
Colin Perkins | https://csperkins.org/ | Copyright © 2019 | This work is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International License. To
view a copy of this license, visit http://creativecommons.org/licenses/by-nd/4.0/ or send a letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.

Memory and Resource Management

Advanced Systems Programming (M)
Lecture 4

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/
http://creativecommons.org/licenses/by-nd/4.0/

Colin Perkins | https://csperkins.org/ | Copyright © 2019

Outline

• Memory
• How is a process stored in memory?

• What memory has to be managed?

• Memory management
• Reference counting

• Region-based memory management

• Resource management

!2

https://csperkins.org/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/

Colin Perkins | https://csperkins.org/ | Copyright © 2019

Memory

!3

• How is a process stored in memory?

• What memory has to be managed?

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2019

Layout of a Processes in Memory

• Layout of process address space:
• Kernel at top of address space

• Program text, data, and global variables at bottom of
virtual address space

• Heap allocated upwards, above BSS

• Stack grows downwards, below kernel

• Memory mapped files and shared libraries between
these

!4

Kernel Space

Stack ⬇

Memory Mapped Files and Libraries ⬇

Heap ⬆

Program Text

Data Segment
BSS Segment

0x00000000

0xC0000000

0xFFFFFFFF

Typical addresses on 32 bit machines

See also http://duartes.org/gustavo/blog/post/anatomy-of-a-program-in-memory/

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/
http://duartes.org/gustavo/blog/post/anatomy-of-a-program-in-memory/

Colin Perkins | https://csperkins.org/ | Copyright © 2019

Program Text, Data, and BSS

• Program and static data occupies bottom of
address space
• Lowest few pages above address zero reserved to  

trap null-pointer dereferences

• Program Text is compiled machine code of program

• Data segment is variables initialised in source code

• String literals, initialised static global variables in C

• Known at compile time, loaded along with program text

• BSS segment is reserved space for uninitialised
static global variables

• “block started by symbol” – name is historical relic

• Initialised to zero by runtime when the program loads

!5

Kernel Space

Stack ⬇

Memory Mapped Files and Libraries ⬇

Heap ⬆

Program Text

Data Segment
BSS Segment

0x00000000

0xC0000000

0xFFFFFFFF

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2019

The Stack

• The stack holds function parameters, return
address, and local variables
• Function calls push data onto stack, growing down

• Parameters for the function; return address; pointer to
previous stack frame; local variables

• Data removed, stack shrinks, when function returns
– the stack is managed automatically
• Compiler generates code to manage the stack as part

of the compiled program

• The calling convention for functions – how parameters
are pushed onto the stack – is standardised for a given
processor and programming language

• The operating system generates the stack frame for
main() when the program starts

• Ownership of stack memory follows function
invocation

!6

Kernel Space

Stack ⬇

Memory Mapped Files and Libraries ⬇

Heap ⬆

Program Text

Data Segment
BSS Segment

0x00000000

0xC0000000

0xFFFFFFFF

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2019

Function Calling Conventions

• Example: code and contents of stack while
calling printf() in code below:

• Address of the previous stack frame is stored for
ease of debugging, so stack trace can be printed, so
it can easily be restored when function returns

!7

#include <stdio.h>

int
main(int argc, char *argv[])
{
 char greeting[] = “Hello”;

 if (argc == 2) {
 printf(“%s, %s\n”, greeting, argv[1]);
 return 0;
 } else {
 printf(“usage: %s <name>\n”, argv[0]);
 return 1;
 }
}

Arguments to main():
 int argc
 char *argv
Address to return to after main()

Local variables for main()
 char greeting[]

Arguments for printf()
 char *format
 char *greeting
 char *argv[1]
Address to return to after printf()
Address to previous stack frame

Local variables for printf()
 …

Top of stack

S
ta

ck
 g

ro
w

s
do

w
nw

ar
ds

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2019

Buffer Overflow Attacks

• Classic buffer overflow attack:
• Language not type safe, doesn’t enforce abstractions

• Write past array bounds → overflows space allocated
to local variables, overwrites function return address,
and following data

• Contents valid machine code; the overwritten function
return address is made to point to that code

• When function returns, code written during overflow is
executed

• Workarounds:
• Marks stack as non-executable

• Randomise top of stack address each program run

• Various more complex buffer overflow attacks still
possible – e.g., see “return-oriented programming”

• Solution: use a language that is type safe and
enforces array bounds checks

!8

Arguments to main():
 int argc
 char *argv
Address to return to after main()

Local variables for main()
 char greeting[]

Arguments for printf()
 char *format
 char *greeting
 char *argv[1]
Address to return to after printf()
Address to previous stack frame

Local variables for printf()
 …

Top of stack

S
ta

ck
 g

ro
w

s
do

w
nw

ar
ds

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2019

The Heap

• The heap holds explicitly allocated memory
• Allocated using malloc()/calloc() in C

• Starts at a low address in memory; later allocations
follow in consecutive addresses
• Sometimes padded to align to a 32 or 64 bit boundary,

depending on processor

• Modern malloc() implementations are thread aware,
split heap into different parts different threads to avoid
cache sharing

• Memory management is primarily concerned with
reclaiming heap memory

• Manually, using free()

• Automatically via reference counting/garbage collection

• Automatically based on regions and lifetime analysis

!9

Kernel Space

Stack ⬇

Memory Mapped Files and Libraries ⬇

Heap ⬆

Program Text

Data Segment
BSS Segment

0x00000000

0xC0000000

0xFFFFFFFF

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2019

Memory Mapped Files and Shared Libraries

• Memory mapped files allow data on disk to
be directly mapped into address space
• Mappings created using mmap() system call

• Returns a pointer to a memory address that acts as a
proxy for the start of the file

• Reads from/writes to subsequent addresses acts on
the underlying file

• File is demand paged from/to disk as needed – only
the parts of the file that are accessed are read into
memory (granularity depends on virtual memory
system – often 4k pages)

• Useful for random access to parts of files

• Used to map shared libraries into memory

!10

Kernel Space

Stack ⬇

Memory Mapped Files and Libraries ⬇

Heap ⬆

Program Text

Data Segment
BSS Segment

0x00000000

0xC0000000

0xFFFFFFFF

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2019

The Kernel

• Operating system kernel resides at top of the
address space
• Not directly accessible to user-space programs

• Attempt to access kernel → segmentation violation

• The syscall instruction in x86_64 assembler calls
into the kernel after permission check

• Kernel can read/write memory of user processes

!11

Kernel Space

Stack ⬇

Memory Mapped Files and Libraries ⬇

Heap ⬆

Program Text

Data Segment
BSS Segment

0x00000000

0xC0000000

0xFFFFFFFF

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2019

Memory Management

!12

• Concepts

• Reference counting

• Region-based memory management

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2019

Automatic Memory Management

• Automatic memory management distrusted by systems programmers
• Perceived high processor and memory overheads, unpredictable timing

• But, memory management problems are common:
• Unpredictable performance

• Calls to malloc()/free() can vary in execution time by several orders of magnitude

• Memory leaks

• Memory corruption and buffer overflows

• Use-after-free

• Iterator invalidation

• New automatic memory management schemes solve many problems
• Garbage collectors → lower overhead, more predictable

• Also system performance improvements made overhead more acceptable

• Region-based memory management → predictability, compile time guarantees

!13

https://csperkins.org/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/

Colin Perkins | https://csperkins.org/ | Copyright © 2019

Automatic Memory Management

• Memory allocation/deallocation can be manual or automatic
• Stack memory always managed automatically:

• In the example, memory for di is automatically 
allocated when the function executes; freed on 
completion

• Simple and efficient for languages like C/C++ 
that have complex value types

• Useless for Java-like languages, where objects 
are always allocated on the heap

• Heap memory is managed (semi-)manually
• Allocation using, e.g., malloc()

• Deallocation using explicit free(), automatically reclaimed when no longer referenced

• Automatic reclamation doesn’t remove need to think about object lifetime

• Automatic reclamation doesn’t prevent memory leaks

!14

int saveDataForKey(char *key, FILE *outf)
{
 struct DataItem di;

 if (findData(&di, key)) {
 saveData(&di, outf);
 return 1;
 }
 return 0;
}

https://csperkins.org/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/

Colin Perkins | https://csperkins.org/ | Copyright © 2019

Automatic Memory Management: Managing the Heap

• Aim is to find objects that are no longer used, and make their space
available for reuse
• An object is no longer used (ready for reclamation) if it is not reachable by the

running program via any path of pointer traversals

• Any object that is potentially reachable is preserved – better to waste memory
than deallocate an object that’s in use

• Approaches to automatic heap management:
• Reference counting

• Region-based lifetime tracking

• Garbage collection → lecture 5

!15

https://csperkins.org/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/

Colin Perkins | https://csperkins.org/ | Copyright © 2019

Reference Counting

!16

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2019

Reference Counting

• Simplest automatic heap management

• Each allocation also allocates space for an
additional reference count
• An extra int is allocated along with every object

• Counts number of references to the object

• Increased when new reference to the object is created

• Decremented when a reference is removed

• When reference count reaches zero, there are no
references to the object, and it may be reclaimed

• Reclaiming object removes references to other objects

• May reduce their reference count to zero, so triggering
further reclamation

!17

Source: P. Wilson, “Uniprocessor garbage collection
techniques”, Proc IWMM’92, DOI:10.1007/BFb0017182

HEAP SPACE

~ . - - t . . ~

, 1 ' 1 I r a . ~ /

ROOT
SET ! !

' 1 , 1

, 2

Fig. 2. Reference counting with unreclaimable cycle.

which combine advantages of simpler data structures, and the like.
Systems using reference counting garbage collectors therefore usually include

some other kind of garbage collector as well, so that if too much uncollectable cyclic
garbage accumulates, the other method can be used to reclaim it.

Many programmers who use reference-counting systems (such as Interlisp and
early versions of Smalltalk) have modified their programming style to avoid the
creation of cyclic garbage, or to break cycles before they become a nuisance. This
has a negative impact on program structure, and many programs still have storage
"leaks" that accumulate cyclic garbage which must be reclaimed by some other
means. 5 These leaks, in turn, can compromise the real-time nature of the algorithm,

5 [Bob80] describes modifications to reference counting to allow it to handle some spe-
cial cases of cyclic structures, but this restricts the programmer to certain stereotyped

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/
https://dx.doi.org/10.1007/BFb0017182
https://dx.doi.org/10.1007/BFb0017182

Colin Perkins | https://csperkins.org/ | Copyright © 2019

Reference Counting: Benefits

• Incremental operation – memory reclaimed in
small bursts

• Predictable and understandable
• Easy to explain

• Easy to understand when memory is reclaimed

• Easy to understand overheads and costs

• Follows programmer intuition

!18

HEAP SPACE

~ . - - t . . ~

, 1 ' 1 I r a . ~ /

ROOT
SET ! !

' 1 , 1

, 2

Fig. 2. Reference counting with unreclaimable cycle.

which combine advantages of simpler data structures, and the like.
Systems using reference counting garbage collectors therefore usually include

some other kind of garbage collector as well, so that if too much uncollectable cyclic
garbage accumulates, the other method can be used to reclaim it.

Many programmers who use reference-counting systems (such as Interlisp and
early versions of Smalltalk) have modified their programming style to avoid the
creation of cyclic garbage, or to break cycles before they become a nuisance. This
has a negative impact on program structure, and many programs still have storage
"leaks" that accumulate cyclic garbage which must be reclaimed by some other
means. 5 These leaks, in turn, can compromise the real-time nature of the algorithm,

5 [Bob80] describes modifications to reference counting to allow it to handle some spe-
cial cases of cyclic structures, but this restricts the programmer to certain stereotyped

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/
https://dx.doi.org/10.1007/BFb0017182

Colin Perkins | https://csperkins.org/ | Copyright © 2019

Reference Counting: Costs

• Cyclic data structures give mutual references
• Objects all reference each other – never reclaimed,

since reference count doesn’t go to zero

• Memory leaks unless cycle explicitly broken – needs
programmer action

• Stores additional int along with each object
to hold the reference count
• Maybe also a mutex if concurrent access possible

• Per-object overhead is significant for small objects;
wastes memory

• Processor cost of updating references can be
significant for short-lived objects

!19

HEAP SPACE

~ . - - t . . ~

, 1 ' 1 I r a . ~ /

ROOT
SET ! !

' 1 , 1

, 2

Fig. 2. Reference counting with unreclaimable cycle.

which combine advantages of simpler data structures, and the like.
Systems using reference counting garbage collectors therefore usually include

some other kind of garbage collector as well, so that if too much uncollectable cyclic
garbage accumulates, the other method can be used to reclaim it.

Many programmers who use reference-counting systems (such as Interlisp and
early versions of Smalltalk) have modified their programming style to avoid the
creation of cyclic garbage, or to break cycles before they become a nuisance. This
has a negative impact on program structure, and many programs still have storage
"leaks" that accumulate cyclic garbage which must be reclaimed by some other
means. 5 These leaks, in turn, can compromise the real-time nature of the algorithm,

5 [Bob80] describes modifications to reference counting to allow it to handle some spe-
cial cases of cyclic structures, but this restricts the programmer to certain stereotyped

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/
https://dx.doi.org/10.1007/BFb0017182

Colin Perkins | https://csperkins.org/ | Copyright © 2019

Reference Counting

• Widely used in scripting languages
• Python, Ruby, etc.

• Memory and processor overhead not significant in interpreted runtime

• Used on small scale for systems programming
• e.g., Objective C runtime on iOS

• Ease of understanding is important

• Tends to be for large, long-lived, data – reduces overheads

• Not typically used in kernel code, high-performance systems

!20

https://csperkins.org/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/

Colin Perkins | https://csperkins.org/ | Copyright © 2019

Region-based Memory Management

!21

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2019

Region-based Memory Management: Rationale

• Reference counting has high overheads
• Memory overhead to store the reference count

• Processor time to update the reference counts

• Garbage collection tends to have unpredictable timing and high
memory overhead
→ lecture 5

• Manual memory management is too error prone

• Region-based memory management aims for a middle ground
between the these approaches
• Safe, predictable timing – no run-time cost

• Limited impact on application design

!22

https://csperkins.org/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/

Colin Perkins | https://csperkins.org/ | Copyright © 2019

Stack-based Memory Management

• Automatic management of stack variable common and efficient:
#include <math.h>
#include <stdio.h>
#include <stdlib.h>

static double pi = 3.14159;

static double conic_area(double w, double h) {
 double r = w / 2.0;
 double a = pi * r * (r + sqrt(h*h + r*r));

 return a;
}

int main() {
 double width = 3;
 double height = 2;
 double area = conic_area(width, height);

 printf("area of cone = %f\n", area);

 return 0;
}

!23

Global variables

double pi = 3.14159

Stack frame for main()

double width = …
double height = …
double area = …

Stack frame for conic_area()

double w = …
double h = …
double r = …
double a = …

https://csperkins.org/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/

Colin Perkins | https://csperkins.org/ | Copyright © 2019

Stack-based Memory Management

• Hierarchy of regions corresponding to call stack:
• Global variables

• Local variables in each function

• Lexically scoped variables within functions

• Variables live within regions, and are deallocated at end of region
scope

!24

double vector_avg(double *vec, int len) {
 double sum = 0;

 for (int i = 0; i < len; i++) {
 sum += vec[i];
 }

 return sum / len;
}

Lifetime of sum – local variable in function

Lifetime of i – scoped to for loop

https://csperkins.org/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/

Colin Perkins | https://csperkins.org/ | Copyright © 2019

Stack-based Memory Management

• Limitation: requires data to be allocated on stack
• Example: 

• Local variable tmp stored on the stack, freed when function returns

• Memory allocated by malloc() is not freed – memory leak

!25

int hostname_matches(char *requested, char *host, char *domain) {
 char *tmp = malloc(strlen(host) + strlen(domain) + 2);

 sprintf(tmp, “%s.%s”, host, domain);

 if (strcmp(requested, host) == 0) {
 return 1;
 }
 if (strcmp(requested, tmp) == 0) {
 return 1;
 }
 return 0;
}

Lifetime of tmp

https://csperkins.org/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/

Colin Perkins | https://csperkins.org/ | Copyright © 2019

From Stack-to Region-based Memory Management

• Stack-based memory management effective, but limited applicability –
can we extend to manage the heap?
• Track lifetime of data – values on the stack and references to the heap

• A Box<T> is a value stored on the stack that holds a reference to data of type
T allocated on the heap

• i.e., it’s a pointer to a T

• The Box<T> is a normal local variables with lifetime matching the stack frame

• The heap allocated T has lifetime matching the Box<T> – when the Box goes out of scope,
the referenced heap memory is freed

• i.e., the destructor of the Box<T> frees the heap allocated T

• This is RAII, to C++ programmers

• Efficient, but loses generality of heap allocation since heap lifetime tied to stack
frame lifetime

!26

fn main() {
 let b = Box::new(5);
 println!("b = {}", b);
}

https://csperkins.org/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/

Colin Perkins | https://csperkins.org/ | Copyright © 2019

Region-based Memory Management

• For effective region-based memory management:
• Allocate objects with lifetimes corresponding to regions

• Track object ownership, and changes of ownership:
• What region owns each object at any time

• Ownership of objects can move between regions

• Deallocate objects at the end of the lifetime of their owning region
• Use scoping rules to ensure objects are not referenced after deallocation

• Example: the Rust programming language
• Builds on previous research with Cyclone language (AT&T/Cornell)

• Somewhat similar ideas in Microsoft’s Singularity operating system

!27

https://csperkins.org/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/

Colin Perkins | https://csperkins.org/ | Copyright © 2019

const PI: f64 = 3.14159;

fn area_of_cone(w : f64, h : f64) -> f64 {
 let r = w / 2.0;
 let a = PI * r * (r + (h*h + r*r).sqrt());

 return a;
}

fn main() {
 let width = 3.0;
 let height = 2.0;

 let area = area_of_cone(width, height);

 println!("area = {}", area);
}

• Returning data from a function causes it to outlive the region in which
it was created:

Returning Ownership of Data

!28

Lifetime of a

Lifetime of r

https://csperkins.org/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/

Colin Perkins | https://csperkins.org/ | Copyright © 2019

Returning Ownership of Data

• Compiler tracks changes in ownership of data:
• Ownership of return value is moved to the calling function

• The value is moved into the calling function’s stack frame

• Original value, in the called function’s stack frame, is deallocated

• Allows us to return a copy of a Box<T> that references a heap allocated value of type T

• The Box<T> is moved, but the referenced T on the heap is not

• Variables not returned by a function go out of scope and are reclaimed
• The heap-allocated T is deallocated when the Box<T> goes out of scope and is reclaimed

• i.e., the compiler generates to equivalent of a call to free() when the Box<T> goes out of
scope

!29

https://csperkins.org/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/

Colin Perkins | https://csperkins.org/ | Copyright © 2019

Returning Ownership of Data: No Dangling References

• Lifetime of local variable ends when function returns

• Can’t return a reference to an object that doesn’t exist

• Equivalent C code will compile but crash at runtime
• Good compilers give a warning for many, but not all, cases

!30

fn foo() -> &i32 {
 let n = 42;
 &n
}

% rustc test.rs
error[E0106]: missing lifetime specifier
 --> test.rs:1:13
 |
1 | fn foo() -> &i32 {
 | ^ expected lifetime parameter
 |
 = help: this function's return type contains a borrowed value, but there is no value for it
to be borrowed from
 = help: consider giving it a 'static lifetime

int *foo() {
 int n = 42;
 return &n;
}

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/
http://test.rs

Colin Perkins | https://csperkins.org/ | Copyright © 2019

Returning Ownership of Data: No Use-After-Free

• Similarly – once memory is freed, it cannot
be accessed
• Explicit drop() is equivalent of free() in C

• Equivalent C program compiles and runs,
but has undefined behaviour

!31

use std::mem::drop; // free() equivalent

fn main() {
 let x = "Hello".to_string();
 drop(x);
 println!("{}", x);
}
error[E0382]: use of moved value: `x`
 --> test.rs:6:18
 |
5 | drop(x);
 | - value moved here
6 | println!("{}", x);
 | ^ value used here after move
 |
 = note: move occurs because `x` has type `std::string::String`, which does not implement the `Copy` trait

#include <stdlib.h>
#include <stdio.h>

int main() {
 char *x = malloc(14);
 sprintf(x, "Hello, world!");
 free(x);
 printf("%s\n", x);
}

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2019

fn consume(mut x : Vec<u32>) {
 x.push(1);
}

fn main() {
 let mut a = Vec::new();

 a.push(1);
 a.push(2);

 consume(a);

 println!("a.len() = {}", a.len());
}

Giving Ownership of Data

• Ownership of data passed to a function is
transferred to that function
• Deallocated when function ends, unless it

returns the data

• Data cannot be later used by the calling
function – enforced at compile time

!32

Ownership of a transferred  
 to consume()

Lifetime of a

% rustc consume.rs
consume.rs:15:28: 15:29 error: use of moved value: `a` [E0382]
consume.rs:15 println!("a.len() = {}", a.len());
 ^

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2019

fn borrow(mut x : &mut Vec<u32>) {
 x.push(1);
}

fn main() {
 let mut a = Vec::new();

 a.push(1);
 a.push(2);

 borrow(&mut a);

 println!("a.len() = {}", a.len());
}

Borrowing Data

• Functions can borrow references to data
• Does not move ownership of the data

• Borrowed value not accessible by called for
duration of the borrow

• Naïvely safe to use, since borrowed data lives
longer than the function

• Functions can also return references to
borrowed input parameters
• The parameters are borrowed from the calling

function, so safe to return them to it

!33

% rustc borrow.rs
% ./borrow
a.len() = 3
%

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2019

Problems with Naïve Borrowing – Iterator Invalidation

• In this example, borrow() changes the
contents of the vector

• But – it cannot know whether it is safe to
do so
• In this example, it is safe

• If main() was iterating over the contents of
the vector, changing the contents might lead
to elements being skipped or duplicated, or to
a result to be calculated with inconsistent data

• Known as iterator invalidation

!34

fn borrow(mut x : &mut Vec<u32>) {
 x.push(1);
}

fn main() {
 let mut a = Vec::new();

 a.push(1);
 a.push(2);

 borrow(&mut a);

 println!("a.len() = {}", a.len());
}

% rustc borrow.rs
% ./borrow
a.len() = 3
%

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2019

Safe Borrowing

• Rust has two kinds of pointer:
• &T – a shared reference to an

immutable object of type T

• &mut T – a unique reference to a
mutable object of type T

• Runtime system controls pointer
ownership and use
• An object of type T can be referenced by

one or more references of type &T, or by
exactly one reference of type &mut T,
but not both

• Cannot get an &mut T reference to data
of type T that is marked as immutable
(i.e., via an &T reference)

• Allows functions to safely borrow
objects – without needing to give
away ownership

• To change an object:
• You either own the object, and it is not

marked as immutable; or

• You own the only &mut reference to it

• Prevents iterator invalidation
• The iterator requires an &T reference, so

other code can’t get a mutable reference
to the contents to change them:

• enforced at compile time

!35

fn main() {
 let mut data = vec![1, 2, 3, 4, 5, 6];
 for x in &data {
 data.push(2 * x);
 }
}

fails, since push takes
an &mut reference

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2019

Iterator Invalidation: Example

• Common bug in C++ and Java
• Modify an iterator while iterating

• Typically ends in null pointer deference
or data corruption – follows reference
to element that no longer exists

• Does not compile in Rust, because of
borrowing rules

!36

fn push_all(from: &Vec<i32>, to: &mut Vec<i32>) {
 for elem in from.iter() {
 to.push(*elem);
 }
}

fn main() {
 let mut vec = Vec::new();
 push_all(&vec, &mut vec);
}

error[E0502]: cannot borrow `vec` as mutable because it is also borrowed as immutable
 --> test.rs:9:23
 |
9 | push_all(&vec, &mut vec);
 | --- ^^^- immutable borrow ends here
 | | |
 | | mutable borrow occurs here
 | immutable borrow occurs here

error: aborting due to previous error

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2019

Benefits

• Type system tracks ownership, turning run-time bugs into compile-
time errors:
• Prevents memory leaks and use-after-free bugs

• Prevents iterator invalidation

• Prevents race conditions with multiple threads – borrowing rules prevent two
threads from getting references to a mutable object

• Efficient run-time behaviour
• Generates exactly the same code as a correctly written program using
malloc() and free()

• Timing and memory usage are as predictable as correct a C program

• Deterministic when memory allocated

• Deterministic when memory freed

!37

https://csperkins.org/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/

Colin Perkins | https://csperkins.org/ | Copyright © 2019

Limitations of Region-based Systems

• Can’t express cyclic data structures
• E.g., can’t build a doubly linked list:

• Many languages offer an escape hatch from the ownership rules to allow these
data structures (e.g., raw pointers and unsafe in Rust)

• Can’t express shared ownership of mutable data
• Usually a good thing, since avoids race conditions

• Rust has RefCell<T> that dynamically enforces the borrowing rules (i.e.,
allows upgrading a shared reference to an immutable object into a unique
reference to a mutable object, if it was the only such shared reference)

• Raises a run-time exception if there could be a race condition, rather than
preventing it at compile time

!38

b c da
Can’t get mutable reference
to c to add the link to d, since
already referenced by b

https://csperkins.org/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/

Colin Perkins | https://csperkins.org/ | Copyright © 2019

Limitations of Region-based Systems

• Forces consideration of object ownership early and explicitly
• Generally good practice, but increases conceptual load early in design process

– may hinder exploratory programming

!39

https://csperkins.org/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/

Colin Perkins | https://csperkins.org/ | Copyright © 2019

Region-based Memory Management: Summary

• Region-based memory management with strong  
ownership and borrowing rules
• Efficient and predictable behaviour

• Strong correctness guarantees prevent many common bugs

• Constrains the type of programs that can be written

• Further reading:
• D. Grossman et al., “Region-based memory management in  

Cyclone”, Proc. ACM PLDI, Berlin, Germany, June 2002.  
DOI:10.1145/512529.512563

• You are not expected to read/understand section 4

• What was Cyclone? Did the project’s goals make sense?

• How does the region-based memory management system described differ from that outlined
in the lecture and used in Rust?

• Interactions with the garbage collector?

• Other features added to C?

• Ease of porting C code? Performance?

• Does it make sense to try to extend C with region-based memory management?

!40

Region-Based Memory Management in Cyclone ∗

Dan Grossman Greg Morrisett Trevor Jim†

Michael Hicks Yanling Wang James Cheney

Computer Science Department
Cornell University
Ithaca, NY 14853
{danieljg,jgm,mhicks,wangyl,jcheney}@cs.cornell.edu

†AT&T Labs Research
180 Park Avenue
Florham Park, NJ 07932
trevor@research.att.com

ABSTRACT
Cyclone is a type-safe programming language derived from
C. The primary design goal of Cyclone is to let program-
mers control data representation and memory management
without sacrificing type-safety. In this paper, we focus on
the region-based memory management of Cyclone and its
static typing discipline. The design incorporates several ad-
vancements, including support for region subtyping and a
coherent integration with stack allocation and a garbage col-
lector. To support separate compilation, Cyclone requires
programmers to write some explicit region annotations, but
a combination of default annotations, local type inference,
and a novel treatment of region effects reduces this burden.
As a result, we integrate C idioms in a region-based frame-
work. In our experience, porting legacy C to Cyclone has
required altering about 8% of the code; of the changes, only
6% (of the 8%) were region annotations.

Categories and Subject Descriptors
D.3.3 [Programming Languages]: Language Constructs
and Features—dynamic storage management

General Terms
Languages

1. INTRODUCTION
Many software systems, including operating systems, de-

vice drivers, file servers, and databases require fine-grained

∗This research was supported in part by Sloan grant BR-
3734; NSF grant 9875536; AFOSR grants F49620-00-1-
0198, F49620-01-1-0298, F49620-00-1-0209, and F49620-01-
1-0312; ONR grant N00014-01-1-0968; and NSF Graduate
Fellowships. Any opinions, findings, and conclusions or rec-
ommendations expressed in this publication are those of the
authors and do not reflect the views of these agencies.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PLDI’02, June 17-19, 2002, Berlin, Germany.
Copyright 2002 ACM 1-58113-463-0/02/0006 ...$5.00.

control over data representation (e.g., field layout) and re-
source management (e.g., memory management). The de
facto language for coding such systems is C. However, in
providing low-level control, C admits a wide class of danger-
ous — and extremely common — safety violations, such as
incorrect type casts, buffer overruns, dangling-pointer deref-
erences, and space leaks. As a result, building large systems
in C, especially ones including third-party extensions, is per-
ilous. Higher-level, type-safe languages avoid these draw-
backs, but in so doing, they often fail to give programmers
the control needed in low-level systems. Moreover, porting
or extending legacy code is often prohibitively expensive.
Therefore, a safe language at the C level of abstraction, with
an easy porting path, would be an attractive option.

Toward this end, we have developed Cyclone [6, 19], a
language designed to be very close to C, but also safe. We
have written or ported over 110,000 lines of Cyclone code,
including the Cyclone compiler, an extensive library, lexer
and parser generators, compression utilities, device drivers,
a multimedia distribution overlay network, a web server,
and many smaller benchmarks. In the process, we identified
many common C idioms that are usually safe, but which the
C type system is too weak to verify. We then augmented the
language with modern features and types so that program-
mers can still use the idioms, but have safety guarantees.

For example, to reduce the need for type casts, Cyclone
has features like parametric polymorphism, subtyping, and
tagged unions. To prevent bounds violations without mak-
ing hidden data-representation changes, Cyclone has a va-
riety of pointer types with different compile-time invariants
and associated run-time checks. Other projects aimed at
making legacy C code safe have addressed these issues with
somewhat different approaches, as discussed in Section 7.

In this paper, we focus on the most novel aspect of Cy-
clone: its system for preventing dangling-pointer derefer-
ences and space leaks. The design addresses several seem-
ingly conflicting goals. Specifically, the system is:

• Sound: Programs never dereference dangling pointers.

• Static: Dereferencing a dangling pointer is a compile-
time error. No run-time checks are needed to deter-
mine if memory has been deallocated.

• Convenient: We minimize the need for explicit pro-
grammer annotations while supporting many C id-
ioms. In particular, many uses of the addresses of local
variables require no modification.

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/
https://dx.doi.org/10.1145/512529.512563
https://dx.doi.org/10.1145/512529.512563

Colin Perkins | https://csperkins.org/ | Copyright © 2019

Resource Management

!41

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2019

Resource Management: Deterministic Cleanup

• Rust deterministically frees memory when data
goes out of scope – known as dropping the data

• Types can implement the Drop trait to get custom
destructors

• Dropping is deterministic → clean-up resource ownership
• Garbage collected languages typically give no guarantee

when the destructor runs

• e.g., the File class uses custom drop() implementation
to close the file when it goes out of scope

• Python has special syntax for this: 
 
 
 
unnecessary in Rust – cleanup happens naturally

!42

pub trait Drop {
 fn drop(&mut self);
}

Definition of std::ops::Drop
from Rust standard libraryimpl Drop for MyType {

 fn drop(&mut self) {
 ...
 }
}

with open(filename) as file:
 data = file.read()
 ...

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2019

Resource Management: Ownership and States

• Use ownership transfer between different types to model resource states
• struct-based state machine → lecture 3

• Manage the different states of a resource

• Make illegal operations compile time errors

!43

See also: https://blog.systems.ethz.ch/blog/2018/a-hammer-you-can-only-hold-by-the-handle.html

let listener = TcpListener::bind(socket);
match listener.accept() {
 Ok(connection) => …
 Err(error) => …
}

SocketAddr

TcpListener

TcpStream

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/
https://blog.systems.ethz.ch/blog/2018/a-hammer-you-can-only-hold-by-the-handle.html

Colin Perkins | https://csperkins.org/ | Copyright © 2019

Memory and Resource
Management

!44

• Memory

• Memory management
• Reference counting

• Lifetimes and region-based management

• Resource management

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

