University

of Glasgow

Type-based Modelling and Design

Advanced Systems Programming (M)
Lecture 3

@O0

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/
http://creativecommons.org/licenses/by-nd/4.0/

e Define the types

Type-driven Development Write the functions
e Refine as needed

Colin Perkins | https://csperkins.org/ | Copyright © 2019
BY ND

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Type-driven Development

* Define the types first

Using the types as a guide, write the functions

* Write the input and output types
* Write the function, using the structure of the types as a guide

* Refine and edit types and functions as necessary

Don't think of the types as checking the code, think of them
as a plan — a model — for the solution

©Nolo

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/
https://amzn.to/2RRSOcp
https://amzn.to/2RRSOcp
https://amzn.to/2RRSOcp
https://amzn.to/2RRSOcp

Define the Types (1/2)

e Define the types needed to build a domain model
 Who is interacting? What do they interact with? What sorts of things do they exchange?

Employee Sender TcpSegment Connection

Receiver Vehicle Cargo

o What sort of properties describe those people and things? What data is associated with each?

TemperatureInCelsius Manufacturer Colour

SequenceNumber Name EmailAddress

e \What states can the interaction be in?

Connecting Sent LoggedIn AuthenticationRequired

* Types might initially be ill-defined and abstract

e Write them down anyway — refine later

©Nolo

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Define the Types (2/2)

* Associate properties with the types:
 What data is associated with a thing? What properties does it have?

struct Sender {

name : Name,
email : EmailAddress,
address : PostalAddress

}

* What state is something in?

enum State { struct UnauthenticatedConnection {
NotConnected, socket : TcpSocket,
Connecting,
AuthenticationRequired, }
LoggedlIn,
struct AuthenticatedConnection {
} socket : TcpSocket,
}

* Refine and extend the types as needed

©Nolo

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Write the Functions (1/2)

* Using the types as a guide, write the function prototypes, leaving the concrete
iImplementation for later

impl UnauthenticatedConnection {
fn login(self, c: Credentials) -> Result<AuthenticatedConnection, LoginError> {

}

fn disconnect(self) {

}
}

impl AuthenticatedConnection {
fn list folders(self) -> List<EmailFolder> {

fn list _messages(self, f : EmailFolder) -> List<EmailMessage> ({

fn disconnect(self) {

©Nolo

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Write the Functions (2/2)

e Behaviour obvious from the types — and types constrain behaviour

o Use specific rather than generic types

* e.g., take a Username as a parameter, rather than a String
* Types provide machine checkable documentation

* Encode states as types and state transitions as functions

connect () (: :) login() (: :)
\disconnect() /

* Functions only implemented for the types where they make sense
e e.g.,cannotlist folders/() until after login(); types prevent invalid operations

list folders()

©Nolo

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Refine Types and Functions

» Types and functions provide a model of the system
o lterate — filling in just enough details to keep it compiling

e Interactive design using the compiler to check consistency

e Gradually refine until the entire system is modelled — then add the concrete
iImplementations, refining as needed

e Work with the compiler to validate the design, before detailed implementation

©Nolo

https://csperkins.org/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/

Correct by Construction

o Use types to check the design, debugging before you run the code
 Non-sensical operations don't cause a crash — they don't compile

©Nolo

https://csperkins.org/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/

Design Patterns

Colin Perkins | https://csperkins.org/ | Copyright © 2019
BY ND

e Specific numeric types

 Enumerations and string typing

10

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Numeric Types

* |s avalue really a double or int,
or does it have some meaning?

Temperature in degrees celsius
Speed in miles per hour
UserlD

Packet sequence number

* Encode the meaning as a type, so
the compiler checks for consistent
usage

©Nolo

Operations that mix types should fail, or
perform safe unit conversions if possible

Operations that are inappropriate for a
type shouldn't be possible

EIEI[E@ ONLINE NETWORK

HOMEPAGE | SITEMAP | SCHEDULES | BEC INFORMATION | BBC EDUCATION | BBC WORLD SERVICE

B|B|CRINAYS

) News in Audic WM News in Video

Front Pagg Thursday, September 30, 1999 Published at 18:53 GMT 19:53 UK
World =
'« | ScilTech
ukpalics | Confusion leads to Mars
Business =
samee, | Failure
Health
Education
Sport
Entertainment
Talking_Point
In Depth
On Air
Archive
The Mars Climate Orbiter: Now in pieces on the planet's surface
LOW% The Mars Climate Orbiter Spacecraft was lost because
—Fthp one Nasa team used imperial units while another used
| metric units for a key spacecraft operation.
T

Newyddion Hosocrn Noticias Jl_n.:.i B Fr #7 M -g-?%'% %
Sci/Tech Contents

Relevant Stories
24 Sep 99 | Sci/Tech
Scientist fights Mars
setback

23 Sep 99 | Sci/Tech

Mars probe feared
destroyed

23 Sep 99 | Sci/Tech
What the loss of Mars
Climate Orbiter means

17 Jul 99 | Sci/Tech
Astronauts call for Mars
mission

Internet Links
Mars Climate Orbiter

The BBC is not responsible for
the content of external internet
sites.

SeebaEmRESERNTT

11

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Numeric Types — Strong Typing

fn main() { _

e G & .0 () G . Weakly typed programmer_knows c and f are
let £ = 50.0; // Fahrenheit different types, but the compiler does not
eEEser * Program silently calculates the wrong answer

println! ("{:2?}", t); // 65.0
}

©Nolo

12

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Numeric Types — Strong Typing

e Strongly typed — struct with single
unnamed field wraps numeric value

* derive and impl standard operations

* Resulting code won't compile since types
are mismatched

> cargo build
foo v0.1.0 (/Users/csp/tmp/foo)
error[E0308]: mismatched types
--> src/main.rs:28:17

let t = c + £;
note: expected type “Celsius”
found type “Fahrenheit"
error: aborting due to previous error

For more information about this error, try “rustc --explain E0308".
error: Could not compile ~foo~.

To learn more, run the command again with --verbose.
>

©Nolo

~ expected struct “Celsius™, found struct “Fahrenheit"

use std::ops::Add;

#[derive (Debug,PartialEq,PartialOrd)]
struct Celsius(£32);

#[derive (Debug,PartialEq,PartialOrd)]
struct Fahrenheit (£32);

impl Add for Celsius {
type Output = Celsius;

fn add(self, other : Celsius) -> Self::Output {
Celsius(self.0 + other.0)

}
}

impl Add for Fahrenheit {
type Output = Fahrenheit;

fn add(self, other : Fahrenheit) -> Self::Output {
Fahrenheit (self.0 + other.0)
}
}

fn main() {
let ¢ = Celsius(15.0);
let £ = Fahrenheit(50.0);
let t = ¢ + £;

println! ("{:2?2}", t);

13

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/
https://crates.io/crates/newtype_derive

Numeric Types — Conversion

* \We can add implementations that
perform unit conversion

©Nolo

impl Add<Fahrenheit> for Celsius {
type Output = Celsius;

fn add(self, other: Fahrenheit) -> Self::Output {
Celsius(self.0 + ((other.0 - 32.0) * 5.0 / 9.0))
}
}

fn main() {

let c Celsius(15.0);
let £ Fahrenheit (50.0);
let t = ¢ + £;

println! ("{:?2}", t); // Celsius(25.0)

14

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Numeric Types — Operations

e Do all the standard operations make sense for the type?

* |t's reasonable to compare Celsius values:

fn is_freezing(temp: Celsius) -> bool {
temp < Celsius(0.0)
}

so you'd implement the Ord trait that provides these operations

e But this might not make sense for a UserID type

e You likely want to be able to compare two UserID values for equality (the Eq trait), but
adding two UserID values or comparing to see which is largest might not be meaningful

* Not all standard operations need to be implemented for a type

©Nolo

15

https://csperkins.org/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/

Numeric Types — No Runtime Cost

 Wrapping value inside struct adds zero runtime overhead in Rust

* Programmer must implement standard operations — some extra code, but no
runtime cost

https://crates.io/crates/newtype_derive provides macros for the common cases

* Why no runtime cost?

©Nolo

No information added to the struct, so same size
Passed in the same way — not automatically boxed on the heap

Optimiser will recognise that the code collapses down to operations on primitive types, and
generate the code to do so

All the additions are a compile-time model of the ways the data can be used, they don't
affect the compiled code

(Equivalent C++ code has the same properties)

16

https://csperkins.org/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://crates.io/crates/newtype_derive

Alternative Types: enum

 Encode alternatives and options as types:
* Optional values: Option<T>
e Results: Result<T, E>

* Features and response codes

* Use of enum types and pattern matching allows for rich modelling of
alternatives and options

©Nolo

17

https://csperkins.org/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/

Optional Values: Option<T>

 |f a value might not exist, use Option<T>

* As function return value, pattern matching on resuilt:

fn lookup(self, user : Username) -> Option<User>

e |n struct definition:

0 1 2 3
struct RtpHeader ({ 0123456789012345678901234567890 1
<V . s T e T S T St Tt T T e Tt Y
v H ersion, [V=2|P|X| cC |M| PT | sequence number |
pt . PayloadType , s T e T S T St T et T T e e Y
| timestamp |
seq H SequenceNumber, S S S S S S
o 0 | synchronization source (SSRC) identifier |
ts i TlmeStamp 4 +=+
SSsrc ¢ SOurceId, | contributing source (CSRC) identifiers |
| I
csrc : Vec<Sourceld> ’ s Tl e T S T St Tt T T R Tt 1

It “eesetammmmoTTT

extn : Option<HeaderExtension>,
payload : RtpPayload
}

 Compiler enforces that both variants of Option<T> are handled

e Some(T), None

e Can't accidentally write code that assumes the value is present and crashes otherwise

@O0 18

https://csperkins.org/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/

Results: Result<T, E>

* The Result<T, E> type represents results that can fail

* Used as a result type for a function:

fn load_document () -> Result<Document, DatabaseError> {
let db = open_database()?;
db.load("document 1")? Use of ? operator for early return on error

match load_document () ({
Ok (doc) => println! (doc), // success
Err(e) => ... // failed
}

* C code frequently uses a signal value to indicate errors

* e.g., socket () returns -1 on error, file descriptor >0 on success

e Easy to forget to check error codes — such code won't
compile in Rust

©Nolo

19

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/
https://doc.rust-lang.org/rust-by-example/error/multiple_error_types/define_error_type.html

Features and Response Codes

o Anti-pattern: “string typing”
 Method parameters that are strings, rather than some more appropriate type

e Strings returned from network function (e.g., HTTP response codes) directly
used, rather than converted to appropriate type

 Use enum to represent values that can be one of several alternatives

* Exhaustiveness checking — catches bugs if new codes introduced
* Ease of refactoring — decouples code from external representation
* Make nonsensical values unrepresentable

* Types are machine checkable documentation — strings are not

©Nolo

20

https://csperkins.org/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/

State Machines

Colin Perkins | https://csperkins.org/ | Copyright © 2019
BY ND

e What is a state machine?
* Implementation using enum types

* Implementation using struct types

21

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

State Machines

©Nolo

* State machines common in systems code

Network protocols
File systems

Device drivers

* System behaviour modelled as a finite state
machine comprising:

States that reflect the status of the system
Events that trigger transitions between states
State variables that hold system configuration

* Clean high-level model of a system

Captures the essence of the behaviour

Easy to reason about and prove properties such as
termination, absence of deadlocks, reachability, etc.

START IDevicelnfo

?RegisterForEvents

|IO_CONFIGURE_BEGIN

linvalidParameters l?SetParameters

|O_CONFIGURE_ACK

?ConfigurelO ISuccess
Y

|O_CONFIGURED

?StartlO ?PacketForReceive

\4
IO_RUNNING Q
Q?GetReceived Packet

22

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Implementing State Machines

* Hard to cleanly model state machine in code

e Structure of code tends not to match structure of
state machine; not easy to visualise transitions

e Difficult to validate code against specification

* Approaches to modelling state machines in
strongly-typed functional languages:

* Encode states and events as enumerations, pattern
match on (state, event) tuples

* Encode states as types and transitions as functions

* Add first-class state machine support to language
e Microsoft Singularity research operating system

e async/await asynchronous code — lecture 7

©Nolo

contract NicDevice {

(_)ut message
in message
c);

in message
out message
out message
in message
in message
in message
out message
m) ;

in message
out message
out message

state START:

DeviceInfo(...); _
RegisterForEvents(NicEvents.EXp:READY

SetParameters(...);
InvalidParameters(...);

success();

Startio();

Configureio();
PacketForReceive(byte[] in ExHeap p);
BadPacketSize(byte[] in ExHeap p, int

GetReceivedPacket();)
ReceivedPacket(Packet * in ExHeap p);
NoPacket();

one {

DeviceInfo! - IO_CONFIGURE_BEGIN;

3
State_IO_CONFIGURE_BEGIN: one {
RegisterForeEvents? -
SetParameters? - IO_CONFIGURE_ACK;

state IO_CONFIGURE_ACK: one {
InvalidParameters! - IO_CONFIGURE_BEGIN;
Success! - TIO_CONFIGURED;

}

state IO_CONFIGURED: one {
StartIO? - IO_RUNNING;
configureIO? - IO_CONFIGURE_BEGIN;

state IO_RUNNING: one {
PacketForreceive? - (Success! or BadPacketSize!)
- TO_RUNNING;
GetReceivedPacket? - (ReceivedPacket! or

NoPacket!)

- TO_RUNNING;

L
}

Listing 1. Contract to access a network device driver.

23

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/
https://dx.doi.org/10.1145/1243418.1243424
https://dx.doi.org/10.1145/1243418.1243424

Enumerations for modelling state machines

e Possible state machine representation:

* An enumerated type (enum) models alternatives
* Define an enum to represent the states
 Define an enum to represent the events

e Functions represent transitions and actions:

e Define a function to map from (state, events) tuples to next state

» Define a function to perform the actions associated with each state

e Builds on the intuition that enum types express alternatives, and a
state machine comprises a list of alternative states

©Nolo

24

https://csperkins.org/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/

Using enum to Model State Machines: Example (1/3)

S LISEREREE | * Define an enum to represent the
Initialize,
WaitForConnect, states and another the events
Accept (TcpStream),] .
StartTransfer (TcpStream), e State variables SpeCIfIC to a state

Waiting(TcpStream),

ReceiveMsg (TcpStream, Vec<u8>),
SendNop (TcpStream),

Closed,

Finish,

Failure(String),

encoded as enum parameters

enum ApcEvent {
TcpConnected (TcpStream),
ResponseValid(bool),
IncomingTcpClosed,
AspMsgIn(Vec<u8>),
NopTimeout,
Finished,
Uct,

Example adapted from comment on https://hoverbear.org/2016/10/12/rust-state-machine-pattern/

©Nolo

25

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/
https://hoverbear.org/2016/10/12/rust-state-machine-pattern/

Using enum to Model State Machines: Example (2/3)

impl ApcState {
pub fn next(self, event: ApcEvent) -> Self {

©Nolo

use self::ApcState::*;
use self::ApcEvent::*;

println! ("NEXT with {:?}/{:?}", self, event);

match (self, event) {

(Initialize,
(Initialize,

(Accept (tcp),
(Accept (_),
(StartTransfer(tcp),
(Waiting(_),
(Waiting(),
(Waiting(tcp),
(Waiting(tcp),
(ReceiveMsg(tcp,),
(SendNop (tcp),

(s, e) => Failure(format! ("Invalid State/Event combination:

TcpConnected (tcp))
Finished)
ResponseValid(true))
ResponseValid(false))
Uct)
IncomingTcpClosed)
Finished)
AspMsgIn (msg))
NopTimeout)
Uct)
Uct)

VVVVYV

VVVYV

o nononounononon
v

Accept(tcp),

Finish,
StartTransfer(tcp),
Closed,

Waiting(tcp),

Closed,

Finish,
ReceiveMsg(tcp, msqg),
SendNop (tcp),
Waiting(tcp),
Waiting(tcp),
{:2}/{:?}", s, e)),

* Gives clean representation of state-transition table

e Straight-forward to validate against specification

26

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Using enum to Model State Machines: Example (3/3)

pub struct ApcStateMachine { fn run_state machine() {
pub state: ApcState, let mut sm = ApcStateMachine: :new();
addr: SocketAddr, loop {
timeout: u64, let event = sm.run_once();
} sm.state = sm.state.next (event);
if sm.state == ApcState::Finish {
impl ApcStateMachine { break;
fn new() -> ApcStateMachine { }
«oe }
} }
fn run once(&self) -> ApcEvent { .]
match self.state { * match loop dispatches to functions
Initialize => ... _
WaitForConnect => * Performs actions each state, returns next
Accept (tcp) => event to process — determine next state
StartTransfer () => _ _ _
Waiting (tcp) => * Parameterised enum with state variables
ReceiveMsg(_, msg) => makes it easy to pass parameters
SendNop (_) =>
Closed => * Pattern matching on enum gives a
Finish =>
) clear implementation
} ’ o Compiler checks all alternates covered

e Easy to pass state variables

©Nolo

27

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Structures for Modelling State Machines

o Alternative state machine representation:
* Define a struct representing each state
* Model an event as a method call on a struct

* Model state transitions by returning a struct representing the new state

e Builds on the intuition that states hold concrete state, and events are
things that happen in states

©Nolo

28

https://csperkins.org/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/

Using struct to Model State Machines: Example

struct UnauthenticatedConnection { e Define a struct representing each state
socket : TcpSocket,

e State variables are fields within the struct

* Methods implemented on the struct encode state

struct AuthenticatedConnection { transitions and event handlers

socket : TcpSocket, _ _
 Return Self if state is unchanged

} Return struct representing new state if state changes

impl UnauthenticatedConnection {
fn login(self, c: Credentials) -> Result<AuthenticatedConnection, LoginError> {

}

fn disconnect(self) -> NotConnected {

}
}

 Encodes states and state transitions in types

e enum-based approach codes states and events as
types, and transitions as a table

©Nolo

29

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Approaches to Representing State Machines

 enum-based approach is compact, makes states and events clear in
the types, and has clear state transition table

* Relies on expressive enum types for implementation — harder to express in
languages with weaker enum

* struct-based approach encodes states and state transitions in the
types, events as methods on those types

* State transition table is less obviously explicit in the code

e State transitions map to Rust ownership rules — enforce transitions

©Nolo

30

https://csperkins.org/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/

Ownership

Colin Perkins | https://csperkins.org/ | Copyright © 2019
BY ND

e Ownership of data in Rust

e Enforcing state transitions

31

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Ownership

e Systems programs care about ownership of resources

e To control memory management, close files, etc. — lecture 4

e To model state machines

 Programmer maintains a mental model of what part of the code owns
each resource

* What function is responsible for calling free (), close(), etc.

* Garbage collected languages still require understanding of ownership — but
make free () call automatic when lifetime ends

 C++ and Python tie resource ownership to scoping:

with open(filename) as file:
data = file.read()

gives automatic resource clean-up at end of scope

@O0

32

https://csperkins.org/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/

State Machines and Ownership

o State machines manage resources

* A network protocol manages connections, and the data sent over them

e A device driver manages hardware resource

o State transitions indicate when resources created/go out-of-scope

e Transition consumes the old state, returns a new state

©Nolo

33

https://csperkins.org/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/

Ownership in Rust

* Rust tracks ownership of data — enforces that every value has a
single owner

e Function calls explicitly manage ownership of values

e Take explicit ownership of a value

fn consume(r : Resource) { Function takes ownership of parameter passed by value

No longer accessible to caller; freed at end of function

}

e Borrow a value

fn borrow(r : &Resource) { Function borrows the parameter passed via reference
Ownership remains with caller
}

e Return ownership of a value
fn generate() -> Resource { Function passes ownership of return value to caller

}

©Nolo

34

https://csperkins.org/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/

Ownership in Rust

©Nolo

struct Resource {
value : u32

}

fn consume(r : Resource) {
println! ("consumed");

}

Function takes ownership of parameter passed by value
No longer accessible to caller; freed at end of function

fn main() {
let r = Resource{value: 42};
consume(r) ;
println! ("{}", r.value);

}

The consume () function takes ownership of the resource — doesn't return it to the caller

Above code won't compile: println! () cannot access r.value, since main () no longer
has access to r because it gave ownership to consume ()

35

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Ownership and state machines (1/2)

e struct-based approach to state machines uses ownership rules to
enforce state transitions

* Methods that change state take ownership of self, return new struct:

impl UnauthenticatedConnection {
fn login(self, c: Credentials) -> Result<AuthenticatedConnection, LoginError> {

}

fn disconnect(self) -> NotConnected {

}
}

* e.g., the login () function consumes its UnauthenticatedConnection
and returns a new AuthenticatedConnection On success

e The compiler enforces this — the UnauthenticatedConnection is not accessible after
this call; all resources it owned are reclaimed

 Except any the 1login () method explicitly copies to the AuthenticatedConnection

©Nolo

36

https://csperkins.org/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/

Ownership and state machines (2/2)

e struct-based approach to state machines uses ownership rules to
enforce state transitions

* Guarantees resource cleanup on state transition

* Better for ensuring resources are cleaned-up after use

 enum-based approach to state machines makes the state transition
diagram clearer, but relies on programmer discipline to clean-up

* Better for ensuring complex state machines correctly reflected in code

©Nolo

37

https://csperkins.org/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/

Type-driven Development — Recap

* Define the types first

* Define concrete numeric types, identifiers
* Define enum types to represent alternatives
e Indicate optional values, results, error types

Using the types as a guide, write the functions
e Write the input and output types

o Write the function, using the structure of the types as a guide
 Make state machines explicit
e Consider ownership of data

Refine and edit types and functions as necessary

e Use the compiler as a tool to help you debug your design

Don't think of the types as checking the code, think of them as a plan,
a model, for the solution — and as machine checkable documentation

©Nolo

38

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Summary

Colin Perkins | https://csperkins.org/ | Copyright © 2019
BY ND

Type-drive development
Design patterns
State machines

Ownership

39

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

