Unuversity

of Glasgow

Types and Systems Programming

Advanced Systems Programming (M)
Lecture 2

©Nolo

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/
http://creativecommons.org/licenses/by-nd/4.0/

Lecture Outline

o Strongly Typed Languages
 What is a strongly typed language?
 Why is strong typing desirable?
e Types for systems programming
 Introducing the Rust programming language

e Basic operations and types

e Arrays, vectors, tuples, strings

e Structures and traits

e Enumerated types and pattern matching
e Memory allocation and boxes

e Why is Rust interesting?

©Nolo

https://csperkins.org/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/

 What is a strongly typed language?

Strongly Typed Languages « Why is strong typing desirable?
e Types for systems programming

Colin Perkins | https://csperkins.org/ | Copyright © 2019
BY ND

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

What is a Type?

o Atype describes what an item of data represents

e Is it an integer? floating point value? file? sequence number? username?
o What, conceptually, is the data?

e How is it represented?

e Types are very familiar in programming:

int X; Declaring variables and specifying their type
double y;
char *hello = “Hello, world”;
struct sockaddr_in { Declaring a new type
uint8_t sin_len;
sa_family t sin_family;
in_port_t sin_port;
struct in_addr sin_addr;
char sin pad[16];
}i

©Nolo

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

What is a Type System?

 Atype system is a set of rules constraining how types can be used:

e \What operations can be performed on a type?
e \What operations can be performed with a type?

e How does a type compose with other types of data”?

* Atype system proves the absence of certain program behaviours

e |t doesn’t guarantee the program is correct

e |t does guarantee that some incorrect behaviours do not occur

A good type system eliminates common classes of bug, without adding too much complexity
e Abad type system adds complexity to the language, but doesn't prevent many bugs

e Type-related checks can happen at compile time, at run time, or both

e e.g., array bounds checks are a property of an array type, checked at run time

©Nolo

https://csperkins.org/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/

Static and Dynamic Types (1/2)

e |In a language with static types, the type of a variable is fixed when the variable is
created:

e Some require types to be explicitly declared; others can infer types from context

 C and Java requires the types to be explicitly stated in all cases
» Haskell, Rust, OCaml, ... can infer from the context

o Just because the language can infer the type does not mean the type is dynamic:

> cat src/main.rs
fn main() {

let x = 6;

x += 4.2;

println! ("{}", x);
}
> cargo build

hello v0.1.0 (/Users/csp/tmp/hello)

error[E0277]: cannot add-assign ~{float} to "~ {integer}"
--> src/main.rs:3:7

3 x += 4.2;

| ~” no implementation for "~ {integer} += {float}"

help: the trait “std::ops::AddAssign<{float}>" is not implemented for ~{integer}"

error: aborting due to previous error

* The Rust compiler infers that x is an integer and won't let us add a floating point 4.2 to it, since that
would require changing its type

©Nolo

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Static and Dynamic Types (2/2)

In a language with dynamic types, the type of a variable can change during its
lifetime

> python3

Python 3.6.2 (v3.6.2:5fd33b5926, Jul 16 2017, 20:11:06)
[GCC 4.2.1 (Apple Inc. build 5666) (dot 3)] on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>> x = 6

>>> type(x)

<class 'int'>

>>> x += 4.2

>>> type(x)

<class 'float'>

>>>

Dynamically typed languages tend to be lower performance, but offer more
flexibility

e They have to store the type as well as its value, which takes additional memory

e They can make fewer optimisation based on the type of a variable, since that type can change

e Systems languages generally have static types, and be compiled ahead of time,

@O0

since they tend to be performance sensitive

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Strong and Weak Types (1/2)

e In a language with strong types, every operation must conform to the type system

o |f the compiler and/or run-time cannot prove that the operation is legal according to the type
rules, the operation is not permitted

e Other languages have weaker types, and provide ways of circumventing the type
checker:

e This might be automatic safe conversions between types:

float x = 6.0; C has static types, but allows lower precision values to be assigned
double y = 5.0; to variables with higher precision types — there’s no data loss
double z = x + y;

e Or it might be an open-ended cast:

char *buffer[BUFLEN]; Common C programming idiom: casting between
int fd = socket(..); types using pointers to evade the type system

if (recv(fd, buffer, BUFLEN, 0) > 0) {
struct rtp_ packet *p = (struct rtp_ packet *) buf;

©Nolo

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Strong and Weak Types (2/2)

e Sometimes clearer to consider safe and unsafe languages, rather than strong or
weak types

e “A safe language is one that protects its own abstractions” [Pierce]

o A safe language — whether static or dynamic — knows the types of all variables, and only allows
legal operations on those values

e An unsafe language allows the types to be circumvented — to perform operations that the
programmer believes are correct, but the type system can’t prove so

©Nolo

https://csperkins.org/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://mitpress.mit.edu/books/types-and-programming-languages

Why is Strong Typing Desirable?

« "Well-typed programs don't go wrong” — Robin Milner

 The result is well-defined — although not necessarily correct

e The type system ensures results are consistent with the rules of the language, but cannot
check if you calculated the right result

o A strongly-typed system will only ever perform operations on a type that are legal — there is
no undefined behaviour

* Types help model the problem, check for consistency, and eliminate common
classes of bug

©Nolo

10

https://csperkins.org/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://en.wikipedia.org/wiki/Robin_Milner

©Nolo

Segmentation fault (core dumped)

Segmentation faults should never happen:

« Compiler and runtime should strongly enforce type rules
* If program violates them, it should be terminated cleanly

» Security vulnerabilities — e.g., buffer overflow attacks —
come from undefined behaviour after type violations

11

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

©Nolo

Segmentation fault (core dumped)

343

1 undefined behavior
behavior, upon use of a nonportable or erroneous program construct or of erroneous data,
for which this International Standard imposes no requirements

2 NOTE Possible undefined behavior ranges from ignoring the situation completely with unpredictable
results, to behaving during translation or program execution in a documented manner characteristic of the

environment (with or without the issuance of a diagnostic message), to terminating a translation or
execution (with the issuance of a diagnostic message).

| — S——

C has 193 kinds of undefined behaviour

Appendix J of the C standard https://www.iso.org/standard/74528.html ($$$) or
http://www.open-std.org/jtc1/sc22/wg14/www/abg/c17 _updated_proposed_fdis.pdf

Each leads to entirely unpredictable results
— https://blog.regehr.org/archives/213

A language should specify behaviour of each operation

12

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/
https://www.iso.org/standard/74528.html
http://www.open-std.org/jtc1/sc22/wg14/www/abq/c17_updated_proposed_fdis.pdf
https://blog.regehr.org/archives/213

Types for Systems Programming

e C is weakly typed and widely used for systems programming
e Why is this?
e Can systems programming languages be strongly typed?

e \What are the challenges in strongly typed systems programming?

©Nolo

13

https://csperkins.org/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/

Why is C Weakly Typed?

e Mostly, historical reasons:

 The original designers of C were not type theorists

e The original machines on which C was developed didn’t have the resources to
perform complex type checks

* Type theory was not particularly advanced in the early 1970s — we didn’t know
how to do better?

©Nolo

14

https://csperkins.org/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/

Is Strongly-typed Systems Programming Feasible?

* Yes — many examples of operating systems type ErrorType is range 0..15;
. . type UnitSelType %s range 0..7{
written in strongly-typed languages rpe Restipe Sramee il
type Flag . is (§et, NotSet) ;
e Old versions of macOS written in Pascal P rolRegister i
errors : ErrorType;
* Project Oberon http://www.projectoberon.com busy | Hag o
unli e . ni e ype;
] done : Flag;
 US DoD and the Ada programming language irqEnable : Flag;
« Aerospace, military, air traffic control Gevenable . Piags

end record;

for ControlRegister use
record

* Popularity of Unix and C has led to a belief busy . at Oviord range 11..11,
. . unitSel at 0*Word range 8..10;

that operating systems require unsafe code done at O*Word range 7.. 7;
irgEnable at 0*Word range 6.. 6;

reserved at O*Word range 3.. 5;

* True only at the very lowest levels devFunc at O*word range 1.. 2;
devEnable at 0*Word range O0.. O;

end record;

* Most systems code, including device drivers, can
. . for ControlRegister’Size use 16;
be written in strongly typed, safe, languages for ControlRegister’Alignment use Word;

for ControlRegister’Bit_order use Low_Order First;

* Rustis a modern attempt to provide a type-safe
language suited to systems programming

B

©Nolo

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/
http://www.projectoberon.com

Challenges in Strongly-typed Systems Programming

e Four fallacies:

Programming Languag
Progr:

e Challenges in Systems Codes
About It

Why Systems s Still Use C, and What to Do Abot

* Factors of 1.5x to 2x in performance don’t matter
 Boxed representation can be optimised away

* The optimiser can fix it

* The legacy problem is insurmountable

* Four challenges:

* Application constraint checking

* |diomatic manual storage management
J. Shapiro, “Programming language challenges in systems codes:
° Contro| over data representation why systems programmers still use C, and what tq do about it”,
Workshop on Programming Languages and Operating Systems,
San Jose, CA, October 2006. DOI:10.1145/1215995.1216004

* Managing shared state

* Many good ideas in research languages and operating systems — only recently
that these issues have been considered to make practical tools

©Nolo

16

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/
https://dx.doi.org/10.1145/1215995.1216004
https://dx.doi.org/10.1145/1215995.1216004

Introducing Rust

Colin Perkins | https://csperkins.org/ | Copyright © 2019
BY ND

e \What is Rust?

Basic operations and types

Arrays, vectors, tuples, strings
Structures and traits

Enumerated types and pattern matching
Memory allocation and boxes

* Why is it interesting?

17

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

The Rust Programming Language

©Nolo

Initially developed by Graydon Hoare as a side project,
starting 2006

Sponsored by Mozilla since 2009
Rust v1.0 released in 2015
Rust v1.31 “Rust 2018 Edition” released December 2018

 Backwards compatible — but tidies up the language

* https://blog.rust-lang.org/2018/12/06/Rust-1.31-and-rust-2018.html

New releases made every six weeks — strong backwards
compatibility policy

18

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/
https://blog.rust-lang.org/2018/12/06/Rust-1.31-and-rust-2018.html

Basic Features

fn main() {
println! ("Hello, world!”);

}

fn gcd(mut n: u64, mut m: u64) -> u64d {
assert!(n != 0 & m != 0);
while m!=0 {
if m < n {

let t = m;
m = n;
n ==t;
}
m=m 3% n;
}
n

fn main() {

let m = 12;

let n = 16;

let r = ged(m, n);

println! (“"ged({}, {}) = {}", m, n, r);
}

©Nolo

Function definition; macro expansion; string literal

Function arguments and return type; mutable vs immutable
Control flow: while and if statements

Local variable definition (Let binding); type is inferred

Implicitly returns value of final expression (can return from
function early using return statement)

19

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Basic Types

int isize unsigned usize
int8 t, signed char |i8 uint8 t, unsigned char |[u8
intl6_t ilé uintlé_t ulé6
int32_t i32 uint32 t u32
int64_t i64 uint64_t u64
float £32
double f64
https://doc.rust-lang.org/book/ch03-02-data-types.html

Bool -
= bool
int

char

(32 bit unicode scalar value)

e Basic types have close to direct mapping from C to Rust
e Rust has a native bool type, C uses int to represent boolean (C99 has Bool)

e In C, a char is defined as a single byte, implementation defined whether signed, no
character set specified; Rust char is a 32-bit Unicode scalar value
* Unicode scalar value # code point # grapheme cluster # “character”

* e.g., Uis two scalar values “Latin small letter U (U+0075)” + “combining diaeresis (U+0308)", but one
grapheme cluster (https://crates.io/crates/unicode-segmentation — text is hard)

©Nolo

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/
https://crates.io/crates/unicode-segmentation
https://doc.rust-lang.org/book/ch03-02-data-types.html

Arrays and Vectors

fn main() { Arrays work as expected
let a = 1[1, 2, 3, 4, 5]; Types are inferred
let b = a[2];
println! ("b={}", b);

}
fn main() { Vectors are the dynamically sized equivalent
let v = vec![l, 2, 3, 4, 5]; vec![...] macro creates vector literals
}
: Vectors are implemented internally as the equivalent of a C
fn main() {
let n = Vec:: . program that uses malloc () to allocate space for an array,
et mut v = Vec::new(); then realloc () to grow the space when it gets close to full.
v.push(1l);
v.push(2); They implement the Deref<Target=&[T]> trait, so they can
h(3): be passed to functions that expect a reference to an array of
v.push(3); the same type — gives pointer to array implementing the vector
v.push(4);
v.push(5);
}

©Nolo

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Tuples

fn main() {

O

©Nolo

let tup = (500, 6.4, 1);
let (x, y, z2) = tup;

println! ("The value of y is: {}", v);
println! ("The 2nd element is {}”, tup.l)

Tuples are collections of unnamed values; each
element can be a different type

let bindings can de-structure tuples

Tuple elements can be accessed by index

An empty tuple is the unit type (like void in C)

22

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Structure Types (1/2)

struct Rectangle {

}

width: u32,
height: u32

fn area(rectangle: Rectangle) -> u32 {

}

rectangle.width * rectangle.height

fn main() {

©Nolo

let rect = Rectangle { width: 30, height: 50 };

println! ("Area of rectangle is {}", area(rect));

Structs are collections of named values;
each element can have a different type
https://doc.rust-lang.org/book/ch05-00-structs.html

Access fields in struct using dot notation

Create a struct, specifying the values for
each field

23

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/
https://doc.rust-lang.org/book/ch05-00-structs.html

Structure Types (2/2)

struct Point (132, 132, 1i32);

let origin = Point (0, 0, 0);

struct Marker;

©Nolo

Tuple structs are tuples with a type name
useful for type aliases

Unit-like structs have no elements and take up no space
useful as markers or type parameters

24

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Methods

e Rust doesn’t have objects in the traditional way, but you can implement methods
on structs

struct Rectangle {
width: u32,
height: u32,

}
impl Rectangle { Methods defined in imp1l block
fn areié&séiil)l ;> uii_ 1{1 e Methods and instance variables use
} self.wi self.heig explicit self references, like Python
}

fn main() {
let rect = Rectangle { width: 30, height: 50 };

println! ("Area of rectangle is {}", rect.area()); Method call uses dot notation

©Nolo 25

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Traits (1/5)

e Traits describe features that types can implement

 Methods that must be provided, and associated types that must be specified, by types that
implement the trait — but not instance variables or data

e Similar to type classes in Haskell or interfaces in Java
e https://doc.rust-lang.org/book/ch10-02-traits.html

trait Area {
fn area(&self) -> u32; Define a trait with a single method that must be implemented

}

struct Rectangle {
width: u32,
height: u32,

}
impl Area for Rectangle { Implement that trait for the Rectangle type
fn area(&self) -> u32 {
self.width * self.height
}
}

©Nolo

26

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/
https://doc.rust-lang.org/book/ch10-02-traits.html

Traits (2/5)

©Nolo

trait Area {
fn area(&self) -> u32;

}

struct Rectangle {
width: u32,
height: u32,

}

impl Area for Rectangle {
fn area(&self) -> u32 {
self.width * self.height

}

struct Circle {
radius: u32

}

impl Area for Circle {
fn area(&self) -> u32 {
PI * self.radius * self.radius

}

A trait can be implemented by multiple types

Traits are an important tool for abstraction in Rust —
similar role to sub-typing in many languages

27

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Traits (3/9). Generic Functions

e Rust uses traits instead of classes and inheritance

e Define a trait:

trait Summary {
fn summarize(&self) -> String;

}

o Write functions that work on types that implement that trait:

fn notify<T: Summary>(item: T) {
println! ("Breaking news! {}", item.summarize());

}

Type parameter in angle brackets: T is any type that implement the Summary trait

e Allows generic code — functions or methods that can work with any type that
Implements a particular trait

©Nolo

28

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Traits (4/5): Deriving Common Traits

* The derive attribute makes compiler automatically generate implementations of
some common traits:

[derive (Debug)]
struct Rectangle {
width: u32,

height: u32,

}

 Generates impl block with standard implementation of methods for derived trait

 Compiler implements this for many traits in the standard library that are always implemented
the same way: https://doc.rust-lang.org/book/appendix-03-derivable-traits.html

 (Can also be implemented for other traits:

» Only useful if every implementation of the trait will follow the exact same structure
e https://doc.rust-lang.org/book/ch19-06-macros.html#how-to-write-a-custom-derive-macro

©Nolo

29

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/
https://doc.rust-lang.org/book/appendix-03-derivable-traits.html
https://doc.rust-lang.org/book/ch19-06-macros.html#how-to-write-a-custom-derive-macro

Traits (5/5): Associated Types

 Traits can also specify associated types — types that must be specified when a

trait is implemented
* Example: for loops operate on iterators

fn main() {

let a = [42, 43, 44, 45, 46];

for x in a.iter() { a.iter () returns an iterator over the array

println! ("x={}", x);

}

}
* An iterator is something that implements the Iterator trait:
pub trait Iterator { The impl of the trait has to specify the
type Item; type, item, as well as the methods

fn next(&mut self) -> Option<Self::Item>;

// more...

©Nolo

30

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Enumerated Types (1/2)

enum TimeUnit { Basic enums work just like in C
Years, Months, Days, Hours, Minutes, Seconds https://doc.rust-lang.org/book/ch06-01-defining-an-enum.html

Enums also generalise to store tuple-like variants:

enum RoughTime {
InThePast (TimeUnit, u32),
JustNow,
InTheFuture (TimeUnit, u32)

let when = RoughTime: :InThePast (TimeUnit::Years, 4*20 + 7);

...and struct-like variants:

enum Shape {
Sphere {center: Point3d, radius: £32},
Cuboid {cornerl: Point3d, corner2: Point3d}

let unit_sphere = Shape::Sphere{center: ORIGIN, radius: 1.0};

©Nolo

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/
https://doc.rust-lang.org/book/ch06-01-defining-an-enum.html

Enumerated Types (2/2)

 Enums indicates that a type can be one of several alternatives

 They can have type parameters that must be defined when the enum is
iInstantiated:

enum Result<T, E> {
Ok(T),
Err (E)

}

 They can also implement methods — same as for structs

e Enums are useful to model data that can take one of a set of related
values

©Nolo

32

https://csperkins.org/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/

Option and Result

* Rust implements two extremely useful standard enums

enum Option<T> {
Some(T),

* The option type represents optional values Hone
}

* In C, one might write a function to lookup a key in a database:
value *lookup(struct db*self, key *k) {

// ...
}

this returns a pointer to the value, or null if the key doesn't exist

e In Rust, the equivalent function returns an optional value:

fn lookup(self, key : Key) -> Option<Value> {

// ...
}
enum Result<T, E> {
e The result type similarly encodes success or failure: e

}

fn recv(self) -> Result<Message, NetworkError> {
/1l ...
}

 Easy to ignore errors or missing values in C — Rust uses pattern matching on Option/Result
types to encourage error handling; no concept of exceptions

©Nolo

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Pattern Matching (1/4)

* Rust match expressions generalise the C switch statement
e https://doc.rust-lang.org/book/ch06-02-match.html

* Match against constant expressions and wildcards:

match meadow.count rabbits() {
0 => {} // nothing to say
1 => println! ("A rabbit is nosing around in the clover."),
n => println! ("There are {} rabbits hopping about in the meadow", n)

}

* The value of meadow.count rabbits() is matched against the alternatives
* |f matches the constants 0 or 1, the corresponding branch executes

e |f none match, the value is stored in the variable n and that branch executes

e Matching against _ gives a wildcard without assigning to a variable

©Nolo

34

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/
https://doc.rust-lang.org/book/ch06-02-match.html

Pattern Matching (2/4)

e Patterns can be any type, not just integers

let calendar = match settings.get string("calendar") ({
"gregorian" => Calendar::Gregorian,

"chinese" => Calendar: :Chinese,
"ethiopian" => Calendar::Ethiopian,
other => return parse error('calendar", other)

}i

* The match expression evaluates to the value of the chosen branch

* Allows, e.g., use in 1let bindings, as shown

©Nolo

35

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Pattern Matching (3/4)

e Patterns can match against enum values:

enum RoughTime ({
InThePast (TimeUnit, u32),
JustNow,
InTheFuture (TimeUnit, u32)

}
let when = RoughTime: :InThePast (TimeUnit::Years, 4*20 + 7);

match rt {
RoughTime: : InThePast (units, count) => format! ("{} {} ago", count, units.plural()),

RoughTime: :JustNow => format! ("just now"),
RoughTime: : InTheFuture(units, count) => format! ("{} {} from now", count, units.plural())

o Selects from different types of data, expressed as enum variants

* Variables can be bound against values stored in enum variants

e Must match against all possible variants of the enum, or include a wildcard — else compile error

©Nolo

36

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Patterns Matching (4/4)

* C functions often return pointer to value, or null if the value doesn't exist

 Easy to forget the null check when using the value:

customer *get_ user(struct db *db, char *username) {
/...
}

customer *c = get_user(db, customer_name);
book ticket(c, event);

* Program crashes with null pointer dereference at run-time if user is not found

* Equivalent Rust code returns an Option<> type and pattern matches on result:

enum Option<T> {
Some (T),
None

fn get_user(self, username : String) -> Option<Customer> {
/] ...
}
}

match db.get _user (customer_name) {
Some (customer) => book ticket(customer, event),

None => handle_error()

}

 Why is this better? Won't compile unless match against both variants; documents the optional
nature of the result in a machine checkable way in the type

e (Can't force meaningful error handling, but Rust compiler tells you if you forget to handle errors

@O0

37

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/
https://doc.rust-lang.org/book/ch06-01-defining-an-enum.html#the-option-enum-and-its-advantages-over-null-values

References (1/3)

e References are explicit — like pointers in C

e Create a variable binding:

let x = 10; int x = 10;
o Take areference (pointer) to that binding:
let r = &x; int *r = &x;
e Explicitly dereference to access value:
assert! (*r == 10); assert(*r == 10);

e Functions can take parameters by reference:

fn calculate length(s: &String) -> usize {
s.len()

}

©Nolo

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

©Nolo

References (2/3)

e Rust has two types of reference:

e |Immutable references: &

fn main() {
let mut x = 10;

immutable reference — referenced value cannot be changed, but
LEw 8 = sy several immutable references can refer to the same value
*r = 15; compile error: cannot assign to “*r" which is behind a "& reference

println! ("x={}", x);
}

Mutable references: amut

fn main() {
let mut x = 10;

mutable reference — referenced value can change, but the mutable
let r = &mut x; .
reference must be unique

*r = 15;

println! ("x={}", x);

39

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

References (3/3)

e Constraints on references:

References can never be null — they always point to a valid object
e Use option<T> to indicate an optional value of type T where C would use a potentially null pointer

There can be many immutable references (&) to an object in scope at once, but there cannot
be a mutable reference (&mut) to the same object in scope

* An object becomes immutable while immutable references to it are in scope

There can be at most one mutable reference (&mut) to an object in scope, but there cannot be
any immutable references (&) to the object while that mutable reference exists

* An object is inaccessible to its owner while the mutable reference exists

These ownership and borrowing rules are enforced at compile time — lecture 4

* These restrictions prevent:

©Nolo

Null pointer exceptions, iterator invalidation, data races between threads

— lectures 4 and 6 for details

40

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Memory Allocation and Boxes

* A Box<T> is a smart pointer that refers to memory allocated on the heap:

fn box_test() { void box_ test() {
let b = Box::new(5); int *b = malloc(sizeof(int));
println! ("b = {}", b); *b = 5;
} printf("b = %2d\n", *b);
free(b);

}

* Note: boxes implement the standard Display trait so can be printed without dereferencing

 Memory allocated to the box is freed when the box goes out of scope; we must explicitly call
free() inC

 Boxes own and, if bound as mut, may change the data they store on the heap

fn main() {
let mut b = Box::new(5);
*b = 6;
println! ("b = {}", b);

}

* Boxes do not implement the standard Copy trait; can pass boxes around, but only one copy of
each box can exist — again, to avoid data races between threads

* A Box<T> is implemented as a struct that has a private pointer to heap allocated memory; if it were
possible to copy the box, we could get multiple mutable references to that memory

©Nolo

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Strings

e Strings are Unicode text encoded in UTF-8 format

* Astris an immutable string slice, always accessed via an &str reference
let sl = "Hello, World! "; String literals are of type &str
* gstrislike char *in C, except contents guaranteed to be immutable UTF-8 text

* &str is built in to the language

e A Stringis a mutable string buffer type, implemented in the standard library

let s2 = String::new(); let s3 = String::from("Hello, World");
s2.push _str("Hello, World"); s3.push('!");
s2.push('!");

* The string type implements the Deref<Target=str> trait, so taking a reference to a
String results actually returns an &str

let s = String::from("test");
let r = &s; r is of type &str

e This conversion has zero cost, so functions that don't need to mutate the string tend to be only
implemented for &str and not on String values

©Nolo

42

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/
https://doc.rust-lang.org/std/ops/trait.Deref.html

Rust — Key Points

©Nolo

o Largely a traditional imperative systems programming language

e Basic types, control flow, data structures are very familiar

« Key innovations:

e Enumerated types and pattern matching

Option and Result

* Structure types and traits as an alternative to object oriented programming

* Ownership, borrowing, and multiple reference types

» Ljttle of this is novel — adopting many good ideas from research languages:

Syntax is a mixture of C, Standard ML, and Pascal

Basic data types are heavily influenced by C and C++

Enumerated types and pattern matching are adapted from Standard ML
Traits are adapted from Haskell type classes

The ownership and borrowing rules, and the way references are handled, are built on ideas
developed in Cyclone

Many ideas from C++, if often of the form "see how C++ does it, and do the opposite”

43

https://csperkins.org/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/

Why is Rust interesting”?

A modern type system and runtime

 No concept of undefined behaviour

o Buffer overflows, dangling pointers, null pointer dereferences

e No-cost abstractions for modelling problem space and checking consistency of
solutions — lecture 3

o Atype system that can model data and resource ownership:

e Deterministic automatic memory management — lectures 4 and 5

e Avoids iterator invalidation and use-after-free bugs, most memory leaks

* Rules around references, data ownership, and borrowing prevent data races in
concurrent code — lecture 6

e Enforces the design patterns common in well-written C programs

A systems programming language that eliminates many classes of bug that are
common in C and C++ programs

©Nolo

44

https://csperkins.org/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/

Summary

Colin Perkins | https://csperkins.org/ | Copyright © 2019
BY ND

What is a strongly typed language®?
Why is strong typing desirable?
Types for systems programming

Introduction to Rust

45

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

