
Colin Perkins | https://csperkins.org/ | Copyright © 2019 | This work is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International License. To
view a copy of this license, visit http://creativecommons.org/licenses/by-nd/4.0/ or send a letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.

Advanced Topics in Systems Programming

Advanced Systems Programming (M)
Lecture 1

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/
http://creativecommons.org/licenses/by-nd/4.0/

Colin Perkins | https://csperkins.org/ | Copyright © 2019

Introduction and Course Administration

!2

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2019

Contact Details and Website

• Lecturer and course coordinator:
• Dr Colin Perkins / S101b Lilybank Gardens / colin.perkins@glasgow.ac.uk

• No scheduled office hours – make appointments by email if necessary

• Lecture notes and other materials online:
• https://csperkins.org/teaching/2018-2019/adv-systems-programming/  

(or on the School’s Moodle site)

• Paper handouts and lecture recordings will not be provided
• The act of taking notes helps learning

• The act of revising by reviewing your notes and other textbooks gives a useful additional
perspective on the material, helps you understand the topic in depth

• Lecture recordings discourage questions – it’s already hard enough to ask a question in a
large lecture theatre, but still harder when you know it’s being recorded

!3

https://csperkins.org/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/

Colin Perkins | https://csperkins.org/ | Copyright © 2019

Rationale

• Technology shift: desktop PC → laptop, tablet, smartphone, cloud
• Mobile, power-aware, concurrent, real-time, connected

• But still programmed in C, running some variant of Unix – technology stack
that’s becoming increasing limiting

• This course will explore new techniques for safer, more effective,
systems programming
• Programming in an unmanaged environment, where data layout and

performance matter

• Operating systems kernels, device drivers, low-level networking code

!4

https://csperkins.org/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/

Colin Perkins | https://csperkins.org/ | Copyright © 2019

Aims and Objectives

• The course aims to explore the features of modern programming
languages and operating systems that can ease the challenges of
systems programming, considering type systems and run-time
support.

• It will review the research literature on systems programming and
operating system interfaces, discuss the limitations of deployed
systems, and consider how systems programming might evolve to
address the challenges of supporting modern computing systems.

• Particular emphasis will be placed on system correctness and secure
programming, to ensure the resulting systems are safe to use in an
adversarial environment.

!5

https://csperkins.org/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/

Colin Perkins | https://csperkins.org/ | Copyright © 2019

Intended Learning Outcomes (1/2)

• By the end of the course, students should be able to:
• To discuss the advantages and disadvantages of C as a systems programming

language, and to compare and contrast this with a modern systems
programming language, for example Rust; to discuss the role of the type
system, static analysis, and verification tools in systems programming, and
show awareness of how to model system properties using the type system to
avoid errors;

• To discuss the challenges of secure low-level programming and write secure
code in a modern systems programming language to perform systems
programming tasks such as parsing hostile network input; show awareness of
security problems in programs written in C;

• To discuss the advantages and disadvantages of integrating automatic memory
management with the operating system/runtime, to understand the operation of
popular garbage collection algorithms and alternative techniques for memory
management, and know when it might be appropriate to apply such techniques
and managed run-times to real-time systems and/or operating systems;

• …

!6

https://csperkins.org/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/

Colin Perkins | https://csperkins.org/ | Copyright © 2019

Intended Learning Outcomes (2/2)

• …

• To understand the impact of heterogeneous multicore systems on operating
systems, compare and evaluate different programming models for concurrent
systems, their implementation, and their impact on operating systems; and

• To construct and/or analyse simple programming to demonstrate
understanding of novel techniques for memory management and/or concurrent
programming, to understand the trade-offs and implementation decisions.

!7

https://csperkins.org/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/

Colin Perkins | https://csperkins.org/ | Copyright © 2019

Pre-requisites

• The following courses are pre-requisites:
• Systems Programming (H)

• Operating Systems (H)

• Networked Systems (H)

• Functional Programming (H)

• You are expected to be familiar with the C programming language,
and to understand the basics of operating systems and networking

• A conceptual understanding of functional programming is assumed,
but Haskell programming is not required

!8

https://csperkins.org/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/

Colin Perkins | https://csperkins.org/ | Copyright © 2019

Course Outline and Timetable

!9

Week Lecture Laboratory

1 #1: Introduction #1: Introducing Rust (1/2)

2 #2: Types and Systems Programming #2: Introducing Rust (2/2)

3 #3: Type-based Modelling and Design #3: Types and Traits

4 #4: Resource Ownership and Memory Management
#4: Ownership, Pointers, and Memory

5 #5: Garbage Collection

6 #6: Concurrency #5: Concurrency

7 #7: Coroutines and Asynchronous Programming
#6: Coroutines and Asynchronous Code

8 #8: Security Considerations

9 #9: Open Issues and Future Directions

10

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2019

Laboratory Sessions

• Lab sessions are in Boyd Orr 1028, 13:00-14:00 on Mondays

• Self-study handouts will be available online before each lab – work
through the handouts at own pace

• I’ll be available in the labs to answer questions

• Lab handouts have been tested using Rust 1.31.1 on OS X 10.12.6,
but are expected to run on the Linux machines in the lab

!10

https://csperkins.org/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/

Colin Perkins | https://csperkins.org/ | Copyright © 2019

Assessment

• This is a level M course, worth 10 credits

• Assessment is by examination (80%) and coursework (20%)
• Sample exam paper, with worked answers, will be made available on the website/Moodle

before the end of the semester

• Material from the lectures, labs, and cited papers is examinable
• Aim is to test your understanding of the material, not to test your memory of all the details; explain why

– don’t just recite what

• Coursework:

!11

Coursework Date Set: Date Due: Weighting: Topic:

Exercise 1 Lecture 4 Lecture 6 10% Memory Management (essay)

Exercise 2 Lecture 6 Lecture 9 10% Concurrent Programming (code)

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2019

Recommended Reading (1/2)

• The Rust Programming language (https://rust-lang.org/) will be used to illustrate
principles of ownership, memory management, and type-driven programming –
read one of the above books

• You are expected the learn the basics of programming in Rust

!12

Jim Blandy and Jason Orendorff, "Programming Rust",
O'Reilly, 2018, ISBN 978-1-491-92728-1 (Amazon).

Steve Klabnik and Carol Nichols, "The Rust Programming Language", 2nd
Edition, 2018, ISBN 978-1-59327-828-1 (Amazon, free online edition).

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/
https://rust-lang.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2019

Recommended Reading (2/2)

• Research papers will be cited to illustrate some concepts
• Citations with URLs and/or DOIs are provided

• Resolve DOIs via http://dx.doi.org/

• All papers are accessible at no cost from the campus networks

• You are expected to read these research papers
• Critical reading of a research paper requires practice

• Read in a structured manner, not end-to-end, thinking 
about the material as you go
• Focus on the concepts, not the details

• Realise that research papers are written to explore new ideas
• Some will be good ideas, some less so

• Some will be interesting but impractical

• What’s impractical today might be important tomorrow – changes in
technology and/or society can change what’s feasible/desirable

• Think and judge for yourself!

!13

How to Read a Paper

S. Keshav
David R. Cheriton School of Computer Science, University of Waterloo

Waterloo, ON, Canada
keshav@uwaterloo.ca

ABSTRACT
Researchers spend a great deal of time reading research pa-
pers. However, this skill is rarely taught, leading to much
wasted effort. This article outlines a practical and efficient
three-pass method for reading research papers. I also de-
scribe how to use this method to do a literature survey.

Categories and Subject Descriptors: A.1 [Introductory
and Survey]

General Terms: Documentation.

Keywords: Paper, Reading, Hints.

1. INTRODUCTION
Researchers must read papers for several reasons: to re-

view them for a conference or a class, to keep current in
their field, or for a literature survey of a new field. A typi-
cal researcher will likely spend hundreds of hours every year
reading papers.

Learning to efficiently read a paper is a critical but rarely
taught skill. Beginning graduate students, therefore, must
learn on their own using trial and error. Students waste
much effort in the process and are frequently driven to frus-
tration.

For many years I have used a simple approach to efficiently
read papers. This paper describes the ‘three-pass’ approach
and its use in doing a literature survey.

2. THE THREE-PASS APPROACH
The key idea is that you should read the paper in up to

three passes, instead of starting at the beginning and plow-
ing your way to the end. Each pass accomplishes specific
goals and builds upon the previous pass: The first pass
gives you a general idea about the paper. The second pass
lets you grasp the paper’s content, but not its details. The
third pass helps you understand the paper in depth.

2.1 The first pass
The first pass is a quick scan to get a bird’s-eye view of

the paper. You can also decide whether you need to do any
more passes. This pass should take about five to ten minutes
and consists of the following steps:

1. Carefully read the title, abstract, and introduction

2. Read the section and sub-section headings, but ignore
everything else

3. Read the conclusions

4. Glance over the references, mentally ticking off the
ones you’ve already read

At the end of the first pass, you should be able to answer
the five Cs:

1. Category: What type of paper is this? A measure-
ment paper? An analysis of an existing system? A
description of a research prototype?

2. Context: Which other papers is it related to? Which
theoretical bases were used to analyze the problem?

3. Correctness: Do the assumptions appear to be valid?

4. Contributions: What are the paper’s main contribu-
tions?

5. Clarity: Is the paper well written?

Using this information, you may choose not to read fur-
ther. This could be because the paper doesn’t interest you,
or you don’t know enough about the area to understand the
paper, or that the authors make invalid assumptions. The
first pass is adequate for papers that aren’t in your research
area, but may someday prove relevant.

Incidentally, when you write a paper, you can expect most
reviewers (and readers) to make only one pass over it. Take
care to choose coherent section and sub-section titles and
to write concise and comprehensive abstracts. If a reviewer
cannot understand the gist after one pass, the paper will
likely be rejected; if a reader cannot understand the high-
lights of the paper after five minutes, the paper will likely
never be read.

2.2 The second pass
In the second pass, read the paper with greater care, but

ignore details such as proofs. It helps to jot down the key
points, or to make comments in the margins, as you read.

1. Look carefully at the figures, diagrams and other illus-
trations in the paper. Pay special attention to graphs.
Are the axes properly labeled? Are results shown with
error bars, so that conclusions are statistically sig-
nificant? Common mistakes like these will separate
rushed, shoddy work from the truly excellent.

2. Remember to mark relevant unread references for fur-
ther reading (this is a good way to learn more about
the background of the paper).

ACM SIGCOMM Computer Communication Review 83 Volume 37, Number 3, July 2007

S. Keshav, “How to Read a Paper”, ACM Computer
Communication Review, 37(3), July 2007  

DOI: 10.1145/1273445.1273458

How to read a research paper.

Later in the semester, we will talk about how to write a research paper. To begin the course, however, we
consider how to read a research paper. This discussion presupposes that you have a good reason to carefully
read a research paper – for example, the fact that I assign a paper is (probably) a good reason for you to read
it. You may also need to carefully read a paper if you are asked to review it, or if it is relevant to your own
research. We might also later discuss how to skim a paper, so that you can decide whether a paper is worth a
careful reading.

When you read a research paper, your goal is to understand the scientific contributions the authors are
making. This is not an easy task.1 It may require going over the paper several times. Expect to spend several
hours to read a paper.

Here are some initial guidelines for how to read a paper:

Read critically: Reading a research paper must be a critical process. You should not assume that the
authors are always correct. Instead, be suspicious.

Critical reading involves asking appropriate questions. If the authors attempt to solve a problem, are they
solving the right problem? Are there simple solutions the authors do not seem to have considered? What
are the limitations of the solution (including limitations the authors might not have noticed or clearly
admitted)?

Are the assumptions the authors make reasonable? Is the logic of the paper clear and justifiable, given
the assumptions, or is there a flaw in the reasoning?

If the authors present data, did they gather the right data to substantiate their argument, and did they
appear to gather it in the correct manner? Did they interpret the data in a reasonable manner? Would
other data be more compelling?

Read creatively: Reading a paper critically is easy, in that it is always easier to tear something down than
to build it up. Reading creatively involves harder, more positive thinking.

What are the good ideas in this paper? Do these ideas have other applications or extensions that the
authors might not have thought of? Can they be generalized further? Are there possible improvements
that might make important practical differences? If you were going to start doing research from this
paper, what would be the next thing you would do?

Make notes as you read the paper:

Many people cover the margins of their copies of papers with notes. Use whatever style you prefer. If
you have questions or criticisms, write them down so you do not forget them. Underline key points the
authors make. Mark the data that is most important or that appears questionable. Such efforts help the
first time you read a paper and pay big dividends when you have to re-read a paper after several months.

1It would be easier if more research papers were well written... but again, we will discuss writing later on.

http://www.eecs.harvard.edu/~michaelm/postscripts/ReadPaper.pdf

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/
http://dx.doi.org/
https://dx.doi.org/10.1145/1273445.1273458
https://dx.doi.org/10.1145/1273445.1273458
http://www.eecs.harvard.edu/~michaelm/postscripts/ReadPaper.pdf
http://www.eecs.harvard.edu/~michaelm/postscripts/ReadPaper.pdf

Colin Perkins | https://csperkins.org/ | Copyright © 2019

Systems Programming

!14

• What is systems programming?

• The state of the art

• Challenges and limitations

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2019

What is Systems Programming?

• Infrastructure components, operating systems, device drivers,
network protocols, services

• Systems programs tend to be constrained by:
• Memory management and data representation

• I/O operations

• Management of shared state

• Performance

!15

https://csperkins.org/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/

Colin Perkins | https://csperkins.org/ | Copyright © 2019

Memory Management and Data Representation

• Predictability
• Timing of allocations must be bounded  

for real-time applications

• Bounds on memory usage

• Data locality
• Cache line sharing impacts performance

• Data representation
• Device drivers that must control via fixed 

layout control registers

• Network protocol implementations must  
conform to specified packet layout

• Ensuring data is aligned and packed into cache lines for high performance

• Systems programming languages offer control of memory management and data
representation – others languages lack such controls
• e.g., stack vs. heap allocation and explicit pointers in C, compared to Java where all objects

are allocated on the heap and accessed via implicit references

!16

128m
32m

8m
2m

512k
128k

32k
0

2000

4000

6000

8000

10000

12000

14000

16000

s1
s3

s5
s7

s9
s11

Size (bytes)

R
ea

d
th

ro
ug

hp
ut

 (M
B

/s
)

Stride (x8 bytes)

Core i7 Haswell!
2.1 GHz!
32 KB L1 d-cache!
256 KB L2 cache!
8 MB L3 cache!
64 B block size!

Ridges !
of temporal
locality!

L1!

Mem!

L2!

L3!
Slopes !
of spatial
locality!

Source: Bryant & O’Hallaron, “Computer Systems: A Programmer’s Perspective”, 3rd Edition, Pearson,
2016, Fig. 6.41. http://csapp.cs.cmu.edu/3e/figures.html (Permission granted for lecture use with attribution)

Smaller values of stride indicate data with better spatial
locality; size is the total amount of data accessed

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2019

I/O Operations

• Network performance increasingly a  
bottleneck:
• Chart shows Ethernet bit rate over time – 

wireless links follow a similar curve

• Closely tracking exponential growth over  
time – unlike CPU speed, which stopped  
growing significantly mid-2000s

• MTU remains constant but packet rate  
increases → fewer cycles to process  
each packet

• SSD performance on a similar trend  
for file system access

• I/O performance of systems software critical to overall system performance
• Device drivers, network protocol stack, file system

!17

E
th

er
ne

t b
it

ra
te

 (M
bp

s)

0

100000

200000

300000

400000

Date

1990 1993 1996 1999 2002 2005 2008 2011 2014 2017

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2019

Management of Shared State

• Systems programs responsible for coordinating shared mutable state:
• State shared across layers/between kernel and applications

• Data structures for zero-copy networking

• Header processing and state for the TCP stack

• State shared between threads
• Internal state of the kernel

• File systems

• Network code

• Highly performance critical

• Systems programming languages allow sharing data between layers
and/or threads – other languages disallow/discourage such sharing

!18

https://csperkins.org/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/

Colin Perkins | https://csperkins.org/ | Copyright © 2019

Performance

• Systems infrastructure performance fundamentally
affects overall system and application performance
• Mobile devices have limited battery life

• Data centre efficiency and power consumption

• Systems components often the bottleneck in terms
of overall performance and power efficiency
• Simply because they’re the basis on which the higher-

level systems depend

!19

9,000 terawatt hours (TWh)

0
2010 2012 2014 2016 2018 2020 2022 2024 2026 2028 2030

20.9% of projected
electricity demand

Best case
2030

Expected
2030

2015

1987

2 TB†
1997

60 PB

2007

50 EB
2017

1.1 ZB

0 40,000 TWh

Global electricity demand

Data centres
Consumer devices (televisions, computers, mobile phones)
Production of ICT
Networks (wireless and wired)

Other demand

Widely cited forecasts suggest that the total electricity
demand of information and communications technology
(ICT) will accelerate in the 2020s, and that data centres
will take a larger slice.

The chart above is an ‘expected case’ projection from Anders Andrae, a specialist in sustainable ICT. In his
‘best case’ scenario, ICT grows to only 8% of total electricity demand by 2030, rather than to 21%.

ENERGY FORECAST

Internet traffic* is growing exponentially,
and reached more than a zettabyte
(ZB, 1021 bytes) in 2017.

*Traffic to and from data centres. †TB, terabyte (1012 bytes); PB, petabyte (1015 bytes); EB, exabyte (1018 bytes).

INTERNET EXPLOSION

0.3% to overall carbon emissions, whereas the
information and communications technology
(ICT) ecosystem as a whole — under a sweep-
ing definition that encompasses personal
digital devices, mobile-phone networks and
televisions — accounts for more than 2% of
global emissions. That puts ICT’s carbon
footprint on a par with the aviation industry’s
emissions from fuel. What could happen in the
future is hard to forecast. But one of the most
worrying models predicts that electricity use
by ICT could exceed 20% of the global total by
the time a child born today reaches her teens,
with data centres using more than one-third
of that (see ‘Energy forecast’)1. If the compu-
tationally intensive crypto currency Bitcoin

continues to grow, a sharp rise in energy
demand could come sooner rather than later
(see ‘The Bitcoin bite’).

For now, despite rising demand for data,
ICT’s electricity consumption is staying nearly
flat, as increased Internet traffic and data loads
are countered by increased efficiencies —
including shuttering older facilities in favour of
ultra-efficient centres such as Prineville’s. But
those easy wins could end within a decade. “The
trend is good right now, but it’s questionable
what it’s going to look like in 5–10 years,” says
Dale Sartor, who oversees the Center of Exper-
tise for Energy Efficiency in Data Centers at the
US Department of Energy’s Lawrence Berkeley
National Laboratory in Berkeley, California.

With the spectre of an energy-hungry
future looming, scientists in academic labs
and engineers at some of the world’s wealthi-
est companies are exploring ways to keep the
industry’s environmental impact in check.
They are streamlining computing processes,
switching to renewables and investigating bet-
ter ways to cool data centres and to recycle their
waste heat. ICT’s energy use must be “vigilantly
managed”, says Eric Masanet, an engineer at
Northwestern University in Evanston, Illinois,
who co-authored an International Energy
Agency (IEA) report2 last year on digitalization
and energy — but if we stay on top of it, he says,
we should keep future energy demand in check.

SHIFT TO HIGH GEAR
Perhaps the most startling forecast of ICT’s
future energy demand comes from Anders
Andrae, who works on sustainable ICT at
Huawei Technologies Sweden in Kista; he pre-
dicts that data-centre electricity use is likely to
increase about 15-fold by 2030, to 8% of pro-
jected global demand1. Such dire numbers are
controversial. “There have been many alarm-
ist predictions of growing ICT energy use over
the years, and all have proven to be bunk,” says
Masanet. Last year’s IEA report estimated that
although data-centre workloads will shoot
up — tripling 2014 levels by 2020 — efficiency
gains mean that their electricity demand might
sneak up only by 3% (ref. 2). ICT’s carbon foot-
print as a whole might even drift downwards
by 2020, as smartphones take over from larger
devices, researchers have suggested3.

Data-centre electricity demand has remained
roughly level over the past half-decade, in part
because of the ‘hyperscale shift’ — the rise of
super-efficient information factories that use
an organized, uniform computing architecture
that easily scales up to hundreds of thousands
of servers. Hyperscale data centres emerged
about a decade ago when companies such as
Amazon and Google began to need fleets of
a quarter of a million servers or more, says
Bill Carter, chief technical officer at the Open
Compute Project. It was started by Facebook in
2011 to share hardware and software solutions
to make computing more energy-efficient. At
that point, it made no sense to use off-the-shelf
hardware from a computing firm, as companies
had typically done.

“You had the opportunity to strip things
down to just what you need, and make it
specific to your application,” Carter says. The
new hyperscalers made bare-bones servers
designed for purpose. “We stripped out video
connectors, because there’s no video monitor.
There’s no blinking lights because there’s no
one walking the racks. There’s no screws,” says
Carter. On average, one server in a hyperscale
centre is said to be able to replace 3.75 servers
in a conventional centre.

The savings made by hyperscale centres can
be seen in their power usage efficiency (PUE),
defined as the total energy needed for every-
thing, including lights and cooling, divided

SO
U

R
C

E:
 R

EF
. 1

FEATURENEWS

1 6 4 | N A T U R E | V O L 5 6 1 | 1 3 S E P T E M B E R 2 0 1 8 | C O R R E C T E D 1 3 S E P T E M B E R
2 0 1 8

Source: N. Jones, “The Information Factories”, Nature, v.561,
p.163–166, Sep. 2018.DOI:10.1038/d41586-018-06610-y

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/
https://dx.doi.org/10.1038/d41586-018-06610-y
https://dx.doi.org/10.1038/d41586-018-06610-y

Colin Perkins | https://csperkins.org/ | Copyright © 2019

Systems Programming

• Systems programming languages offer
low-level control of data representation,
memory management, I/O, and sharing.

• They are high-performance – concrete
rather than high abstraction

!20

Programming Language Challenges in Systems Codes

Why Systems Programmers Still Use C, and What to Do About It

Jonathan Shapiro, Ph.D.

Systems Research Laboratory
Department of Computer Science

Johns Hopkins University

shap@cs.jhu.edu

Abstract
There have been major advances in programming languages
over the last 20 years. Given this, it seems appropriate to
ask why systems programmers continue to largely ignore
these languages. What are the deficiencies in the eyes of
the systems programmers? How have the e↵orts of the
programming language community been misdirected (from
their perspective)? What can/should the PL community do
address this?

As someone whose research straddles these areas, I was
asked to give a talk at this year’s PLOS workshop. What
follows are my thoughts on this subject, which may or not
represent those of other systems programmers.

1. Introduction

Modern programming languages such as ML [16] or
Haskell [17] provide newer, stronger, and more expressive
type systems than systems programming languages such as
C [15, 13] or Ada [12]. Why have they been of so little in-
terest to systems developers, and what can/should we do
about it?

As the primary author of the EROS system [18] and its
successor Coyotos [20], both of which are high-performance
microkernels, it seems fair to characterize myself primarily
as a hardcore systems programmer and security architect.
However, there are skeletons in my closet. In the mid-1980s,
my group at Bell Labs developed one of the first large
commercial C++ applications — perhaps the first. My early
involvement with C++ includes the first book on reusable
C++ programming [21], which is either not well known or
has been graciously disregarded by my colleagues.

In this audience I am tempted to plead for mercy on the
grounds of youth and ignorance, but having been an active

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and
that copies bear this notice and the full citation on the first page. To
copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee.

PLOS 2006, Oct. 22, 2006, San Jose, California, United States
Copyright c� 2006 ACM 1-59593-577-0/10/2006. . . $5.00

advocate of C++ for so long this entails a certain degree
of chutzpah.1 There is hope. Microkernel developers seem to
have abandoned C++ in favor of C. The book is out of print
in most countries, and no longer encourages deviant coding
practices among susceptible young programmers.

A Word About BitC Brewer et al.’s cry that Thirty

Years is Long Enough [6] resonates. It really is a bit dis-
turbing that we are still trying to use a high-level assembly
language created in the early 1970s for critical production
code 35 years later. But Brewer’s lament begs the question:
why has no viable replacement for C emerged from the pro-
gramming languages community? In trying to answer this,
my group at Johns Hopkins has started work on a new pro-
gramming language: BitC. In talking about this work, we
have encountered a curious blindness from the PL commu-
nity.

We are often asked “Why are you building BitC?” The tacit
assumption seems to be that if there is nothing fundamen-
tally new in the language it isn’t interesting. The BitC goal
isn’t to invent a new language or any new language con-
cepts. It is to integrate existing concepts with advances in
prover technology, and reify them in a language that allows
us to build stateful low-level systems codes that we can rea-
son about in varying measure using automated tools. The
feeling seems to be that everything we are doing is straight-
forward (read: uninteresting). Would that it were so.

Systems programming — and BitC — are fundamentally
about engineering rather than programming languages. In
the 1980s, when compiler writers still struggled with inad-
equate machine resources, engineering considerations were
respected criteria for language and compiler design, and a
sense of “transparency” was still regarded as important.2

By the time I left the PL community in 1990, respect for
engineering and pragmatics was fast fading, and today it
is all but gone. The concrete syntax of Standard ML [16]
and Haskell [17] are every bit as bad as C++. It is a curi-
ous measure of the programming language community that
nobody cares. In our pursuit of type theory and semantics,

1 Chutzpah is best defined by example. Chutzpah is when a
person murders both of their parents and then asks the court
for mercy on the grounds that they are an orphan.

2 By “transparent,” I mean implementations in which the pro-
grammer has a relatively direct understanding of machine-level
behavior.

J. Shapiro, “Programming language challenges in systems codes:
why systems programmers still use C, and what to do about it”,

Workshop on Programming Languages and Operating Systems,
San Jose, CA, October 2006. DOI:10.1145/1215995.1216004

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/
https://dx.doi.org/10.1145/1215995.1216004
https://dx.doi.org/10.1145/1215995.1216004

Colin Perkins | https://csperkins.org/ | Copyright © 2019

The State of the Art

• Most devices run some variant of Unix as their 
operating system, programmed in C
• Original version of Unix written in assembly for PDP-7 

minicomputer in 1969

• Ported to the PDP-11/40 in early 1970s, re-writing into 
C at that language was developed
• “The PDP-11/40 was designed to fit a broad range of 

applications, from small stand alone situations where 
the computer consists of only 8K of memory and a 
processor, to large multi-user, multi-task applications 
requiring up to 124K of addressable memory space.  
Among its major features are a fast central processor  
with a choice of floating point and sophisticated memory management, both of which are hardware
options.” https://pdos.csail.mit.edu/6.828/2005/readings/pdp11-40.pdf

• macOS, iOS, Linux and Android are moderns variants and reimplementations of Unix

• This has proven surprisingly resilient and portable – but is it still the right model?

!21

https://dave.cheney.net/2017/12/04/what-have-we-learned-from-the-pdp-11
Image credit: Dennis Ritchie

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/
https://pdos.csail.mit.edu/6.828/2005/readings/pdp11-40.pdf

Colin Perkins | https://csperkins.org/ | Copyright © 2019

Unix and C: Strengths

• Unix gained popularity due to portability and ease of
source code access, but also:
• Small, relatively consistent set of API calls

• Low-level control

• Robust and high performance

• Easy to understand and extend

• Portability was due to the C programming language
• Simple, easy to understand, easy to port to new architectures

• Explicit pointers, memory allocation, and control over data
representation

• Uniform treatment of memory, device registers, and data
structures – easy to write device drivers, network protocols,
and interface with external formats

• Weak type system allows aliasing and sharing

!22

struct {
 short errors : 4;
 short busy : 1;
 short unit_sel : 3
 short done : 1;
 short irq_enable : 1
 short reserved : 3
 short dev_func : 2;
 short dev_enable : 1;
} ctrl_reg;

int enable_irq(void)
{
 ctrl_reg *r = 0x80000024;
 ctrl_reg tmp;

 tmp = *r;
 if (tmp.busy == 0) {
 tmp.irq_enable = 1;
 *r = tmp;
 return 1;
 }
 return 0;
}

Example: hardware access in C

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2019

Unix and C: Weaknesses

• Unix APIs reflect 1970s/1980s minicomputer architectures
• Sockets and file system APIs significant performance bottlenecks

• Security architecture insufficiently flexible

• No portable APIs for mobility, power management, etc.

• Assumes professional, interactive, systems administration

• C programming language
• Limited concurrency support → memory model for pthreads poor supported

• Undefined behaviour, buffer overflows → security risks

• Weak type system → difficult to reason about correctness, effectively model
problem domain

!23

https://csperkins.org/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/

Colin Perkins | https://csperkins.org/ | Copyright © 2019

Unix and C

• Unix has proven surprisingly resilient and portable – but is it still the right model?
• No – numerous work-arounds for its limitations exist:

• Kernel bypass networking

• Increasingly baroque package management

• Containers and sandboxing

• The C programming language is increasingly a liability
• Too easy to introduce security vulnerabilities

• Too easy to trip over undefined behaviour

• Insufficient abstractions

!24

Some Were Meant for C
The Endurance of an Unmanageable Language

Stephen Kell
Computer Laboratory

University of Cambridge
Cambridge, United Kingdom
stephen.kell@cl.cam.ac.uk

Abstract
The C language leads a double life: as an application
programming language of yesteryear, perpetuated by
circumstance, and as a systems programming language
which remains a weapon of choice decades after its cre-
ation. This essay is a C programmer’s reaction to the call
to abandon ship. It questions several properties com-
monly held to define the experience of using C; these
include unsafety, undefined behaviour, and the moti-
vation of performance. It argues all these are in fact
inessential; rather, it traces C’s ultimate strength to a
communicative design which does not fit easily within
the usual conception of “a programming language”, but
can be seen as a counterpoint to so-called “managed
languages”. This communicativity is what facilitates the
essential aspect of system-building: creating parts which
interact with other, remote parts—being “alongside” not
“within”.

CCS Concepts • Software and its engineering � Gen-
eral programming languages; Compilers; • Social and
professional topics � History of programming languages;

Keywords systems programming, virtual machine, man-
aged languages, safety, undefined behavior

ACM Reference Format:
Stephen Kell. 2017. Some Were Meant for C. In Proceedings
of 2017 ACM SIGPLAN International Symposium on New Ideas,
New Paradigms, and Reflections on Programming and Software,
Vancouver, Canada, October 25–27, 2017 (Onward!’17), 18 pages.
https://doi.org/10.1145/3133850.3133867

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page.
Copyrights for components of this work owned by others than the au-
thor(s) must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions
from permissions@acm.org.
Onward!’17, October 25–27, 2017, Vancouver, Canada
© 2017 Copyright held by the owner/author(s). Publication rights
licensed to Association for Computing Machinery.
ACM ISBN 978-1-4503-5530-8/17/10. . . $15.00
https://doi.org/10.1145/3133850.3133867

1 Introduction
While some were meant for sea, in tug-boats
’Round the shore’s knee,
(Milling with the sand,
and always coming back to land),
For others, up above
Is all they care to think of,
Up there with the birds and clouds, and
Words don’t follow.

—Tiny Ruins, from “Priest with Balloons”
I am not ashamed to say that I program in C, and

that I enjoy it. This puts me at odds with much of pro-
gramming language discourse, among both researchers
and influential practitioners, which holds that C is evil
and must be destroyed. If only we had a “safe systems
programming language”! If only we could eke out a
little more performance in implementations of other
languages, to remove the last remaining motivation for
using C! If only we could make “the industry” see the
error of its ways! Then C would be eradicated, and there
would be much rejoicing.

I am a “systems programmer”. It doesn’t mean I hack
kernels, so much as that I build systems—pieces of in-
frastructure that integrate multiple interacting parts,
and sit underneath application code. Programming in
C feels right for doing this; it has a viscerally distinctive
feeling compared to other, safer, higher-level languages.
Certainly, today’s experience of programming in C re-
mains, despite certain advances, unforgiving. But I have
never felt C to be an encumbrance. C is not a language I
use because I’m stuck with it; I use it for positive reasons.
This essay explores those reasons and their apparent
contrast with conventional wisdom.

2 Two viewpoints
The lyric from which this essay borrows its title evokes
two contrasting ways of being: that of the idealist who
longs to be among the clouds, and that of the sea-farers
who carry on their business on the planet’s all-too-limiting
surface. The idealist in the song is a priest, who takes
literally to the clouds: one day, clutching at helium bal-
loons, he steps o� a cli� edge, floats up and away, and

S. Kell, “Some were meant for C: The endurance of an unmanageable language”,
International Symposium on New Ideas, New Paradigms, and Reflections on Programming
& Software, Vancouver, BC, Canada, October 2017. ACM. DOI:10.1145/3133850.3133867

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/
https://dx.doi.org/10.1145/3133850.3133867
https://dx.doi.org/10.1145/3133850.3133867

Colin Perkins | https://csperkins.org/ | Copyright © 2019

Challenges and Limitations

• What changes in the environment are affecting systems programs?
• The end of Moore’s law

• Increasing concurrency – imposed due to hardware changes

• Increasing need for security – the Internet

• Increasing mobility and connectivity

!25

https://csperkins.org/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/

Colin Perkins | https://csperkins.org/ | Copyright © 2019

The End of Moore’s Law (1/2): Physical Limits

• Moore’s law: advances in manufacturing double transistor count every two years

• But, rapidly approaching physical limits:
• 10nm process → features ~40 atoms across

• Transistors will stop shrinking soon

!26

Source: https://www.karlrupp.net/2015/06/40-years-of-microprocessor-trend-data/

Transistor C
ount

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/
https://www.karlrupp.net/2015/06/40-years-of-microprocessor-trend-data/
https://www.karlrupp.net/2015/06/40-years-of-microprocessor-trend-data/

Colin Perkins | https://csperkins.org/ | Copyright © 2019

The End of Moore’s Law (2/2): Dennard Scaling

• Dennard scaling: smaller transistors reduce capacitance
and voltage → frequency increase without corresponding
increase in power consumption

• Scaling relation breaks down eventually, due to leakage  
→ clock frequency increase stalls

• System performance constraints become more acute

!27

Source: https://www.karlrupp.net/2015/06/40-years-of-microprocessor-trend-data/

Clock FrequencyTransistor C
ount

Power consumption ∝ C⋅F⋅V2
• C = capacitance (transistor size)
• F = frequency (clock rate)
• V = voltage

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/
https://www.karlrupp.net/2015/06/40-years-of-microprocessor-trend-data/
https://www.karlrupp.net/2015/06/40-years-of-microprocessor-trend-data/

Colin Perkins | https://csperkins.org/ | Copyright © 2019

Increasing Concurrency

• Breakdown of Dennard scaling limits clock frequency, but Moore’s law gives more
transistors → used to increase number of cores

• Concurrency related problems become more severe:
• Ensuring correctness, avoiding race conditions and deadlocks

• Ensuring good performance

!28

Source: https://www.karlrupp.net/2015/06/40-years-of-microprocessor-trend-data/

Number of coresClock FrequencyTransistor C
ount

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/
https://www.karlrupp.net/2015/06/40-years-of-microprocessor-trend-data/
https://www.karlrupp.net/2015/06/40-years-of-microprocessor-trend-data/

Colin Perkins | https://csperkins.org/ | Copyright © 2019

Increasing Need for Security

• Weaponisation of the Internet

• The combination of C and Unix has not proven easy to secure

!29

Source: https://nvd.nist.gov/general/visualizations/vulnerability-visualizations/cvss-severity-distribution-over-time

Number of security vulnerabilities reported per
year – US National Vulnerability Database

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/
https://nvd.nist.gov/general/visualizations/vulnerability-visualizations/cvss-severity-distribution-over-time
https://nvd.nist.gov/general/visualizations/vulnerability-visualizations/cvss-severity-distribution-over-time

Colin Perkins | https://csperkins.org/ | Copyright © 2019

Increasing Mobility and Connectivity

• Computing increasing implies mobile devices
• Always on – but constrained by limitations of battery power

• Always connected – by increasingly heterogenous networks

• Personal – but vulnerable

• Do we have the APIs, tools, and programming models to make
effective use of such devices?

!30

https://csperkins.org/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/

Colin Perkins | https://csperkins.org/ | Copyright © 2019

Next Steps in Systems Programming

!31

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2019

Next Steps in Systems Programming

• Need a programming language and environment that:
• Improves memory management and safety – while maintaining control over

allocation and data representation

• Improves security – eliminates common classes of vulnerability

• Improves support for concurrency – eliminates race conditions

• Improves correctness – eliminates common classes of bug

• Advances in programming language design are starting to provide the
necessary tools – and beginning to be applied to systems languages
• Modern type systems

• Functional programming techniques

!32

https://csperkins.org/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/

Colin Perkins | https://csperkins.org/ | Copyright © 2019

What is a Modern Type System?

• A modern type system is expressive enough to:
• Provide useful guarantees about program behaviour

• Prevent buffer overflows, use-after-free bugs, race conditions, iterator invalidation, …

• Provide a model of the problem that prevents inconsistencies in the solution, while avoiding
run-time overheads
• No cost abstractions – compile-time checking that has no run-time cost

• Describe constraints on program behaviour in the types – the compiler as a debugger

!33

Common bug in networking code: call read() on
listening socket, not socket returned from accept()

that represents the connection

Both file descriptors are represented as type int –
compiler can’t check for such misuse

If listening socket and connected socket were separate
types, and the read() call took a connected socket

parameter, this bug would be detected at compile-time

Trivial example of important principle – try to describe
behaviour in types so compiler can detect logic errors

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2019

What is Functional Programming?

• A programming style that highlights:
• Pure, referentially transparent, functions

• No side effects

• No shared mutable state

• Control over I/O

• with language support for functions
as first class types

• Pure functional languages constrain
programs
• Haskell is a testbed for exploring pure

functional programming – what are its
benefits and costs?
• Principled, but perhaps impractical for

large-scale systems programs

• Not intended as an industrial-strength
platform for deployment

• The pure functional style is unsuited to
some programs, but natural for others

• But concepts are widely applicable
• Pure functional code is easy to test and

debug – no hidden state

• Pure functional code is thread safe – no
side effects or mutable state

• Eliminating shared mutable state and
controlling I/O avoids race conditions

• Use functional programming ideas
where they make sense – prevent
certain classes of bugs

!34

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2019

Improving Memory Management and Safety

• C has manual memory management
• Pointers, malloc() and free()

• Arrays represented as pointers to their first element,  
and don’t store length

• Access outside allocated memory “undefined” but no 
checks to prevent

• Good reasons for this at the time:

• Machines were slow and had limited memory

• Bounds checks and garbage collection too expensive

• Not all of these are still valid

• These design decisions lead bugs:
• Use after free, memory leaks, buffer overflows

• (C++ also suffers from) iterator invalidation

• Modern type systems can eliminate these classes of bug
• Enforce bounds checks

• Enforce ownership of data – code that tries to use data after it’s been freed won’t compile;
similar for iterator invalidation

!35

int foo[5];

// The following are equivalent:
foo[3] = 42;
*(foo+3) = 42;
*(3+foo) = 42;
3[foo] = 42;

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2019

Improving Security

!36

Source: https://www.cvedetails.com/vulnerabilities-by-types.php

Half of all reported security vulnerabilities are memory safety
violations that should be caught by a modern type system –
buffer overflows, use-after-free, memory corruption, treating data as executable code

Use of type based modelling of the problem domain can help
address others – by more rigorous checking of assumptions

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/
https://www.cvedetails.com/vulnerabilities-by-types.php
https://www.cvedetails.com/vulnerabilities-by-types.php
https://www.cvedetails.com/vulnerabilities-by-types.php
https://www.cvedetails.com/vulnerabilities-by-types.php
https://www.cvedetails.com/vulnerabilities-by-types.php
https://www.cvedetails.com/vulnerabilities-by-types.php
https://www.cvedetails.com/vulnerabilities-by-types.php
https://www.cvedetails.com/vulnerabilities-by-types.php
https://www.cvedetails.com/vulnerabilities-by-types.php
https://www.cvedetails.com/vulnerabilities-by-types.php
https://www.cvedetails.com/vulnerabilities-by-types.php
https://www.cvedetails.com/vulnerabilities-by-types.php
https://www.cvedetails.com/vulnerabilities-by-types.php
https://www.cvedetails.com/vulnerabilities-by-types.php
https://www.cvedetails.com/vulnerabilities-by-types.php
https://www.cvedetails.com/vulnerabilities-by-types.php
https://www.cvedetails.com/vulnerabilities-by-types.php

Colin Perkins | https://csperkins.org/ | Copyright © 2019

Improving Support for Concurrency

• Software increasingly concurrent to make
effective use of multicore hardware

• Common abstraction: threads, locks, shared
mutable state

• Prone to race conditions:
• Too many or too few locks held

• Locks held at the wrong time

• Locks don’t compose

• Program in a function style: avoid races by
avoiding shared mutable state

• Avoid races by enforcing single ownership of
data – message passing, rather than sharing

!37

struct … {
 …
}

Thread A

Thread B

Acquire lock

Release lock

Blocked

Acquire lock

Release lock

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2019

Improving Correctness

• Modern systems programming languages can eliminate certain classes of bug
that are common in C
• Use-after-free, memory leaks, buffer overflows, iterator invalidation

• Data races in multi-threaded code

• Don’t fix the bug – eliminate the class of bugs

• Modern type systems allow for better modelling of the problem domain, and so
more checking of code for consistency
• Define types representing the problem domain, rather than using generic types – e.g., if you

pass around PersonId and VehicleId rather than int, the compiler will warn if you pass
the wrong type of identifier to a function

• Represent program states in the types – e.g., ListeningSocket vs. ConnectedSocket

• Modern languages allow you to define types and abstractions easily and without run-time cost
– type-first design allows code that is correct by construction

• Use the compiler to debug your design

!38

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2019

Next Steps in Systems Programming

• People can’t manage the complexity – need better tooling to help
• C and Unix solve many systems programming problems

• Control over data representation, memory management, sharing of state

• Emerging languages and systems give the same degree of control – with
added safety

• Strongly typed languages

• Types help model the problem domain, structure code

• Types and associated tooling help detect logic errors early – correct
by construction

• This course will explore these ideas using the Rust programming
language

!39

https://csperkins.org/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/

Colin Perkins | https://csperkins.org/ | Copyright © 2019

Summary

!40

• What is systems programming?

• The state of the art

• Challenges and limitations

• Next steps in systems programming

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

