
Colin Perkins | https://csperkins.org/ | Copyright © 2019 | This work is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International License. To
view a copy of this license, visit http://creativecommons.org/licenses/by-nd/4.0/ or send a letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.

Types and Systems Programming

Advanced Systems Programming (M)
Lecture 2

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/
http://creativecommons.org/licenses/by-nd/4.0/

Colin Perkins | https://csperkins.org/ | Copyright © 2019

Lecture Outline

• Strongly Typed Languages
• What is a strongly typed language?

• Why is strong typing desirable?

• Types for systems programming

• Introducing the Rust programming language
• Basic operations and types

• Arrays, vectors, tuples, strings

• Structures and traits

• Enumerated types and pattern matching

• Memory allocation and boxes

• Why is Rust interesting?

!2

https://csperkins.org/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/

Colin Perkins | https://csperkins.org/ | Copyright © 2019

Strongly Typed Languages

!3

• What is a strongly typed language?

• Why is strong typing desirable?

• Types for systems programming

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2019

What is a Type?

• A type describes what an item of data represents
• Is it an integer? floating point value? file? sequence number? username?

• What, conceptually, is the data?

• How is it represented?

• Types are very familiar in programming:

!4

int x;
double y;
char *hello = “Hello, world”;

struct sockaddr_in {
 uint8_t sin_len;
 sa_family_t sin_family;
 in_port_t sin_port;
 struct in_addr sin_addr;
 char sin_pad[16];
};

Declaring variables and specifying their type

Declaring a new type

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2019

What is a Type System?

• A type system is a set of rules constraining how types can be used:
• What operations can be performed on a type?

• What operations can be performed with a type?

• How does a type compose with other types of data?

• A type system proves the absence of certain program behaviours
• It doesn’t guarantee the program is correct

• It does guarantee that some incorrect behaviours do not occur
• A good type system eliminates common classes of bug, without adding too much complexity

• A bad type system adds complexity to the language, but doesn't prevent many bugs

• Type-related checks can happen at compile time, at run time, or both
• e.g., array bounds checks are a property of an array type, checked at run time

!5

https://csperkins.org/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/

Colin Perkins | https://csperkins.org/ | Copyright © 2019

Static and Dynamic Types (1/2)

• In a language with static types, the type of a variable is fixed when the variable is
created:
• Some require types to be explicitly declared; others can infer types from context

• C and Java requires the types to be explicitly stated in all cases

• Haskell, Rust, OCaml, ... can infer from the context

• Just because the language can infer the type does not mean the type is dynamic:

• The Rust compiler infers that x is an integer and won’t let us add a floating point 4.2 to it, since that
would require changing its type

!6

> cat src/main.rs
fn main() {
 let x = 6;
 x += 4.2;
 println!("{}", x);
}
> cargo build
 Compiling hello v0.1.0 (/Users/csp/tmp/hello)
error[E0277]: cannot add-assign `{float}` to `{integer}`
 --> src/main.rs:3:7
 |
3 | x += 4.2;
 | ^^ no implementation for `{integer} += {float}`
 |
 = help: the trait `std::ops::AddAssign<{float}>` is not implemented for `{integer}`

error: aborting due to previous error

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2019

Static and Dynamic Types (2/2)

• In a language with dynamic types, the type of a variable can change during its
lifetime

• Dynamically typed languages tend to be lower performance, but offer more
flexibility
• They have to store the type as well as its value, which takes additional memory

• They can make fewer optimisation based on the type of a variable, since that type can change

• Systems languages generally have static types, and be compiled ahead of time,
since they tend to be performance sensitive

!7

> python3
Python 3.6.2 (v3.6.2:5fd33b5926, Jul 16 2017, 20:11:06)
[GCC 4.2.1 (Apple Inc. build 5666) (dot 3)] on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>> x = 6
>>> type(x)
<class 'int'>
>>> x += 4.2
>>> type(x)
<class 'float'>
>>>

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2019

Strong and Weak Types (1/2)

• In a language with strong types, every operation must conform to the type system
• If the compiler and/or run-time cannot prove that the operation is legal according to the type

rules, the operation is not permitted

• Other languages have weaker types, and provide ways of circumventing the type
checker:
• This might be automatic safe conversions between types:

• Or it might be an open-ended cast:

!8

char *buffer[BUFLEN];
int fd = socket(…);
…
if (recv(fd, buffer, BUFLEN, 0) > 0) {
 struct rtp_packet *p = (struct rtp_packet *) buf;
 …
}

Common C programming idiom: casting between
types using pointers to evade the type system

float x = 6.0;
double y = 5.0;

double z = x + y;

C has static types, but allows lower precision values to be assigned
to variables with higher precision types – there’s no data loss

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2019

Strong and Weak Types (2/2)

• Sometimes clearer to consider safe and unsafe languages, rather than strong or
weak types
• “A safe language is one that protects its own abstractions” [Pierce]

• A safe language – whether static or dynamic – knows the types of all variables, and only allows
legal operations on those values

• An unsafe language allows the types to be circumvented – to perform operations that the
programmer believes are correct, but the type system can’t prove so

!9

https://csperkins.org/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://mitpress.mit.edu/books/types-and-programming-languages

Colin Perkins | https://csperkins.org/ | Copyright © 2019

Why is Strong Typing Desirable?

• “Well-typed programs don’t go wrong” – Robin Milner
• The result is well-defined – although not necessarily correct

• The type system ensures results are consistent with the rules of the language, but cannot
check if you calculated the right result

• A strongly-typed system will only ever perform operations on a type that are legal – there is
no undefined behaviour

• Types help model the problem, check for consistency, and eliminate common
classes of bug

!10

https://csperkins.org/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://en.wikipedia.org/wiki/Robin_Milner

Colin Perkins | https://csperkins.org/ | Copyright © 2019 !11

Segmentation fault (core dumped)

Segmentation faults should never happen:
• Compiler and runtime should strongly enforce type rules
• If program violates them, it should be terminated cleanly
• Security vulnerabilities – e.g., buffer overflow attacks –

come from undefined behaviour after type violations

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2019 !12

Segmentation fault (core dumped)

ISO/IEC 9899:201x Committee Draft — April 12, 2011 N1570

2 EXAMPLE An example of locale-specific behavior is whether the islower function returns true for
characters other than the 26 lowercase Latin letters.

3.4.3
1 undefined behavior

behavior, upon use of a nonportable or erroneous program construct or of erroneous data,
for which this International Standard imposes no requirements

2 NOTE Possible undefined behavior ranges from ignoring the situation completely with unpredictable
results, to behaving during translation or program execution in a documented manner characteristic of the
environment (with or without the issuance of a diagnostic message), to terminating a translation or
execution (with the issuance of a diagnostic message).

3 EXAMPLE An example of undefined behavior is the behavior on integer overflow.

3.4.4
1 unspecified behavior

use of an unspecified value, or other behavior where this International Standard provides
two or more possibilities and imposes no further requirements on which is chosen in any
instance

2 EXAMPLE An example of unspecified behavior is the order in which the arguments to a function are
evaluated.

3.5
1 bit

unit of data storage in the execution environment large enough to hold an object that may
have one of two values

2 NOTE It need not be possible to express the address of each individual bit of an object.

3.6
1 byte

addressable unit of data storage large enough to hold any member of the basic character
set of the execution environment

2 NOTE 1 It is possible to express the address of each individual byte of an object uniquely.

3 NOTE 2 A byte is composed of a contiguous sequence of bits, the number of which is implementation-
defined. The least significant bit is called the low-order bit; the most significant bit is called the high-order
bit.

3.7
1 character

〈abstract〉 member of a set of elements used for the organization, control, or
representation of data

3.7.1
1 character

single-byte character
〈C〉 bit representation that fits in a byte

4 General §3.7.1

C has 193 kinds of undefined behaviour
Appendix J of the C standard https://www.iso.org/standard/74528.html ($$$) or
http://www.open-std.org/jtc1/sc22/wg14/www/abq/c17_updated_proposed_fdis.pdf

Each leads to entirely unpredictable results  
→ https://blog.regehr.org/archives/213
A language should specify behaviour of each operation

1 The behavior is undefined in the following circumstances:

— A ‘‘shall’’ or ‘‘shall not’’ requirement that appears outside of a constraint is violated
(clause 4).

— A nonempty source file does not end in a new-line character which is not immediately
preceded by a backslash character or ends in a partial preprocessing token or
comment (5.1.1.2).

— Token concatenation produces a character sequence matching the syntax of a
universal character name (5.1.1.2).

— A program in a hosted environment does not define a function named main using one
of the specified forms (5.1.2.2.1).

§J.2 Portability issues 557— The execution of a program contains a data race (5.1.2.4).

— A character not in the basic source character set is encountered in a source file, except
in an identifier, a character constant, a string literal, a header name, a comment, or a
preprocessing token that is never converted to a token (5.2.1).

— An identifier, comment, string literal, character constant, or header name contains an
invalid multibyte character or does not begin and end in the initial shift state (5.2.1.2).

— The same identifier has both internal and external linkage in the same translation unit
(6.2.2).

— An object is referred to outside of its lifetime (6.2.4).

— The value of a pointer to an object whose lifetime has ended is used (6.2.4).

— The value of an object with automatic storage duration is used while it is
indeterminate (6.2.4, 6.7.9, 6.8).

— A trap representation is read by an lvalue expression that does not have character type
(6.2.6.1).

— A trap representation is produced by a side effect that modifies any part of the object
using an lvalue expression that does not have character type (6.2.6.1).

— The operands to certain operators are such that they could produce a negative zero
result, but the implementation does not support negative zeros (6.2.6.2).

— Two declarations of the same object or function specify types that are not compatible
(6.2.7).

— A program requires the formation of a composite type from a variable length array
type whose size is specified by an expression that is not evaluated (6.2.7).

— Conversion to or from an integer type produces a value outside the range that can be
represented (6.3.1.4).

— Demotion of one real floating type to another produces a value outside the range that
can be represented (6.3.1.5).

— An lvalue does not designate an object when evaluated (6.3.2.1).

— A non-array lvalue with an incomplete type is used in a context that requires the value
of the designated object (6.3.2.1).

— An lvalue designating an object of automatic storage duration that could have been
declared with the register storage class is used in a context that requires the value
of the designated object, but the object is uninitialized. (6.3.2.1).

— An lvalue having array type is converted to a pointer to the initial element of the
array, and the array object has register storage class (6.3.2.1).

558 Portability issues §J.2

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/
https://www.iso.org/standard/74528.html
http://www.open-std.org/jtc1/sc22/wg14/www/abq/c17_updated_proposed_fdis.pdf
https://blog.regehr.org/archives/213

Colin Perkins | https://csperkins.org/ | Copyright © 2019

Types for Systems Programming

• C is weakly typed and widely used for systems programming
• Why is this?

• Can systems programming languages be strongly typed?

• What are the challenges in strongly typed systems programming?

!13

https://csperkins.org/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/

Colin Perkins | https://csperkins.org/ | Copyright © 2019

Why is C Weakly Typed?

• Mostly, historical reasons:
• The original designers of C were not type theorists

• The original machines on which C was developed didn’t have the resources to
perform complex type checks

• Type theory was not particularly advanced in the early 1970s – we didn’t know
how to do better?

!14

https://csperkins.org/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/

Colin Perkins | https://csperkins.org/ | Copyright © 2019

Is Strongly-typed Systems Programming Feasible?

• Yes – many examples of operating systems
written in strongly-typed languages
• Old versions of macOS written in Pascal

• Project Oberon http://www.projectoberon.com

• US DoD and the Ada programming language
• Aerospace, military, air traffic control

• Popularity of Unix and C has led to a belief
that operating systems require unsafe code
• True only at the very lowest levels

• Most systems code, including device drivers, can
be written in strongly typed, safe, languages

• Rust is a modern attempt to provide a type-safe
language suited to systems programming

!15

• Ada has extensive support for low-
level hardware access and interrupt
handlers
• Precise control over record layout in memory,

byte ordering, bit size of types, etc.

• Perhaps overly verbose...?

• Facilities for interrupt handlers in the
language

• Allows portable code to be written
that manipulates hardware devices

7

Interacting with Hardware: Ada
type ErrorType is range 0..15;
type UnitSelType is range 0..7;
type ResType is range 0..7;
type DevFunc is range 0..3;
type Flag is (Set, NotSet);
type ControlRegister is
record
 errors : ErrorType;
 busy : Flag;
 unitSel : UnitSelType;
 done : Flag;
 irqEnable : Flag;
 reserved : ResType;
 devFunc : DevFunc;
 devEnable : Flag;
end record;

for ControlRegister use
record
 errors at 0*Word range 12..15;
 busy at 0*Word range 11..11;
 unitSel at 0*Word range 8..10;
 done at 0*Word range 7.. 7;
 irqEnable at 0*Word range 6.. 6;
 reserved at 0*Word range 3.. 5;
 devFunc at 0*word range 1.. 2;
 devEnable at 0*Word range 0.. 0;
end record;

for ControlRegister’Size use 16;
for ControlRegister’Alignment use Word;
for ControlRegister’Bit_order use Low_Order_First;
...

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/
http://www.projectoberon.com

Colin Perkins | https://csperkins.org/ | Copyright © 2019

Challenges in Strongly-typed Systems Programming

• Four fallacies:
• Factors of 1.5x to 2x in performance don’t matter

• Boxed representation can be optimised away

• The optimiser can fix it

• The legacy problem is insurmountable

• Four challenges:
• Application constraint checking

• Idiomatic manual storage management

• Control over data representation

• Managing shared state

• Many good ideas in research languages and operating systems – only recently
that these issues have been considered to make practical tools

!16

Programming Language Challenges in Systems Codes

Why Systems Programmers Still Use C, and What to Do About It

Jonathan Shapiro, Ph.D.

Systems Research Laboratory
Department of Computer Science

Johns Hopkins University

shap@cs.jhu.edu

Abstract
There have been major advances in programming languages
over the last 20 years. Given this, it seems appropriate to
ask why systems programmers continue to largely ignore
these languages. What are the deficiencies in the eyes of
the systems programmers? How have the e↵orts of the
programming language community been misdirected (from
their perspective)? What can/should the PL community do
address this?

As someone whose research straddles these areas, I was
asked to give a talk at this year’s PLOS workshop. What
follows are my thoughts on this subject, which may or not
represent those of other systems programmers.

1. Introduction

Modern programming languages such as ML [16] or
Haskell [17] provide newer, stronger, and more expressive
type systems than systems programming languages such as
C [15, 13] or Ada [12]. Why have they been of so little in-
terest to systems developers, and what can/should we do
about it?

As the primary author of the EROS system [18] and its
successor Coyotos [20], both of which are high-performance
microkernels, it seems fair to characterize myself primarily
as a hardcore systems programmer and security architect.
However, there are skeletons in my closet. In the mid-1980s,
my group at Bell Labs developed one of the first large
commercial C++ applications — perhaps the first. My early
involvement with C++ includes the first book on reusable
C++ programming [21], which is either not well known or
has been graciously disregarded by my colleagues.

In this audience I am tempted to plead for mercy on the
grounds of youth and ignorance, but having been an active

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and
that copies bear this notice and the full citation on the first page. To
copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee.

PLOS 2006, Oct. 22, 2006, San Jose, California, United States
Copyright c� 2006 ACM 1-59593-577-0/10/2006. . . $5.00

advocate of C++ for so long this entails a certain degree
of chutzpah.1 There is hope. Microkernel developers seem to
have abandoned C++ in favor of C. The book is out of print
in most countries, and no longer encourages deviant coding
practices among susceptible young programmers.

A Word About BitC Brewer et al.’s cry that Thirty

Years is Long Enough [6] resonates. It really is a bit dis-
turbing that we are still trying to use a high-level assembly
language created in the early 1970s for critical production
code 35 years later. But Brewer’s lament begs the question:
why has no viable replacement for C emerged from the pro-
gramming languages community? In trying to answer this,
my group at Johns Hopkins has started work on a new pro-
gramming language: BitC. In talking about this work, we
have encountered a curious blindness from the PL commu-
nity.

We are often asked “Why are you building BitC?” The tacit
assumption seems to be that if there is nothing fundamen-
tally new in the language it isn’t interesting. The BitC goal
isn’t to invent a new language or any new language con-
cepts. It is to integrate existing concepts with advances in
prover technology, and reify them in a language that allows
us to build stateful low-level systems codes that we can rea-
son about in varying measure using automated tools. The
feeling seems to be that everything we are doing is straight-
forward (read: uninteresting). Would that it were so.

Systems programming — and BitC — are fundamentally
about engineering rather than programming languages. In
the 1980s, when compiler writers still struggled with inad-
equate machine resources, engineering considerations were
respected criteria for language and compiler design, and a
sense of “transparency” was still regarded as important.2

By the time I left the PL community in 1990, respect for
engineering and pragmatics was fast fading, and today it
is all but gone. The concrete syntax of Standard ML [16]
and Haskell [17] are every bit as bad as C++. It is a curi-
ous measure of the programming language community that
nobody cares. In our pursuit of type theory and semantics,

1 Chutzpah is best defined by example. Chutzpah is when a
person murders both of their parents and then asks the court
for mercy on the grounds that they are an orphan.

2 By “transparent,” I mean implementations in which the pro-
grammer has a relatively direct understanding of machine-level
behavior.

J. Shapiro, “Programming language challenges in systems codes:
why systems programmers still use C, and what to do about it”,

Workshop on Programming Languages and Operating Systems,
San Jose, CA, October 2006. DOI:10.1145/1215995.1216004

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/
https://dx.doi.org/10.1145/1215995.1216004
https://dx.doi.org/10.1145/1215995.1216004

Colin Perkins | https://csperkins.org/ | Copyright © 2019

Introducing Rust

!17

• What is Rust?
• Basic operations and types

• Arrays, vectors, tuples, strings

• Structures and traits

• Enumerated types and pattern matching

• Memory allocation and boxes

• Why is it interesting?

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2019

The Rust Programming Language

• Initially developed by Graydon Hoare as a side project,
starting 2006

• Sponsored by Mozilla since 2009

• Rust v1.0 released in 2015

• Rust v1.31 “Rust 2018 Edition” released December 2018
• Backwards compatible – but tidies up the language

• https://blog.rust-lang.org/2018/12/06/Rust-1.31-and-rust-2018.html

• New releases made every six weeks – strong backwards
compatibility policy

!18

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/
https://blog.rust-lang.org/2018/12/06/Rust-1.31-and-rust-2018.html

Colin Perkins | https://csperkins.org/ | Copyright © 2019

Basic Features

!19

fn main() {
 println!("Hello, world!”);
}

Function definition; macro expansion; string literal

fn gcd(mut n: u64, mut m: u64) -> u64 {
 assert!(n != 0 && m != 0);
 while m!=0 {
 if m < n {
 let t = m;
 m = n;
 n = t;
 }
 m = m % n;
 }
 n
}

fn main() {
 let m = 12;
 let n = 16;
 let r = gcd(m, n);
 println!("gcd({}, {}) = {}", m, n, r);
}

Function arguments and return type; mutable vs immutable

Control flow: while and if statements

Local variable definition (let binding); type is inferred

Implicitly returns value of final expression (can return from
function early using return statement)

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2019

Basic Types

• Basic types have close to direct mapping from C to Rust

• Rust has a native bool type, C uses int to represent boolean (C99 has _Bool)

• In C, a char is defined as a single byte, implementation defined whether signed, no
character set specified; Rust char is a 32-bit Unicode scalar value
• Unicode scalar value ≠ code point ≠ grapheme cluster ≠ “character”

• e.g., ü is two scalar values “Latin small letter U (U+0075)” + “combining diaeresis (U+0308)”, but one
grapheme cluster (https://crates.io/crates/unicode-segmentation – text is hard)

!20

C Rust
int isize

int8_t, signed char
int16_t
int32_t
int64_t

i8
i16
i32
i64

float
double

f32
f64

_Bool
int bool

char
(32 bit unicode scalar value)

C Rust
unsigned usize

uint8_t, unsigned char
uint16_t
uint32_t
uint64_t

u8
u16
u32
u64

https://doc.rust-lang.org/book/ch03-02-data-types.html

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/
https://crates.io/crates/unicode-segmentation
https://doc.rust-lang.org/book/ch03-02-data-types.html

Colin Perkins | https://csperkins.org/ | Copyright © 2019

Arrays and Vectors

!21

fn main() {
 let a = [1, 2, 3, 4, 5];
 let b = a[2];
 println!("b={}", b);
}

Arrays work as expected
Types are inferred

fn main() {
 let v = vec![1, 2, 3, 4, 5];
}

Vectors are the dynamically sized equivalent
vec![...] macro creates vector literals

fn main() {
 let mut v = Vec::new();
 v.push(1);
 v.push(2);
 v.push(3);
 v.push(4);
 v.push(5);
}

Vectors are implemented internally as the equivalent of a C
program that uses malloc() to allocate space for an array,
then realloc() to grow the space when it gets close to full.

They implement the Deref<Target=&[T]> trait, so they can
be passed to functions that expect a reference to an array of
the same type – gives pointer to array implementing the vector

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2019

Tuples

!22

fn main() {
 let tup = (500, 6.4, 1);

 let (x, y, z) = tup;

 println!("The value of y is: {}", y);
 println!("The 2nd element is {}”, tup.1)
}

Tuples are collections of unnamed values; each
element can be a different type

() An empty tuple is the unit type (like void in C)

let bindings can de-structure tuples

Tuple elements can be accessed by index

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2019

Structure Types (1/2)

!23

struct Rectangle {
 width: u32,
 height: u32
}

fn area(rectangle: Rectangle) -> u32 {
 rectangle.width * rectangle.height
}

fn main() {
 let rect = Rectangle { width: 30, height: 50 };

 println!("Area of rectangle is {}", area(rect));
}

Structs are collections of named values;
each element can have a different type
https://doc.rust-lang.org/book/ch05-00-structs.html

Create a struct, specifying the values for
each field

Access fields in struct using dot notation

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/
https://doc.rust-lang.org/book/ch05-00-structs.html

Colin Perkins | https://csperkins.org/ | Copyright © 2019

Structure Types (2/2)

!24

struct Point(i32, i32, i32);

let origin = Point(0, 0, 0);

Tuple structs are tuples with a type name
useful for type aliases

struct Marker; Unit-like structs have no elements and take up no space
useful as markers or type parameters

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2019

Methods

• Rust doesn’t have objects in the traditional way, but you can implement methods
on structs

!25

struct Rectangle {
 width: u32,
 height: u32,
}

impl Rectangle {
 fn area(&self) -> u32 {
 self.width * self.height
 }
}

fn main() {
 let rect = Rectangle { width: 30, height: 50 };

 println!("Area of rectangle is {}", rect.area());
}

Methods and instance variables use
explicit self references, like Python

Methods defined in impl block

Method call uses dot notation

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2019

Traits (1/5)

• Traits describe features that types can implement
• Methods that must be provided, and associated types that must be specified, by types that

implement the trait – but not instance variables or data

• Similar to type classes in Haskell or interfaces in Java

• https://doc.rust-lang.org/book/ch10-02-traits.html

!26

trait Area {
 fn area(&self) -> u32;
}

struct Rectangle {
 width: u32,
 height: u32,
}

impl Area for Rectangle {
 fn area(&self) -> u32 {
 self.width * self.height
 }
}

Define a trait with a single method that must be implemented

Implement that trait for the Rectangle type

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/
https://doc.rust-lang.org/book/ch10-02-traits.html

Colin Perkins | https://csperkins.org/ | Copyright © 2019

Traits (2/5)

!27

struct Circle {
 radius: u32
}

impl Area for Circle {
 fn area(&self) -> u32 {
 PI * self.radius * self.radius
 }
}

A trait can be implemented by multiple types

Traits are an important tool for abstraction in Rust –
similar role to sub-typing in many languages

trait Area {
 fn area(&self) -> u32;
}

struct Rectangle {
 width: u32,
 height: u32,
}

impl Area for Rectangle {
 fn area(&self) -> u32 {
 self.width * self.height
 }
}

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2019

Traits (3/5): Generic Functions

• Rust uses traits instead of classes and inheritance
• Define a trait:

• Write functions that work on types that implement that trait:

• Allows generic code – functions or methods that can work with any type that
implements a particular trait

!28

fn notify<T: Summary>(item: T) {
 println!("Breaking news! {}", item.summarize());
}

trait Summary {
 fn summarize(&self) -> String;
}

Type parameter in angle brackets: T is any type that implement the Summary trait

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2019

Traits (4/5): Deriving Common Traits

• The derive attribute makes compiler automatically generate implementations of
some common traits:

• Generates impl block with standard implementation of methods for derived trait

• Compiler implements this for many traits in the standard library that are always implemented
the same way: https://doc.rust-lang.org/book/appendix-03-derivable-traits.html

• Can also be implemented for other traits:
• Only useful if every implementation of the trait will follow the exact same structure

• https://doc.rust-lang.org/book/ch19-06-macros.html#how-to-write-a-custom-derive-macro

!29

#[derive(Debug)]
struct Rectangle {
 width: u32,
 height: u32,
}

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/
https://doc.rust-lang.org/book/appendix-03-derivable-traits.html
https://doc.rust-lang.org/book/ch19-06-macros.html#how-to-write-a-custom-derive-macro

Colin Perkins | https://csperkins.org/ | Copyright © 2019

Traits (5/5): Associated Types

• Traits can also specify associated types – types that must be specified when a
trait is implemented

• Example: for loops operate on iterators

• An iterator is something that implements the Iterator trait:

!30

pub trait Iterator {
 type Item;

 fn next(&mut self) -> Option<Self::Item>;
 // more...
}

fn main() {
 let a = [42, 43, 44, 45, 46];

 for x in a.iter() {
 println!("x={}", x);
 }
}

The impl of the trait has to specify the
type, item, as well as the methods

a.iter() returns an iterator over the array

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2019

Enumerated Types (1/2)

!31

enum TimeUnit {
 Years, Months, Days, Hours, Minutes, Seconds
}

Basic enums work just like in C

enum RoughTime {
 InThePast(TimeUnit, u32),
 JustNow,
 InTheFuture(TimeUnit, u32)
}

let when = RoughTime::InThePast(TimeUnit::Years, 4*20 + 7);

Enums also generalise to store tuple-like variants:

enum Shape {  
 Sphere {center: Point3d, radius: f32},
 Cuboid {corner1: Point3d, corner2: Point3d}
}
 
let unit_sphere = Shape::Sphere{center: ORIGIN, radius: 1.0};

...and struct-like variants:

https://doc.rust-lang.org/book/ch06-01-defining-an-enum.html

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/
https://doc.rust-lang.org/book/ch06-01-defining-an-enum.html

Colin Perkins | https://csperkins.org/ | Copyright © 2019

Enumerated Types (2/2)

• Enums indicates that a type can be one of several alternatives
• They can have type parameters that must be defined when the enum is

instantiated:

• They can also implement methods – same as for structs

• Enums are useful to model data that can take one of a set of related
values

!32

enum Result<T, E> {
 Ok(T),
 Err(E)
}

https://csperkins.org/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/

Colin Perkins | https://csperkins.org/ | Copyright © 2019

Option and Result

• Rust implements two extremely useful standard enums

• The option type represents optional values
• In C, one might write a function to lookup a key in a database: 
 
 
 
 
this returns a pointer to the value, or null if the key doesn't exist

• In Rust, the equivalent function returns an optional value:

• The result type similarly encodes success or failure:

• Easy to ignore errors or missing values in C – Rust uses pattern matching on Option/Result
types to encourage error handling; no concept of exceptions

!33

enum Result<T, E> {
 Ok(T),
 Err(E)
}

enum Option<T> {
 Some(T),
 None
}

fn lookup(self, key : Key) -> Option<Value> {
 // ...
}

value *lookup(struct db*self, key *k) {
 // ...
}

fn recv(self) -> Result<Message, NetworkError> {
 // ...
}

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2019

Pattern Matching (1/4)

• Rust match expressions generalise the C switch statement
• https://doc.rust-lang.org/book/ch06-02-match.html

• Match against constant expressions and wildcards:

• The value of meadow.count_rabbits() is matched against the alternatives

• If matches the constants 0 or 1, the corresponding branch executes

• If none match, the value is stored in the variable n and that branch executes

• Matching against _ gives a wildcard without assigning to a variable

!34

match meadow.count_rabbits() {  
 0 => {} // nothing to say  
 1 => println!("A rabbit is nosing around in the clover."),  
 n => println!("There are {} rabbits hopping about in the meadow", n)
}

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/
https://doc.rust-lang.org/book/ch06-02-match.html

Colin Perkins | https://csperkins.org/ | Copyright © 2019

Pattern Matching (2/4)

• Patterns can be any type, not just integers

• The match expression evaluates to the value of the chosen branch
• Allows, e.g., use in let bindings, as shown

!35

let calendar = match settings.get_string("calendar") {
 "gregorian" => Calendar::Gregorian,
 "chinese" => Calendar::Chinese,
 "ethiopian" => Calendar::Ethiopian,
 other => return parse_error("calendar", other)
};

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2019

Pattern Matching (3/4)

• Patterns can match against enum values:

• Selects from different types of data, expressed as enum variants

• Variables can be bound against values stored in enum variants

• Must match against all possible variants of the enum, or include a wildcard – else compile error

!36

match rt {  
 RoughTime::InThePast(units, count) => format!("{} {} ago", count, units.plural()),
 RoughTime::JustNow => format!("just now"),
 RoughTime::InTheFuture(units, count) => format!("{} {} from now", count, units.plural())
}

enum RoughTime {
 InThePast(TimeUnit, u32),
 JustNow,
 InTheFuture(TimeUnit, u32)
}

let when = RoughTime::InThePast(TimeUnit::Years, 4*20 + 7);

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2019

Patterns Matching (4/4)

• C functions often return pointer to value, or null if the value doesn't exist

• Easy to forget the null check when using the value:

• Program crashes with null pointer dereference at run-time if user is not found

• Equivalent Rust code returns an Option<> type and pattern matches on result:

• Why is this better? Won't compile unless match against both variants; documents the optional
nature of the result in a machine checkable way in the type

• Can't force meaningful error handling, but Rust compiler tells you if you forget to handle errors

!37

customer *get_user(struct db *db, char *username) {
 // ...
}

customer *c = get_user(db, customer_name);
book_ticket(c, event);

fn get_user(self, username : String) -> Option<Customer> {
 // ...
}

match db.get_user(customer_name) {
 Some(customer) => book_ticket(customer, event),
 None => handle_error()
}
https://doc.rust-lang.org/book/ch06-01-defining-an-enum.html#the-option-enum-and-its-advantages-over-null-values

enum Option<T> {
 Some(T),
 None
}

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/
https://doc.rust-lang.org/book/ch06-01-defining-an-enum.html#the-option-enum-and-its-advantages-over-null-values

Colin Perkins | https://csperkins.org/ | Copyright © 2019

References (1/3)

• References are explicit – like pointers in C
• Create a variable binding:

• Take a reference (pointer) to that binding:

• Explicitly dereference to access value:

• Functions can take parameters by reference:

!38

assert!(*r == 10);

let x = 10; int x = 10;

let r = &x; int *r = &x;

assert(*r == 10);

fn calculate_length(s: &String) -> usize {
 s.len()
}

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2019

References (2/3)

• Rust has two types of reference:
• Immutable references: &

• Mutable references: &mut

!39

fn main() {
 let mut x = 10;
 let r = &x;

 *r = 15;

 println!("x={}", x);
}

fn main() {
 let mut x = 10;
 let r = &mut x;

 *r = 15;

 println!("x={}", x);
}

immutable reference – referenced value cannot be changed, but
several immutable references can refer to the same value

mutable reference – referenced value can change, but the mutable
reference must be unique

compile error: cannot assign to `*r` which is behind a `&` reference

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2019

References (3/3)

• Constraints on references:
• References can never be null – they always point to a valid object

• Use option<T> to indicate an optional value of type T where C would use a potentially null pointer

• There can be many immutable references (&) to an object in scope at once, but there cannot
be a mutable reference (&mut) to the same object in scope

• An object becomes immutable while immutable references to it are in scope

• There can be at most one mutable reference (&mut) to an object in scope, but there cannot be
any immutable references (&) to the object while that mutable reference exists

• An object is inaccessible to its owner while the mutable reference exists

• These ownership and borrowing rules are enforced at compile time → lecture 4

• These restrictions prevent:
• Null pointer exceptions, iterator invalidation, data races between threads

• → lectures 4 and 6 for details

!40

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2019

Memory Allocation and Boxes

• A Box<T> is a smart pointer that refers to memory allocated on the heap:

• Note: boxes implement the standard Display trait so can be printed without dereferencing

• Memory allocated to the box is freed when the box goes out of scope; we must explicitly call
free() in C

• Boxes own and, if bound as mut, may change the data they store on the heap

• Boxes do not implement the standard Copy trait; can pass boxes around, but only one copy of
each box can exist – again, to avoid data races between threads
• A Box<T> is implemented as a struct that has a private pointer to heap allocated memory; if it were

possible to copy the box, we could get multiple mutable references to that memory

!41

fn box_test() {
 let b = Box::new(5);
 println!("b = {}", b);
}

void box_test() {
 int *b = malloc(sizeof(int));
 *b = 5;
 printf("b = %d\n", *b);
 free(b);
}

fn main() {
 let mut b = Box::new(5);
 *b = 6;
 println!("b = {}", b);
}

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2019

Strings

• Strings are Unicode text encoded in UTF-8 format

• A str is an immutable string slice, always accessed via an &str reference

• &str is like char * in C, except contents guaranteed to be immutable UTF-8 text

• &str is built in to the language

• A String is a mutable string buffer type, implemented in the standard library

• The string type implements the Deref<Target=str> trait, so taking a reference to a
String results actually returns an &str

• This conversion has zero cost, so functions that don't need to mutate the string tend to be only
implemented for &str and not on String values

!42

let s1 = "Hello, World!"; String literals are of type &str

let s2 = String::new();
s2.push_str("Hello, World");
s2.push('!');

let s3 = String::from("Hello, World");
s3.push('!');

let s = String::from("test");
let r = &s; r is of type &str

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/
https://doc.rust-lang.org/std/ops/trait.Deref.html

Colin Perkins | https://csperkins.org/ | Copyright © 2019

Rust – Key Points

• Largely a traditional imperative systems programming language
• Basic types, control flow, data structures are very familiar

• Key innovations:
• Enumerated types and pattern matching

• Option and Result

• Structure types and traits as an alternative to object oriented programming

• Ownership, borrowing, and multiple reference types

• Little of this is novel – adopting many good ideas from research languages:
• Syntax is a mixture of C, Standard ML, and Pascal

• Basic data types are heavily influenced by C and C++

• Enumerated types and pattern matching are adapted from Standard ML

• Traits are adapted from Haskell type classes

• The ownership and borrowing rules, and the way references are handled, are built on ideas
developed in Cyclone

• Many ideas from C++, if often of the form "see how C++ does it, and do the opposite"

!43

https://csperkins.org/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/

Colin Perkins | https://csperkins.org/ | Copyright © 2019

Why is Rust interesting?

• A modern type system and runtime
• No concept of undefined behaviour

• Buffer overflows, dangling pointers, null pointer dereferences

• No-cost abstractions for modelling problem space and checking consistency of
solutions → lecture 3

• A type system that can model data and resource ownership:
• Deterministic automatic memory management → lectures 4 and 5

• Avoids iterator invalidation and use-after-free bugs, most memory leaks

• Rules around references, data ownership, and borrowing prevent data races in
concurrent code → lecture 6
• Enforces the design patterns common in well-written C programs

A systems programming language that eliminates many classes of bug that are
common in C and C++ programs

!44

https://csperkins.org/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/

Colin Perkins | https://csperkins.org/ | Copyright © 2019

Summary

!45

• What is a strongly typed language?

• Why is strong typing desirable?

• Types for systems programming

• Introduction to Rust

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

