
Colin Perkins | https://csperkins.org/ | Copyright © 2019 | This work is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International License. To
view a copy of this license, visit http://creativecommons.org/licenses/by-nd/4.0/ or send a letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.

Type-based Modelling and Design

Advanced Systems Programming (M)
Lecture 3

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/
http://creativecommons.org/licenses/by-nd/4.0/

Colin Perkins | https://csperkins.org/ | Copyright © 2019

Type-driven Development

!2

• Define the types

• Write the functions

• Refine as needed

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2019

Type-driven Development

• Define the types first

• Using the types as a guide, write the functions
• Write the input and output types

• Write the function, using the structure of the types as a guide

• Refine and edit types and functions as necessary

• Don't think of the types as checking the code, think of them
as a plan – a model – for the solution

!3

M A N N I N G

Edwin Brady

Type-drive development approach
adapted from: E. Brady, "Type-

Driven Development with Idris",
Manning, March 2017.

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/
https://amzn.to/2RRSOcp
https://amzn.to/2RRSOcp
https://amzn.to/2RRSOcp
https://amzn.to/2RRSOcp

Colin Perkins | https://csperkins.org/ | Copyright © 2019

Define the Types (1/2)

• Define the types needed to build a domain model
• Who is interacting? What do they interact with? What sorts of things do they exchange?

• What sort of properties describe those people and things? What data is associated with each?

• What states can the interaction be in?

• Types might initially be ill-defined and abstract
• Write them down anyway – refine later

!4

Employee Sender

Receiver

TcpSegment

Vehicle Cargo

TemperatureInCelsius

SequenceNumber

Manufacturer

Name EmailAddress

Connecting Sent LoggedIn AuthenticationRequired

Connection

Colour

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2019

Define the Types (2/2)

• Associate properties with the types:
• What data is associated with a thing? What properties does it have?

• What state is something in?

• Refine and extend the types as needed

!5

struct Sender {
 name : Name,
 email : EmailAddress,
 address : PostalAddress
}

enum State {
 NotConnected,
 Connecting,
 AuthenticationRequired,
 LoggedIn,
 ...
}

struct UnauthenticatedConnection {
 socket : TcpSocket,
 ...
}

struct AuthenticatedConnection {
 socket : TcpSocket,
 ...
}

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2019

Write the Functions (1/2)

• Using the types as a guide, write the function prototypes, leaving the concrete
implementation for later

!6

impl UnauthenticatedConnection {
 fn login(self, c: Credentials) -> Result<AuthenticatedConnection, LoginError> {
 ...
 }

 fn disconnect(self) {
 ...
 }
}

impl AuthenticatedConnection {
 fn list_folders(self) -> List<EmailFolder> {
 ...
 }

 fn list_messages(self, f : EmailFolder) -> List<EmailMessage> {
 ...
 }

 fn disconnect(self) {
 ...
 }
}

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2019

Write the Functions (2/2)

• Behaviour obvious from the types – and types constrain behaviour
• Use specific rather than generic types

• e.g., take a Username as a parameter, rather than a String

• Types provide machine checkable documentation

• Encode states as types and state transitions as functions

• Functions only implemented for the types where they make sense

• e.g., cannot list_folders() until after login(); types prevent invalid operations

!7

Preconnection Unauthenticated
Connection

Authenticated
Connection

connect() login()

disconnect()

disconnect()

list_folders()

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2019

Refine Types and Functions

• Types and functions provide a model of the system

• Iterate – filling in just enough details to keep it compiling
• Interactive design using the compiler to check consistency

• Gradually refine until the entire system is modelled – then add the concrete
implementations, refining as needed

• Work with the compiler to validate the design, before detailed implementation

!8

https://csperkins.org/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/

Colin Perkins | https://csperkins.org/ | Copyright © 2019

Correct by Construction

• Use types to check the design, debugging before you run the code

• Non-sensical operations don't cause a crash – they don't compile

!9

https://csperkins.org/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/

Colin Perkins | https://csperkins.org/ | Copyright © 2019

Design Patterns

!10

• Specific numeric types

• Enumerations and string typing

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2019

Numeric Types

• Is a value really a double or int,
or does it have some meaning?
• Temperature in degrees celsius

• Speed in miles per hour

• UserID

• Packet sequence number

• ...

• Encode the meaning as a type, so
the compiler checks for consistent
usage
• Operations that mix types should fail, or

perform safe unit conversions if possible

• Operations that are inappropriate for a
type shouldn't be possible

!11

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2019

Numeric Types – Strong Typing

• Weakly typed – programmer knows c and f are
different types, but the compiler does not

• Program silently calculates the wrong answer

!12

fn main() {
 let c = 15.0; // Celsius
 let f = 50.0; // Fahrenheit

 let t = c + f;

 println!("{:?}", t); // 65.0
}

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2019

Numeric Types – Strong Typing

• Strongly typed – struct with single
unnamed field wraps numeric value
• derive and impl standard operations 

https://crates.io/crates/newtype_derive has macros to auto-generate impl blocks
• Resulting code won't compile since types

are mismatched

!13

use std::ops::Add;

#[derive(Debug,PartialEq,PartialOrd)]
struct Celsius(f32);

#[derive(Debug,PartialEq,PartialOrd)]
struct Fahrenheit(f32);

impl Add for Celsius {
 type Output = Celsius;

 fn add(self, other : Celsius) -> Self::Output {
 Celsius(self.0 + other.0)
 }
}

impl Add for Fahrenheit {
 type Output = Fahrenheit;

 fn add(self, other : Fahrenheit) -> Self::Output {
 Fahrenheit(self.0 + other.0)
 }
}
fn main() {
 let c = Celsius(15.0);
 let f = Fahrenheit(50.0);

 let t = c + f;

 println!("{:?}", t);
}

> cargo build
 Compiling foo v0.1.0 (/Users/csp/tmp/foo)
error[E0308]: mismatched types
 --> src/main.rs:28:17
 |
28 | let t = c + f;
 | ^ expected struct `Celsius`, found struct `Fahrenheit`
 |
 = note: expected type `Celsius`
 found type `Fahrenheit`

error: aborting due to previous error

For more information about this error, try `rustc --explain E0308`.
error: Could not compile `foo`.

To learn more, run the command again with --verbose.
>

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/
https://crates.io/crates/newtype_derive

Colin Perkins | https://csperkins.org/ | Copyright © 2019

Numeric Types – Conversion

• We can add implementations that
perform unit conversion

!14

impl Add<Fahrenheit> for Celsius {
 type Output = Celsius;

 fn add(self, other: Fahrenheit) -> Self::Output {
 Celsius(self.0 + ((other.0 - 32.0) * 5.0 / 9.0))
 }
}

fn main() {
 let c = Celsius(15.0);
 let f = Fahrenheit(50.0);

 let t = c + f;

 println!("{:?}", t); // Celsius(25.0)
}

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2019

Numeric Types – Operations

• Do all the standard operations make sense for the type?
• It's reasonable to compare Celsius values: 
 
 
 
 
so you'd implement the Ord trait that provides these operations

• But this might not make sense for a UserID type
• You likely want to be able to compare two UserID values for equality (the Eq trait), but

adding two UserID values or comparing to see which is largest might not be meaningful

• Not all standard operations need to be implemented for a type

!15

fn is_freezing(temp: Celsius) -> bool {
 temp < Celsius(0.0)
}

https://csperkins.org/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/

Colin Perkins | https://csperkins.org/ | Copyright © 2019

Numeric Types – No Runtime Cost

• Wrapping value inside struct adds zero runtime overhead in Rust
• Programmer must implement standard operations – some extra code, but no

runtime cost
• https://crates.io/crates/newtype_derive provides macros for the common cases

• Why no runtime cost?
• No information added to the struct, so same size

• Passed in the same way – not automatically boxed on the heap

• Optimiser will recognise that the code collapses down to operations on primitive types, and
generate the code to do so

• All the additions are a compile-time model of the ways the data can be used, they don't
affect the compiled code

• (Equivalent C++ code has the same properties)

!16

https://csperkins.org/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://crates.io/crates/newtype_derive

Colin Perkins | https://csperkins.org/ | Copyright © 2019

Alternative Types: enum

• Encode alternatives and options as types:
• Optional values: Option<T>

• Results: Result<T, E>

• Features and response codes

• Use of enum types and pattern matching allows for rich modelling of
alternatives and options

!17

https://csperkins.org/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/

Colin Perkins | https://csperkins.org/ | Copyright © 2019

Optional Values: Option<T>

• If a value might not exist, use Option<T>
• As function return value, pattern matching on result:

• In struct definition:

• Compiler enforces that both variants of Option<T> are handled
• Some(T), None

• Can't accidentally write code that assumes the value is present and crashes otherwise

!18

fn lookup(self, user : Username) -> Option<User>

struct RtpHeader {
 v : Version,
 pt : PayloadType,
 seq : SequenceNumber,
 ts : Timestamp,
 ssrc : SourceId,
 csrc : Vec<SourceId>,
 extn : Option<HeaderExtension>,
 payload : RtpPayload
}

RFC 3550 RTP July 2003

5. RTP Data Transfer Protocol

5.1 RTP Fixed Header Fields

The RTP header has the following format:

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+
|V=2|P|X| CC |M| PT | sequence number |
+-+
| timestamp |
+-+
| synchronization source (SSRC) identifier |
+=+
| contributing source (CSRC) identifiers |
| |
+-+

The first twelve octets are present in every RTP packet, while the list of CSRC identifiers is present
only when inserted by a mixer. The fields have the following meaning:

version (V): 2 bits
This field identifies the version of RTP. The version defined by this specification is two (2).
(The value 1 is used by the first draft version of RTP and the value 0 is used by the protocol
initially implemented in the “vat” audio tool.)

padding (P): 1 bit
If the padding bit is set, the packet contains one or more additional padding octets at the
end which are not part of the payload. The last octet of the padding contains a count of
how many padding octets should be ignored, including itself. Padding may be needed by
some encryption algorithms with fixed block sizes or for carrying several RTP packets in a
lower-layer protocol data unit.

extension (X): 1 bit
If the extension bit is set, the fixed header must be followed by exactly one header extension,
with a format defined in Section 5.3.1.

CSRC count (CC): 4 bits
The CSRC count contains the number of CSRC identifiers that follow the fixed header.

marker (M): 1 bit
The interpretation of the marker is defined by a profile. It is intended to allow significant
events such as frame boundaries to be marked in the packet stream. A profile may define
additional marker bits or specify that there is no marker bit by changing the number of bits
in the payload type field (see Section 5.3).

Schulzrinne, et al. Standards Track [Page 12]

https://csperkins.org/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/

Colin Perkins | https://csperkins.org/ | Copyright © 2019

Results: Result<T, E>

• The Result<T, E> type represents results that can fail

• Used as a result type for a function:

• C code frequently uses a signal value to indicate errors
• e.g., socket() returns -1 on error, file descriptor >0 on success

• Easy to forget to check error codes – such code won't
compile in Rust

!19

fn load_document() -> Result<Document, DatabaseError> {
 let db = open_database()?;
 db.load("document_1")?
}

...
match load_document() {
 Ok(doc) => println!(doc), // success
 Err(e) => ... // failed
}

Use of ? operator for early return on error

Custom error types can be defined: https://doc.rust-lang.org/rust-by-example/error/multiple_error_types/define_error_type.html

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/
https://doc.rust-lang.org/rust-by-example/error/multiple_error_types/define_error_type.html

Colin Perkins | https://csperkins.org/ | Copyright © 2019

Features and Response Codes

• Anti-pattern: “string typing”
• Method parameters that are strings, rather than some more appropriate type

• Strings returned from network function (e.g., HTTP response codes) directly
used, rather than converted to appropriate type

• Use enum to represent values that can be one of several alternatives
• Exhaustiveness checking – catches bugs if new codes introduced

• Ease of refactoring – decouples code from external representation

• Make nonsensical values unrepresentable

• Types are machine checkable documentation – strings are not

!20

https://csperkins.org/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/

Colin Perkins | https://csperkins.org/ | Copyright © 2019

State Machines

!21

• What is a state machine?

• Implementation using enum types

• Implementation using struct types

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2019

State Machines

• State machines common in systems code
• Network protocols

• File systems

• Device drivers

• System behaviour modelled as a finite state
machine comprising:
• States that reflect the status of the system

• Events that trigger transitions between states

• State variables that hold system configuration

• Clean high-level model of a system
• Captures the essence of the behaviour

• Easy to reason about and prove properties such as
termination, absence of deadlocks, reachability, etc.

!22

IO_CONFIGURE_ACK

IO_RUNNING

START

IO_CONFIGURE_BEGIN

!DeviceInfo

?RegisterForEvents

?SetParameters!InvalidParameters

IO_CONFIGURED

!Success

?StartIO

?ConfigureIO

?PacketForReceive

?GetReceivedPacket

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2019

Implementing State Machines

• Hard to cleanly model state machine in code
• Structure of code tends not to match structure of 

state machine; not easy to visualise transitions

• Difficult to validate code against specification

• Approaches to modelling state machines in
strongly-typed functional languages:
• Encode states and events as enumerations, pattern

match on (state, event) tuples

• Encode states as types and transitions as functions

• Add first-class state machine support to language
• Microsoft Singularity research operating system

• async/await asynchronous code → lecture 7

!23

A key experiment in the Singularity project is to construct an
entire operating system using SIPs and demonstrate that the
resulting system is more dependable than a conventional system.
The results so far are promising. SIPs are cheap enough to fit a

software development granularity of one developer or
team per SIP and light-weight enough to provide fault-stop
boundaries for aberrant behavior.

2.2 Contract-Based Channels
All communication between SIPs in Singularity flows through
contract-based channels. A channel is a bi-directional message
conduit with exactly two endpoints. A channel provides a lossless,
in-order message queue. Semantically, each endpoint has a
receive queue. Sending on an endpoint enqueues a message on the

queue. A channel endpoint belongs to
exactly one thread at a time. Only the owning thread
can dequeue messages from its receive queue or send messages to
its peer.
Communication across a channel is described by a channel
contract. The two ends of a channel are not symmetric in a
contract. One endpoint is the importing end (Imp) and the other is
the exporting end (Exp). In the Sing# language, the endpoints are
distinguished by types C.Imp and C.Exp, respectively, where C is
the channel contract governing the interaction.
Channel contracts are declared in the Sing# language. A contract
consists of message declarations and a set of named protocol
states. Message declarations state the number and types of
arguments for each message and an optional message direction.
Each state specifies the possible message sequences leading to
other states in the state machine.
We will explain channel contracts through a condensed version of
the contract for network device drivers shown in Listing 1. A
channel contract is written from the perspective of the SIP
exporting a service and starts in the first listed state. Message
sequences consist of a message tag and a message direction sign
(! for Exp to Imp), and (? for Imp to Exp). The message direction
signs are not strictly necessary if message declarations already
contain a direction (in, out), but the signs make the state
machine more human-readable.
In our example, the first state is START and the network device
driver starts the conversation by sending the client (probably the
network stack) information about the device via message
DeviceInfo. After that the conversation is in the
IO_CONFIGURE_BEGIN state, where the client must send message
RegisterForEvents to register another channel for receiving
events and set various parameters in order to get the conversation
into the IO_CONFIGURED state. If something goes wrong during
the parameter setting, the driver can force the client to start the
configuration again by sending message InvalidParameters.
Once the conversation is in the IO_CONFIGURED state, the client
can either start I/O (by sending StartIO), or reconfigure the
driver (ConfigureIO). If I/O is started, the conversation is in

state IO_RUNNING. In state IO_RUNNING, the client provides the
driver with packet buffers to be used for incoming packets
(message PacketForReceive). The driver may respond with
BadPacketSize, returning the buffer and indicating the size
expected. This way, the client can provide the driver with a
number of buffers for incoming packets. The client can ask for
packets with received data through message GetReceived-
Packet and the driver either returns such a packet via
ReceivedPacket or states that there are no more packets with
data (NoPacket). Similar message sequences are present for
transmitting packets, but we elide them in the example.
From the channel contract it appears that the client polls the driver
to retrieve packets. However, we have not yet explained the
argument of message RegisterForEvents. The argument of
type NicEvents.Exp:READY describes an Exp channel endpoint
of contract NicEvents in state READY. This endpoint argument
establishes a second channel between the client and the network
driver over which the driver notifies the client of important events
(such as the beginning of a burst of packet arrivals). The client
retrieves packets when it is ready through the NicDevice
channel. Figure 2 shows the configuration of channels between
the client and the network driver. The NicEvents contract
appears in Listing 2.

contract NicDevice {
oout message DeviceInfo(...);
iin message RegisterForEvents(NicEvents.Exp:READY
c);
iin message SetParameters(...);
oout message InvalidParameters(...);
oout message Success();
iin message StartIO();
iin message ConfigureIO();
iin message PacketForReceive(byte[] in ExHeap p);
oout message BadPacketSize(byte[] in ExHeap p, int
m);
iin message GetReceivedPacket();
oout message ReceivedPacket(Packet * in ExHeap p);
oout message NoPacket();

sstate START: one {

}
sstate IO_CONFIGURE_BEGIN: oone {

}
sstate IO_CONFIGURE_ACK: oone {

IO_CONFIGURED;

}
sstate IO_CONFIGURED: oone {

ConfigureIO? IO_CONFIGURE_BEGIN;

}
sstate IO_RUNNING: oone {

(Success! or BadPacketSize!)

 or
NoPacket!)

...

}
}

Listing 1. Contract to access a network device driver.
contract NicEvents {

eenum NicEventType {
NoEvent, ReceiveEvent, TransmitEvent, LinkEvent

}

oout message NicEvent(NicEventType e);
iin message AckEvent();

state READY: oone {

AckEvent? !READY;
}

}

Listing 2. Contract for network device events.

Figure 2. Channels between a network driver and stack.

NicDevice

NetStack NIC DriverNicEvents

Imp

Imp

Exp

Exp

39

G. Hunt and J. Larus. “Singularity: Rethinking the software stack”, ACM
SIGOPS OS Review, 41(2), April 2007. DOI:10.1145/1243418.1243424

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/
https://dx.doi.org/10.1145/1243418.1243424
https://dx.doi.org/10.1145/1243418.1243424

Colin Perkins | https://csperkins.org/ | Copyright © 2019

Enumerations for modelling state machines

• Possible state machine representation:
• An enumerated type (enum) models alternatives

• Define an enum to represent the states

• Define an enum to represent the events

• Functions represent transitions and actions:
• Define a function to map from (state, events) tuples to next state

• Define a function to perform the actions associated with each state

• Builds on the intuition that enum types express alternatives, and a
state machine comprises a list of alternative states

!24

https://csperkins.org/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/

Colin Perkins | https://csperkins.org/ | Copyright © 2019

Using enum to Model State Machines: Example (1/3)

• Define an enum to represent the
states and another the events

• State variables specific to a state
encoded as enum parameters

!25

enum ApcState {
 Initialize,
 WaitForConnect,
 Accept(TcpStream),
 StartTransfer(TcpStream),
 Waiting(TcpStream),
 ReceiveMsg(TcpStream, Vec<u8>),
 SendNop(TcpStream),
 Closed,
 Finish,
 Failure(String),
}

enum ApcEvent {
 TcpConnected(TcpStream),
 ResponseValid(bool),
 IncomingTcpClosed,
 AspMsgIn(Vec<u8>),
 NopTimeout,
 Finished,
 Uct,
}

Example adapted from comment on https://hoverbear.org/2016/10/12/rust-state-machine-pattern/

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/
https://hoverbear.org/2016/10/12/rust-state-machine-pattern/

Colin Perkins | https://csperkins.org/ | Copyright © 2019

Using enum to Model State Machines: Example (2/3)

• Gives clean representation of state-transition table

• Straight-forward to validate against specification

!26

impl ApcState {
 pub fn next(self, event: ApcEvent) -> Self {
 use self::ApcState::*;
 use self::ApcEvent::*;

 println!("NEXT with {:?}/{:?}", self, event);

 match (self, event) {
 (Initialize, TcpConnected(tcp)) => Accept(tcp),
 (Initialize, Finished) => Finish,
 (Accept(tcp), ResponseValid(true)) => StartTransfer(tcp),
 (Accept(_), ResponseValid(false)) => Closed,
 (StartTransfer(tcp), Uct) => Waiting(tcp),
 (Waiting(_), IncomingTcpClosed) => Closed,
 (Waiting(_), Finished) => Finish,
 (Waiting(tcp), AspMsgIn(msg)) => ReceiveMsg(tcp, msg),
 (Waiting(tcp), NopTimeout) => SendNop(tcp),
 (ReceiveMsg(tcp, _), Uct) => Waiting(tcp),
 (SendNop(tcp), Uct) => Waiting(tcp),
 (s, e) => Failure(format!("Invalid State/Event combination: {:?}/{:?}", s, e)),
 }
 }
}

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2019

Using enum to Model State Machines: Example (3/3)

• match loop dispatches to functions
• Performs actions each state, returns next

event to process → determine next state

• Parameterised enum with state variables
makes it easy to pass parameters

• Pattern matching on enum gives a
clear implementation
• Compiler checks all alternates covered

• Easy to pass state variables

!27

pub struct ApcStateMachine {
 pub state: ApcState,
 addr: SocketAddr,
 timeout: u64,
}

impl ApcStateMachine {
 fn new() -> ApcStateMachine {
 ...
 }

 fn run_once(&self) -> ApcEvent {
 match self.state {
 Initialize => ...
 WaitForConnect => ...
 Accept(tcp) => ...
 StartTransfer(_) => ...
 Waiting(tcp) => ...
 ReceiveMsg(_, msg) => ...
 SendNop(_) => ...
 Closed => ...
 Finish => ...
 }
 }
}

fn run_state_machine() {
 let mut sm = ApcStateMachine::new();
 loop {
 let event = sm.run_once();
 sm.state = sm.state.next(event);
 if sm.state == ApcState::Finish {
 break;
 }
 }
}

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2019

Structures for Modelling State Machines

• Alternative state machine representation:
• Define a struct representing each state

• Model an event as a method call on a struct

• Model state transitions by returning a struct representing the new state

• Builds on the intuition that states hold concrete state, and events are
things that happen in states

!28

https://csperkins.org/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/

Colin Perkins | https://csperkins.org/ | Copyright © 2019

Using struct to Model State Machines: Example

• Define a struct representing each state
• State variables are fields within the struct

• Methods implemented on the struct encode state
transitions and event handlers

• Return Self if state is unchanged

• Return struct representing new state if state changes

• Encodes states and state transitions in types
• enum-based approach codes states and events as

types, and transitions as a table

!29

struct UnauthenticatedConnection {
 socket : TcpSocket,
 ...
}

struct AuthenticatedConnection {
 socket : TcpSocket,
 ...
}

impl UnauthenticatedConnection {
 fn login(self, c: Credentials) -> Result<AuthenticatedConnection, LoginError> {
 ...
 }

 fn disconnect(self) -> NotConnected {
 ...
 }
}

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2019

Approaches to Representing State Machines

• enum-based approach is compact, makes states and events clear in
the types, and has clear state transition table
• Relies on expressive enum types for implementation – harder to express in

languages with weaker enum

• struct-based approach encodes states and state transitions in the
types, events as methods on those types
• State transition table is less obviously explicit in the code

• State transitions map to Rust ownership rules – enforce transitions

!30

https://csperkins.org/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/

Colin Perkins | https://csperkins.org/ | Copyright © 2019

Ownership

!31

• Ownership of data in Rust

• Enforcing state transitions

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2019

Ownership

• Systems programs care about ownership of resources
• To control memory management, close files, etc. → lecture 4

• To model state machines

• Programmer maintains a mental model of what part of the code owns
each resource
• What function is responsible for calling free(), close(), etc.

• Garbage collected languages still require understanding of ownership – but
make free() call automatic when lifetime ends

• C++ and Python tie resource ownership to scoping: 
 
 
 
gives automatic resource clean-up at end of scope

!32

with open(filename) as file:
 data = file.read()
 ...

https://csperkins.org/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/

Colin Perkins | https://csperkins.org/ | Copyright © 2019

State Machines and Ownership

• State machines manage resources
• A network protocol manages connections, and the data sent over them

• A device driver manages hardware resource

• ...

• State transitions indicate when resources created/go out-of-scope
• Transition consumes the old state, returns a new state

!33

https://csperkins.org/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/

Colin Perkins | https://csperkins.org/ | Copyright © 2019

Ownership in Rust

• Rust tracks ownership of data – enforces that every value has a
single owner

• Function calls explicitly manage ownership of values
• Take explicit ownership of a value

• Borrow a value

• Return ownership of a value

!34

fn consume(r : Resource) {
 ...
}

fn borrow(r : &Resource) {
 ...
}

fn generate() -> Resource {
 ...
}

Function borrows the parameter passed via reference
Ownership remains with caller

Function passes ownership of return value to caller

Function takes ownership of parameter passed by value
No longer accessible to caller; freed at end of function

https://csperkins.org/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/

Colin Perkins | https://csperkins.org/ | Copyright © 2019

Ownership in Rust

!35

fn consume(r : Resource) {
 println!("consumed");
}

fn main() {
 let r = Resource{value: 42};
 consume(r);
 println!("{}", r.value);
}

struct Resource {
 value : u32
}

Function takes ownership of parameter passed by value
No longer accessible to caller; freed at end of function

The consume() function takes ownership of the resource – doesn't return it to the caller

Above code won't compile: println!() cannot access r.value, since main() no longer
has access to r because it gave ownership to consume()

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2019

Ownership and state machines (1/2)

• struct-based approach to state machines uses ownership rules to
enforce state transitions
• Methods that change state take ownership of self, return new struct:

• e.g., the login() function consumes its UnauthenticatedConnection
and returns a new AuthenticatedConnection on success
• The compiler enforces this – the UnauthenticatedConnection is not accessible after

this call; all resources it owned are reclaimed

• Except any the login() method explicitly copies to the AuthenticatedConnection

!36

impl UnauthenticatedConnection {
 fn login(self, c: Credentials) -> Result<AuthenticatedConnection, LoginError> {
 ...
 }

 fn disconnect(self) -> NotConnected {
 ...
 }
}

https://csperkins.org/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/

Colin Perkins | https://csperkins.org/ | Copyright © 2019

Ownership and state machines (2/2)

• struct-based approach to state machines uses ownership rules to
enforce state transitions
• Guarantees resource cleanup on state transition

• Better for ensuring resources are cleaned-up after use

• enum-based approach to state machines makes the state transition
diagram clearer, but relies on programmer discipline to clean-up
• Better for ensuring complex state machines correctly reflected in code

!37

https://csperkins.org/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/

Colin Perkins | https://csperkins.org/ | Copyright © 2019

Type-driven Development – Recap

• Define the types first
• Define concrete numeric types, identifiers

• Define enum types to represent alternatives

• Indicate optional values, results, error types

• Using the types as a guide, write the functions
• Write the input and output types

• Write the function, using the structure of the types as a guide

• Make state machines explicit

• Consider ownership of data

• Refine and edit types and functions as necessary
• Use the compiler as a tool to help you debug your design

• Don't think of the types as checking the code, think of them as a plan,
a model, for the solution – and as machine checkable documentation

!38

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2019

Summary

!39

• Type-drive development

• Design patterns

• State machines

• Ownership

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

