their impact on operating systems; and

e To construct and/or analyse simple programming to demonstrate
understanding of novel techniques for memory management and/or concurrent
programming, to understand the trade-offs and implementation decisions.

©Nolo

https://csperkins.org/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/

Pre-requisites

e The following courses are pre-requisites:
o Systems Programming (H)
e QOperating Systems (H)
 Networked Systems (H)

e Functional Programming (H)

e You are expected to be familiar with the C programming language,
and to understand the basics of operating systems and networking

* A conceptual understanding of functional programming is assumed,
but Haskell programming is not required

©Nolo

https://csperkins.org/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/

Course Outline and Timetable

Week Lecture Laboratory

#1: Introducing Rust (1/2)

#2: Introducing Rust (2/2)

#3: Types and Traits

#4: Ownership, Pointers, and Memory

#5: Concurrency

#6: Coroutines and Asynchronous Code

Colin Perkins | https://csperkins.org/ | Copyright © 2019

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Laboratory Sessions

e Lab sessions are in Boyd Orr 1028, 13:00-14:00 on Mondays

o Self-study handouts will be available online before each lab — work
through the handouts at own pace

I'll be available in the labs to answer questions

Lab handouts have been tested using Rust 1.31.1 on OS X 10.12.6,
but are expected to run on the Linux machines in the lab

©Nolo

10

https://csperkins.org/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/

Assessment

e This is a level M course, worth 10 credits

e Assessment is by examination (80%) and coursework (20%)

o Sample exam paper, with worked answers, will be made available on the website/Moodle
before the end of the semester

 Material from the lectures, labs, and cited papers is examinable

* Aim is to test your understanding of the material, not to test your memory of all the details; explain why
— don't just recite what

e Coursework:

Coursework Date Set: Date Due: Weighting: Topic:

Exercise 1 | Lecture 4 | Lecture 6 10% Memory Management (essay)

Exercise 2 | Lecture 6 | Lecture 9 10% Concurrent Programming (code)

©Nolo

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Recommended Reading (1/2)

| Steve Klabnik and Carol Nichols, "The Rust Programming Language", 2nd _ i
Edition, 2018, ISBN 978-1-59327-828-1 (Amazon, free online edition). OREILLY
THE RUST

PROGRAMMING P :
LANGUAGE rogramining

Jim Blandy and Jason Orendorff, "Programming Rust", Jim Blandy & Jason Orendorff
O'Reilly, 2018, ISBN 978-1-491-92728-1 (Amazon).

The Rust Programming language (https://rust-lang.org/) will be used to illustrate

principles of ownership, memory management, and type-driven programming —
read one of the above books

* You are expected the learn the basics of programming in Rust

©Nolo 12

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/
https://rust-lang.org/

Recommended Reading (2/2)

* Research papers will be cited to illustrate some concepts

* All papers are accessible at no cost from the campus networks

* You are expected to read these research papers

©Nolo

Citations with URLs and/or DOls are provided
Resolve DOls via http://dx.doi.org/

Critical reading of a research paper requires practice

Read in a structured manner, not end-to-end, thinking S. Keshav, “How to Read a Paper”, ACM Computer
. Communication Review, 37(3), July 2007
about the material as you go DOI: 10.1145/1273445.1373458

* Focus on the concepts, not the details

Realise that research papers are written to explore new ideas
 Some will be good ideas, some less so
 Some will be interesting but impractical

o What's impractical today might be important tomorrow — changes in
technology and/or society can change what’s feasible/desirable

Think and judge for yourself!

http://www.eecs.harvard.edu/~michaelm/postscripts/ReadPaper.pdf

13

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/
http://dx.doi.org/
https://dx.doi.org/10.1145/1273445.1273458
https://dx.doi.org/10.1145/1273445.1273458
http://www.eecs.harvard.edu/~michaelm/postscripts/ReadPaper.pdf
http://www.eecs.harvard.edu/~michaelm/postscripts/ReadPaper.pdf

Systems Programming

Colin Perkins | https://csperkins.org/ | Copyright © 2019
BY ND

 What is systems programming?
* The state of the art

e Challenges and limitations

14

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

What is Systems Programming?

 Infrastructure components, operating systems, device drivers,
network protocols, services

e Systems programs tend to be constrained by:

e Memory management and data representation
e |/O operations
 Management of shared state

e Performance

©Nolo

15

https://csperkins.org/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/

Memory Management and Data Representation

* Predictability

* Timing of allocations must be bounded
for real-time applications

 Bounds on memory usage
* Data locality

* Cache line sharing impacts performance

* Data representation

e Device drivers that must control via fixed
layout control registers

* Network protocol implementations must
conform to specified packet layout

16000 - — - B o gﬁrgz Haswell
32 KB L1 d-cache
256 KB L2 cache
8 MB L3 cache
64 B block size

,, Ridges
> of temporal
locality

Read throughput (MB/s)

Slopes
of spatial
locality

— 32k
< 128k
T ! 512k
s5 o)) om
Stride (x8 bytes) 89 8m
ST

128m

Size (bytes)

Smaller values of stride indicate data with better spatial
locality; size is the total amount of data accessed

* Ensuring data is aligned and packed into cache lines for high performance

* Systems programming languages offer control of memory management and data
representation — others languages lack such controls

* e.g., stack vs. heap allocation and explicit pointers in C, compared to Java where all objects
are allocated on the heap and accessed via implicit references

©Nolo

16

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

/O Operations

* Network performance increasingly a
bottleneck:

Chart shows Ethernet bit rate over time —
wireless links follow a similar curve

Closely tracking exponential growth over
time — unlike CPU speed, which stopped
growing significantly mid-2000s

MTU remains constant but packet rate
increases — fewer cycles to process
each packet

e SSD performance on a similar trend
for file system access

—~

Ethernet bit rate (Mbps

400000

300000

200000

100000

0
1990 1993 1996 1999 2002 2005 2008 2011 2014 2017

Date

* |/O performance of systems software critical to overall system performance

©Nolo

Device drivers, network protocol stack, file system

17

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Management of Shared State

o Systems programs responsible for coordinating shared mutable state:

o State shared across layers/between kernel and applications
e Data structures for zero-copy networking
 Header processing and state for the TCP stack

e State shared between threads

e [nternal state of the kernel
e File systems
e Network code

e Highly performance critical

e Systems programming languages allow sharing data between layers
and/or threads — other languages disallow/discourage such sharing

©Nolo

18

https://csperkins.org/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/

Performance

9,000 terawatt hours (TWh)

ENERGY FORECAST 209% of projected” 4

* Systems infrastructure performance fundamentally c
affects overall system and application performance — &@iimaes, 7

will take a larger slice.
— M Networks (wireless and wired)

* Mobile devices have limited battery life e eene etson, omputers mobils phanes)

M Data centres

* Data centre efficiency and power consumption -

* Systems components often the bottleneck in terms -
of overall performance and power efficiency -

0
2010 2012 2014 2016 2018 2020 2022 2024 2026 2028 2030

The hr‘[b expected case’ projection from Anders Andrae, a specialist in sustainable ICT. In his

* Simply because they’re the basis on which the higher-
Ievel SyStemS depend ‘best c sce ICTg ows to Iy8‘7 ftc:[llbII: t‘[y(:ityn:lmdab;/2030 rather th t 21%.

Other demand
2015 I I
Best case I l
2030
2030

0 | 40,000 TWh

INTERNET EXPLOSION

Internet traffic* is growing exponentially,
and reached more than a zettabyte
(ZB, 10?* bytes) in 2017.

1987 19.97 NF 1 _;01273
2 TB! 60 PB SOEB

c to and from data centre: B, terabyte (10*? bytes); PB, petabyte (10'° bytes); EB, exabyte (10'€ bytes).

©Nolo

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/
https://dx.doi.org/10.1038/d41586-018-06610-y
https://dx.doi.org/10.1038/d41586-018-06610-y

Systems Programming

* Systems programming languages offer
low-level control of data representation,

memory management, |I/O, and sharing.

* They are high-performance — concrete
rather than high abstraction

©Nolo

Programming Language Challenges in Systems Codes
Why Systems Programmers Still Use C, and What to Do About It

J. Shapiro, “Programming language challenges in systems codes:
why systems programmers still use C, and what to do about it”,
Workshop on Programming Languages and Operating Systems,
San Jose, CA, October 2006. DOI:10.1145/1215995.1216004

20

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/
https://dx.doi.org/10.1145/1215995.1216004
https://dx.doi.org/10.1145/1215995.1216004

The State of the Art

e Most devices run some variant of Unix as their
operating system, programmed in C

e Original version of Unix written in assembly for PDP-7
minicomputer in 1969

e Ported to the PDP-11/40 in early 1970s, re-writing into
C at that language was developed

 “The PDP-11/40 was designed to fit a broad range of
applications, from small stand alone situations where
the computer consists of only 8K of memory and a
processor, to large multi-user, multi-task applications
requiring up to 124K of addressable memory space.
Among its major features are a fast central processor
with a choice of floating point and sophisticated memory management, both of which are hardware
options.”

e macOS, iOS, Linux and Android are moderns variants and reimplementations of Unix

e This has proven surprisingly resilient and portable — but is it still the right model?

©Nolo 21

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/
https://pdos.csail.mit.edu/6.828/2005/readings/pdp11-40.pdf

Unix and C: Strengths

©Nolo

* Unix gained popularity due to portability and ease of
source code access, but also:

Small, relatively consistent set of API calls
Low-level control

Robust and high performance

Easy to understand and extend

* Portability was due to the C programming language

Simple, easy to understand, easy to port to new architectures

Explicit pointers, memory allocation, and control over data
representation

Uniform treatment of memory, device registers, and data
structures — easy to write device drivers, network protocols,
and interface with external formats

Weak type system allows aliasing and sharing

struct {
short errors
short busy
short unit_sel
short done :
short irq enable :
short reserved :
short dev_func
short dev_enable :

} ctrl reg;

RPNMNWRRWEREAN

int enable irq(void)

{
ctrl reg *r = 0x80000024;
ctrl reg tmp;

tmp = *r;

if (tmp.busy == 0) {
tmp.irq enable = 1;
*r = tmp;
return 1;

}

return O;

Example: hardware access in C

22

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Unix and C: Weaknesses

e Unix APls reflect 1970s/1980s minicomputer architectures

e Sockets and file system APIs significant performance bottlenecks
e Security architecture insufficiently flexible
 No portable APIs for mobility, power management, etc.

e Assumes professional, interactive, systems administration
e C programming language
e Limited concurrency support — memory model for pthreads poor supported

e Undefined behaviour, buffer overflows — security risks

 Weak type system — difficult to reason about correctness, effectively model
problem domain

©Nolo

23

https://csperkins.org/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/

Unix and C

e Unix has proven surprisingly resilient and portable — but is it still the right model?

No — numerous work-arounds for its limitations exist:

» Kernel bypass networking
* Increasingly baroque package management
e Containers and sandboxing

 The C programming language is increasingly a liability

Too easy to introduce security vulnerabilities
Too easy to trip over undefined behaviour
Insufficient abstractions

S. Kell, “Some were meant for C: The endurance of an unmanageable language”,
International Symposium on New Ideas, New Paradigms, and Reflections on Programming
& Software, Vancouver, BC, Canada, October 2017. ACM. DOI:10.1145/3133850.3133867

Some Were Meant for C

The Endurance of an Unmanageable Language

Stephen Kell
Computer Laboratory
University of Cambridge
Cambridge, United Kingdom
stephen kell@cl.cam.ac.uk

Abstract

The C language leads a double lfe: as an application
programming language of yesteryear, perpetuated by
circumstance, and as a systems programming language
which remains a weapon of choice decades after its cre-
ation. This essay is a C programmer’s reaction to the call
to abandon ship. It questions several properties com-
‘monly held to define the experience of using C; these
include unsafety, undefined behaviour, and the moti-
vation of performance. It argues all these are in fact
inessential; rather, it traces C's ultimate strength to a
communicative design which does not fit easily within
the usual conception of “a programming language”, but
can be seen as a counterpoint to so-called “managed
languages”. This communicativity is what facilitates the

<sential

1 Introduction
While some were meant for sea,intu-boats
“Round the shore's knce,
(Milling with the sand,
and always coming back to land),
For others, up above
I all they care to think of,
Up there with the birds and clouds, and
Words don't follow
—Tiny Ruins, from “Priest with Balloons”

Tam not ashamed to say that I program in C, and
that Ienjoy it. This puts me at odds with much of pro-
gramming language discourse, among both researchers
and influential practitioners, which holds that C is evil
and must be destroyed. If only we had a “safe systems
language”! If only we could eke out a

interact with other, remote parts—being “alongside” not
“within'”

CCS Concepts» Software and ts engineering — Gen-
eral programming languages; Compilers; * Social and
professional topics > History of programmiing languages;

Keywordssystems programming, virtual machine, man-
aged languages, safety, undefined behavior

ACM Reference Format:
Stephen Kell. 2017. Some W tfor C. In Proceedings
of 2017 ACM SIGPLAN Iternational Symposiun on New Ideas,
New Paradigns, and Reflections on Programming and
Yancouser, Canada, October 25-27, 2017 (Onaard!'17), 1 pages.
51/1doi.0rg/10,1145/3133850.3133

Permission to make digital o hard copies of ll or partof this work.
hat

little more performance in implementations of other
languages, to remove the last remaining motivation for
using C!If only we could make “the industry” see the
error of its ways! Then C would be eradicated, and there
would be much rejoicing

Tam a “systems programmer”. It doesn't mean I hack
kernels, so much as that T build systems—pieces of in-
frastructure that integrate multiple interacting parts,
and sit underneath application code. Programming in
C feels right for doing this; it has a viscerally distinctive
feeling compared to other, safer, higher-level languages.
Certainly, today’s experience of programming in C re-
‘mains, despite certain advances, unforgiving, But I have
never felt C to be an encumbrance. C is not a language I
use because I'm stuck with it L use it for positive reasons.
This essay explores those reasons and their apparent

for personal or classroom use i granted 4
capiesare not made or distibuted for profitor commercial adantage

thor(s) must be honored. Abstracting with credit i permitied. T copy
otherwise, or republish, o poston servers or to relistribute to sts,

d

2 Two viewpoints

The lyric from which this essay borrows its title evokes

72017, Vancowoer, Canndo
2017 Copyright held by the owner/author(s). Publication rights
licensed o Assoclation for Computing Machinery.

ways of being; that of the idealist who
longs to be among the clouds, and that of the sea-farers

Y P
surface. The idealist in the song is a priest, who takes
literally to the clouds: one day, clutching at helium bal-
loons, he steps off a cliff edge, floats up and away, and

24

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/
https://dx.doi.org/10.1145/3133850.3133867
https://dx.doi.org/10.1145/3133850.3133867

Challenges and Limitations

 What changes in the environment are affecting systems programs?
e The end of Moore’s law
e |ncreasing concurrency — imposed due to hardware changes
e Increasing need for security — the Internet

e Increasing mobility and connectivity

©Nolo

25

https://csperkins.org/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/

The End of Moore’s Law (1/2): Physical Limits

40 Years of Microprocessor Trend Data

| Transistors
D3 R S S SR LAt (thousands)
z | BRIV Yot
105 b A i VYO o] Single-Thread
é é adahA 20.° Performance
: : 4044 ‘~
Y I W ST =L L | (specINT x 10%)
. : a N ‘.4! I!'““-‘ Frequency (MHz)
o |t AR
, 4 I 3 .ﬂ-. = 'v'* Typical Power
107 [B RS TRt ;;ﬂ,'&%’ ------------------ - (Watts)
Lo e ff,,,y,f,,v,'?}f ,,,,,,,,,,,,, MR 2 5¢ i ,,,,,,,,,,, | Number of
10 L = = v ¥ ¢ :‘# *e Logical Cores
A I 4 v Yy vwv :
100 ‘: ------------ ! ----- * ‘----000 mmmoo ---------- e -
I i | I
1970 1980 1990 2000 2010 2020
Year

Original data up to the year 2010 collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batten
New plot and data collected for 2010-2015 by K. Rupp

* Moore’s law: advances in manufacturing double transistor count every two years
* But, rapidly approaching physical limits:

e 10nm process — features ~40 atoms across

e Transistors will stop shrinking soon

©Nolo

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/
https://www.karlrupp.net/2015/06/40-years-of-microprocessor-trend-data/
https://www.karlrupp.net/2015/06/40-years-of-microprocessor-trend-data/

The End of Moore's Law (2/2): Dennard Scaling

40 Years of Microprocessor Trend Data

7
10 ; : ; : Transistors
O IS N S S S (thousands)
A “éAA .
105 b S e Single-Thread
: A A @
, A L Performance
SV S R S RaPLL: Lo | (speciNT x 10°)

Frequency (MHz)

Typical Power

B ; Y e 4 (Watts)
-.= v"’ ¥y vv L 2

1 m " LYYy v ‘..'§ Number of

10 A ‘ 77777 v 7777777777777777 ¢ :‘ ¢ 7 LOgical Cores
N A A A A i om‘

10° —-‘---0 ------------ ! ----- R S R ST — -

1970 1980 1990 2000 2010 2020

Year

Original data up to the year 2010 collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batten
New plot and data collected for 2010-2015 by K. Rupp

* Dennard scaling: smaller transistors reduce capacitance
and voltage — frequency increase without corresponding
Increase in power consumption

Power consumption « C-F-V2

» C = capacitance (transistor size)
» F = frequency (clock rate)
» V = voltage

* Scaling relation breaks down eventually, due to leakage
— clock frequency increase stalls

* System performance constraints become more acute

©Nolo

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/
https://www.karlrupp.net/2015/06/40-years-of-microprocessor-trend-data/
https://www.karlrupp.net/2015/06/40-years-of-microprocessor-trend-data/

Increasing Concurrency

40 Years of Microprocessor Trend Data
107 T T T T

; Transistors
106 D T e A & | (thousands)
L aakhis
105 b A i VYol || Single-Thread
é : T 00.% > Performance
: : AALA P
b e | speaiTx i)
AL o 5
z e P | T] Frequency (MHz
e R A.g',.:.-"!'“‘"" | Freovenoy (ke
s e gl L Typical Power
102 [B b .e'-vvvv'yv'y;ﬁ¥"v'v"§ ----------- - (Watts)
A -:EI vv'v’ Yy o Yy ¢ 'i
N R LR AR AR s2e? _| Number of
10 L = = v Y i :‘# . Logical Cores
10° —-‘---0 ------------ ! ----- TS ‘ovommmzo ---------- ST — -
j i i i
1970 1980 1990 2000 2010 2020
Year

Original data up to the year 2010 collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batten
New plot and data collected for 2010-2015 by K. Rupp

* Breakdown of Dennard scaling limits clock frequency, but Moore’s law gives more
transistors — used to increase number of cores

* Concurrency related problems become more severe:

e Ensuring correctness, avoiding race conditions and deadlocks

e Ensuring good performance

©Nolo

28

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/
https://www.karlrupp.net/2015/06/40-years-of-microprocessor-trend-data/
https://www.karlrupp.net/2015/06/40-years-of-microprocessor-trend-data/

Increasing Need for Security

14,000

Distribution

12,000
10,000

8,000

Number of security vulnerabilities reported per
year — US National Vulnerability Database

6,000 |
4,000 |

2,000

0

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018

Source: https://nvd.nist.gov/general/visualizations/vulnerability-visualizations/cvss-severity-distribution-over-time

e \Weaponisation of the Internet

e The combination of C and Unix has not proven easy to secure

Colin Perkins | https://csperkins.org/ | Copyright © 2019
BY ND

29

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/
https://nvd.nist.gov/general/visualizations/vulnerability-visualizations/cvss-severity-distribution-over-time
https://nvd.nist.gov/general/visualizations/vulnerability-visualizations/cvss-severity-distribution-over-time

Increasing Mobility and Connectivity

e Computing increasing implies mobile devices
e Always on — but constrained by limitations of battery power

* Always connected — by increasingly heterogenous networks

e Personal — but vulnerable

Do we have the APls, tools, and programming models to make
effective use of such devices?

©Nolo

30

https://csperkins.org/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/

Next Steps in Systems Programming

Colin Perkins | https://csperkins.org/ | Copyright © 2019
BY ND

31

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Next Steps in Systems Programming

 Need a programming language and environment that:

* Improves memory management and safety — while maintaining control over
allocation and data representation

e Improves security — eliminates common classes of vulnerability
e Improves support for concurrency — eliminates race conditions

e Improves correctness — eliminates common classes of bug

e Advances in programming language design are starting to provide the
necessary tools — and beginning to be applied to systems languages

e Modern type systems

e Functional programming techniques

©Nolo

32

https://csperkins.org/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/

What is a Modern Type System?

A modern type system is expressive enough to:

e Provide useful guarantees about program behaviour

* Prevent buffer overflows, use-after-free bugs, race conditions, iterator invalidation, ...

e Provide a model of the problem that prevents inconsistencies in the solution, while avoiding

run-time overheads

* No cost abstractions — compile-time checking that has no run-time cost

* Describe constraints on program behaviour in the types — the compiler as a debugger

ACCEPT(2) BSD System Calls Manual ACCEPT(2)

NAME
accept -- accept a connection on a socket

SYNOPSIS
#include <sys/socket.h>

Qp (int socket,) struct sockaddr *restrict address,

solker gstrict address_len);

DESCRIPTION
The argument socket is a socket that has been created with socket(2),
bound to an address with bind(2), and is listening for connections after
a listen(2). accept() extracts the first connection request on the queue
of pending connections, creates a new socket with the same properties of
sock i i pend-

©Nolo

Common bug in networking code: call read () on
listening socket, not socket returned from accept ()
that represents the connection

Both file descriptors are represented as type int —
compiler can’t check for such misuse

If listening socket and connected socket were separate
types, and the read () call took a connected socket
parameter, this bug would be detected at compile-time

Trivial example of important principle — try to describe
behaviour in types so compiler can detect logic errors

33

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

What is Functional Programming?

©Nolo

* A programming style that highlights:
e Pure, referentially transparent, functions
 No side effects
e No shared mutable state
e Control over I/O

with language support for functions
as first class types

e Pure functional languages constrain
programs

o Haskell is a testbed for exploring pure
functional programming — what are its
benefits and costs?

* Principled, but perhaps impractical for
large-scale systems programs

* Not intended as an industrial-strength
platform for deployment

* The pure functional style is unsuited to
some programs, but natural for others

e But concepts are widely applicable

e Pure functional code is easy to test and
debug — no hidden state

e Pure functional code is thread safe — no
side effects or mutable state

e Eliminating shared mutable state and
controlling 1/O avoids race conditions

e Use functional programming ideas
where they make sense — prevent
certain classes of bugs

34

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Improving Memory Management and Safety

* C has manual memory management

* Pointers, malloc() and free()

e Arrays represented as pointers to their first element,
and don't store length

e Access outside allocated memory “undefined” but no
checks to prevent

e (Good reasons for this at the time:

e Machines were slow and had limited memory
e Bounds checks and garbage collection too expensive
* Not all of these are still valid

 These design decisions lead bugs:

o Use after free, memory leaks, buffer overflows

e (C++ also suffers from) iterator invalidation

 Modern type systems can eliminate these classes of bug

 Enforce bounds checks

int foo[5];

// The following are equivalent:

foo[3] = 42;
*(foo+3) = 42;
*(3+foo) = 42;
3[foo] = 42;

e Enforce ownership of data — code that tries to use data after it's been freed won’t compile;

similar for iterator invalidation

©Nolo

35

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Improving Security

Vulnerabilities By Type

N N
(= (=)
—_ |-
w N

N
’O
—
EN

N N
(= (=)
—_ |
o o

of
Vulnerabilities
894
1020
1677
2156
1527
2451
4935
6610
6520
5632
5736
4652
4155
5297
5191
7946
6484
6447
14714
16555
4
110603

DoS Code- Memor:y .Sql- Directory Re::::\s Bypas.s Gain . .G.ain CSRF File. # of.
Execution Corruption Injection Traversal splitting something Information Privileges Inclusion exploits
177 aLil?) 172 2 7 25 16 103 2
257 208 206 2 4 20 48 19 139
403 403 297 7 34 123 83 36 220 2 2
498 51535 435 2 41 200 103 127 74 199 2 14 1
381 477 371 2 49 129
0| e1a| ato s s oo Half of all reported security vulnerabilities are memory safety
838 1627 657 21 e04a 786 Violations that should be caught by a modern type system —
893 2719 663 91 967 1302 buffer overflows, use-after-free, memory corruption, treating data as executable code
1101 2601 954 95 706 884
s 2310 ees 128 1101 sy US€ Of type based modelling of the problem domain can help
1035 2185 70 188 93 st address others — by more rigorous checking of assumptions
1102 1714 680 342 520 605 275 8 234 282 238 8 73 1493 |
1221 1334 770 chul 294 467 108 7 197 409 206 58 17 557
1425 1459 843 423 243 758 122 13 343 389 250 166 14 624
1455 1186 859 366 156 650 110 7 352 511 274 123 1 205
1598 1574 850 420 305 1105 204 12 457 2104 239 264 2 401
1791 1826 1079 749 218 778 150 12 577 748 367 248 5 127
2028 1494 1325 717 94 497 99 15 444 843 600 87 7 1
3154 3004 2805 745 503 1516 274 11 629 1706 459 327 18 6
1852 3035 2451 400 516 2001 509 11 709 1374 247 461 31 4
2 1
22685 30435 17226 5043 7438 13667 3823 162 5880 10104 4877 2123 2195 4333
20.5 27.5 15.6 4.6 6.7 12.4 3.5 0.1 5.3 9.1 4.4 1.9 2.0

36

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/
https://www.cvedetails.com/vulnerabilities-by-types.php
https://www.cvedetails.com/vulnerabilities-by-types.php
https://www.cvedetails.com/vulnerabilities-by-types.php
https://www.cvedetails.com/vulnerabilities-by-types.php
https://www.cvedetails.com/vulnerabilities-by-types.php
https://www.cvedetails.com/vulnerabilities-by-types.php
https://www.cvedetails.com/vulnerabilities-by-types.php
https://www.cvedetails.com/vulnerabilities-by-types.php
https://www.cvedetails.com/vulnerabilities-by-types.php
https://www.cvedetails.com/vulnerabilities-by-types.php
https://www.cvedetails.com/vulnerabilities-by-types.php
https://www.cvedetails.com/vulnerabilities-by-types.php
https://www.cvedetails.com/vulnerabilities-by-types.php
https://www.cvedetails.com/vulnerabilities-by-types.php
https://www.cvedetails.com/vulnerabilities-by-types.php
https://www.cvedetails.com/vulnerabilities-by-types.php
https://www.cvedetails.com/vulnerabilities-by-types.php

Improving Support for Concurrency

©Nolo

Software increasingly concurrent to make
effective use of multicore hardware

Common abstraction: threads, locks, shared
mutable state
Prone to race conditions:

* Too many or too few locks held
* Locks held at the wrong time
* Locks don’t compose

Program in a function style: avoid races by
avoiding shared mutable state

Avoid races by enforcing single ownership of
data — message passing, rather than sharing

Thread A

Acquire lock

Release lock

struct ..

Thread B

{ Acquire lock

Blocked

Release lock

37

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Improving Correctness

e Modern systems programming languages can eliminate certain classes of bug
that are common in C

o Use-after-free, memory leaks, buffer overflows, iterator invalidation
e Data races in multi-threaded code
e Don't fix the bug — eliminate the class of bugs

 Modern type systems allow for better modelling of the problem domain, and so
more checking of code for consistency

e Define types representing the problem domain, rather than using generic types — e.qg., if you
pass around PersonId and VehicleId rather than int, the compiler will warn if you pass
the wrong type of identifier to a function

* Represent program states in the types — e.g., ListeningSocket vs. ConnectedSocket

 Modern languages allow you to define types and abstractions easily and without run-time cost
— type-first design allows code that is correct by construction

e Use the compiler to debug your design

©Nolo

38

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Next Steps in Systems Programming

 People can’'t manage the complexity — need better tooling to help

e C and Unix solve many systems programming problems
e Control over data representation, memory management, sharing of state

 Emerging languages and systems give the same degree of control — with
added safety

o Strongly typed languages
e Types help model the problem domain, structure code

Types and associated tooling help detect logic errors early — correct
by construction

This course will explore these ideas using the Rust programming
language

©Nolo

39

https://csperkins.org/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/

Summary

Colin Perkins | https://csperkins.org/ | Copyright © 2019
BY ND

What is systems programming?
The state of the art
Challenges and limitations

Next steps in systems programming

40

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

