Unuversity

of Glasgow

Garbage Collection

Advanced Systems Programming (M)
Lecture 5

©Nolo

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/
http://creativecommons.org/licenses/by-nd/4.0/

Rationale

 Region-based memory management (— lecture 4) is novel, trades
program complexity for predictable resource management

« Garbage collection widely implemented, but less predictable

 Need to understand garbage collector operation to understand the
performance-complexity trade-off

©Nolo

https://csperkins.org/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/

Lecture Outline

* Garbage collection

Uniprocessor Garbage Collection Techniques

 Mark-sweep

Paul R. Wilson

University of Texas

* Mark-compact ot TR

[] ‘ O in COI I eCtO rS Abstrac.t. We survey basic garl.)a.ge co]lcctic.m algorithm‘s, and Ya.riatio.ns
such as incremental and generational collection. The basic algorithms in-
clude reference counting, mark-sweep, mark-compact, copying, and treadmill

collection. Incremental techniques can keep garbage collection pause times
short, by interleaving small amounts of collection work with program execu-

® G e n e ratl O n a I a I g O rl t h m S tion. Generationalschemes improve efficiency and locality by garbage collect-

ing a smaller area more often, while exploiting typical lifetime characteristics
to avoid undue overhead from long-lived objects.

* Incremental algorithms

1 Automatic Storage Reclamation

1 1 Garbage collection is the automatic reclamation of computer storage [Knu69, Coh81,
o Rea I -tl m e g a rba g e CO I I e Ctl O n App91]. While in many systems programmers must explicitly reclaim heap memory
at some point in the program, by using a “free” or “dispose” statement, garbage
collected systems free the programmer from this burden. The garbage collector’s
. function is to find data objects! that are mo longer in use and make their space
o P ra Ctl Cal fa Cto rS available for reuse by the the running program. An object is considered garbage
(and subject to reclamation) if it is not reachable by the running program via any
path of pointer traversals. Live (potentially reachable) objects are preserved by the
collector, ensuring that the program can never traverse a “dangling pointer” into a
deallocated object.

This paper is intended to be an introductory survey of garbage collectors for
uniprocessors, especially those developed in the last decade. For a more thorough

treatment of older techniques, see [Knu69, Coh81).

1.1 Motivation

Garbage collection is necessary for fully modular programming, to avoid introducing
unnecessary inter-module dependencies. A routine operating on a data structure
should not have to know what other routines may be operating on the same structure,
unless there is some good reason to coordinate their activities. If objects must be
deallocated explicitly, some module must be responsible for knowing when other
modules are not interested in a particular object.

! We use the term object loosely, to include any kind of structured data record, such
as Pascal records or C structs, as well as full-fledged objects with encapsulation and
inheritance, in the sense of object-oriented programming.

P. R. Wilson, “Uniprocessor garbage collection techniques”,
Proceedings of the International Workshop on Memory Management,
St. Malo, France, September 1992. DOI: 10.1007/BFb0017182

©Nolo

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/
https://dx.doi.org/10.1007/BFb0017182
https://dx.doi.org/10.1007/BFb0017182

 Mark-sweep

Basic Garbage Collection » Mark-compact
e Copying collectors

Colin Perkins | https://csperkins.org/ | Copyright © 2019
BY ND

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Garbage Collection

©Nolo

Avoid problems of reference counting and complexity of compile-time
ownership tracking via tracing garbage collection

e Explicitly trace through the allocated objects, recording which are in use, rather
than continually maintaining reference counts; dispose of unused objects

e This moves garbage collection to be a separate phase of the program’s
execution, rather than an integrated part of an objects lifecycle

e A garbage collector runs and disposes of objects

e An object is reclaimed when its reference count becomes zero

Many tracing garbage collection algorithms exist:
 Mark-sweep, mark-compact, copying

e Generational algorithms

https://csperkins.org/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/

Mark-Sweep Collectors

Simplest automatic garbage collection scheme

Two phase algorithm

e Distinguish live objects from garbage (mark)

e Reclaim the garbage (sweep)

Non-incremental algorithm: program is paused to perform collection
when memory becomes tight

Will collect all garbage, whether or not there are cycles

©Nolo

https://csperkins.org/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/

Distinguishing Live Objects

e Find the root set of objects

e Global and stack variables

e Traverse the object relationship graph staring at the root set to find all
other reachable, live, objects

e Breadth-first or depth-first search

 Must read every pointer in every object in the system to systematically find all
reachable objects

 Mark reachable objects

e Stop traversal at previously seen objects to avoid following cycles

e Either set a bit in the object header, or in some separate table of live objects

©Nolo

https://csperkins.org/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/

Reclaiming the Garbage

o Sweep through the entire heap, examining every object for liveness in
turn

e If marked as alive, keep it, otherwise reclaim the object’s space

e Space occupied by reclaimed objects is marked as free: the system must
maintain one or more free lists to track available space

e New objects are allocated in the space previously reclaimed

 No problem with collecting cycles, since the mark phase will not reach
unreferenced cycles

©Nolo

https://csperkins.org/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/

Problems with Mark-Sweep Collectors

* Cost proportional to size of heap

 Program is stopped with the collector runs; unpredictable collection time
e All live objects must be marked, and all garbage must be reclaimed

e Unlike reference counting, mark-sweep garbage collection is slower if the
program has lots of memory allocated

 Fragmentation

e Since objects are not moved, space may become fragmented, making it
difficult to allocate large objects (even though space available overall)

e Locality of reference

e Passing through the entire heap in unpredictable order disrupts operation of
cache and virtual memory subsystem

 Obijects located where they fit (due to fragmentation), rather than where it
makes sense from a locality of reference viewpoint

©Nolo

https://csperkins.org/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/

Mark-Compact Collectors

©Nolo

Traverse object graph, mark live objects

Reclaim unreachable objects, then
compact live objects, moving them to
leave a contiguous free space

* Reclaiming and compacting memory can be
done in a single pass, but still touches the
entire address space

Advantages:

* Solves fragmentation problems

* Allocation is very quick (increment pointer to
next free space, return previous value)

Disadvantages:

* Collection is slow, due to moving objects in
memory, and time taken is unpredictable

* Collection has poor locality of reference

Mark Reclaim Compact

10

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Copying Collectors

e Copying collectors integrate the traversal (marking) and copying
phases into one pass

e All the live data is copied into one region of memory

e All the remaining memory contains garbage, or has not yet been used
o Similar to mark-compact, but more efficient

e Time taken to collect is proportional to the number of live objects

©Nolo

11

https://csperkins.org/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/

Stop-and-copy Using Semispaces (1)

©Nolo

Standard approach: a semispace collector,
that uses the Cheney algorithm for copying
traversal

Divide the heap into two halves, each one a
contiguous block of memory

Allocations made linearly from one half of the
heap only

* Memory is allocated contiguously, so allocation is
fast (as in the mark-compact collector)

* No problems with fragmentation due to allocating
data of different sizes

When an allocation is requested that won't fit
into the active half of the heap, a collection is
triggered

TSR
/

FROMSPACE

ROOT
SET

TOSPACE

12

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Stop-and-copy Using Semispaces (2)

* Collection stops execution of the program

* A pass is made through the active space, and ?;3::5 '
all live objects are copied to the other half of {"' ”“*;2
the heap Lid Ll
* The Cheney algorithm is commonly used to make ‘»:
the copy in a single pass R

* Anything not copied is unreachable, and is simply FROMSPACE

ignored (and will eventually be overwritten by a later
allocation phase)

* The program is then restarted, using the other
half of the heap as the active allocation region

* The role of the two parts of the heap (the two
semispaces) reverses each time a collection
IS triggered

©Nolo

ROOT

bl

SET

po

TOSPACE

13

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Breadth-first Copying: Cheney Algorithm

ROOT
SET

©Nolo

Object
graph

Copying

 The root set of objects is identified, forms
initial queue of live objects to be copied

e Obijects in the queue examined in turn:

e Each unprocessed object directly referenced by
the object in the queue is itself added to the end
of the queue

e The object in the queue is copied to the other
space, and the original is marked as having
been processed (pointers are updated as the
copy is made)

e Once the end of the queue is reached, all
live objects have been copied

14

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Efficiency of Copying Collectors

* Time taken for collection depends on the amount of data copied,
which depends on the number of live objects

e Collection only happens when the semispace is full

» [f most objects die young, then can reduce the data to be copied by
iIncreasing the size of the heap

e Increasing the size of the heap increases the age to which objects need to live
iIn order to be copied; most don't live that long, and so aren’t copied

e Trade-off memory for collection time: more memory used, less fraction of time
spent copying data

©Nolo

15

https://csperkins.org/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/

Summary: Basic Garbage Collection

 These approaches have broadly similar costs

e But they move where the cost is paid: on allocation or collection; in terms of
memory or processing time

e Considering efficiency of copying collectors, and object lifetimes, leads to a
possible optimisation: generational collectors (next lecture)

 Mark-sweep and reference counting don't move data, and so can
work with weakly-typed data

e Inlanguages like C and C++, with casting and pointer arithmetic, it's hard to
identify all possible pointers, but can usually identify values that might be
pointers and be conservative in what's collected

e But — can’'t move an object, if you can’t be sure all pointers to it have been
updated

©Nolo

16

https://csperkins.org/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/

Generational Garbage Collection

Colin Perkins | https://csperkins.org/ | Copyright © 2019
BY ND

17

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Object Lifetimes

e Studies have shown that most objects live a very short time, while a
small percentage of them live much longer

 This seems to be generally true, no matter what programming language is
considered, across numerous studies

e Although, obviously, different programs and different languages produce
varying amount of garbage

 Implication: when the garbage collector runs, live objects will be in a
minority

o Statistically, the longer an object has lived, the longer it is likely to live

e Can we design a garbage collector to take advantage?

©Nolo

18

https://csperkins.org/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/

A Copying Generational Collector (1)

* In a generational garbage collector, the heap
IS split into regions for long-lived and young
objects

Regions holding young objects are garbage
collected more frequently

Objects are moved to the region for long-lived
objects if they're still alive after several collections

More sophisticated approaches may have multiple
generations, although the gains diminish rapidly with
increasing numbers of generations

* Example: stop-and-copy using semispaces
with two generations

©Nolo

All allocations occurs in the younger generation’s
region of the heap

When that region is full, collection occurs as normal

f’\ Younger Generation

ROOT
SET
\

Older Generation

19

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

A Copying Generational Collector (2)

PR SN Youn_ger Generation

* Objects are tagged with the number of collections of "‘\

the younger generation they have survived; if they’re ‘{;i,..,,:..,...g S| ROT

alive after some threshold, they're copied to the *5»«%?@5 ,,:‘”%,a —

older generation’s space during collection : s (O A

ovsseennans |11 1147 H Y0

* Eventually, the older generation’s space is full, and Py po P- 7

is collected as normal iy Tl

¢

#
:ﬁlder Generation
&

#

First (New)
Generation — . — - — . f
Memory

#
#

Second 7
Generation... .
Memory

* Note: not to scale: older generations are generally
much larger than the younger, as they're collected
much less often

©Nolo

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Detecting Intergenerational References

©Nolo

* In generational collectors, younger generation must collected
iIndependent of the long-lived generation

But — there may be object references between the generations

Young objects referencing long-lived objects common but straight-forward
since most young objects die before the long-lived objects are collected

o Treat the younger generation objects as part of the root set for the older generation, if
collection of the older generation is needed

Direct pointers from old-to-young generation are problematic, since they
require a scan of the old generation to detect

May be appropriate to use an indirection table (“pointers-to-pointers”) for old-to-
young generation references

e The indirection table forms part of the root set of the younger generation

« Movement on objects in the younger generation requires an update to the indirection table,
but not to long-lived objects

e Note: this is conservative: the death of a long-lived object isn't observed until that generation
is collected, but that may be several collections of the younger generation, in which time the
younger object appears to be referenced

21

https://csperkins.org/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/

Generational Garbage Collection

« Variations on this concept are widely used

e E.g., the HotSpot JVM uses a generational garbage collector

* Generational collectors achieve good efficiency:

e Cost of collection is generally proportional to number of live objects

 Most objects don't live long enough to be collected; those that do are moved to
a more rarely collected generation

 But — eventually the longer-lived generation must be collected; this can be very
slow

©Nolo

22

https://csperkins.org/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/

Incremental Garbage Collection

©Nolo

Preceding discussion has assumed the collector “stops-the-world”
when it runs

e Clearly problematic for interactive or real-time applications

Desire a collector that can operate incrementally

e Interleave small amounts of garbage collection with small runs of program
execution

e Implication: the garbage collector can’t scan the entire heap when it runs; must
scan a fragment of the heap each time

 Problem: the program (the “mutator”) can change the heap between runs of the
garbage collector

 Need to track changes made to the heap between garbage collector runs; be
conservative and don’t collect objects that might be referenced — can always
collect on the next complete scan

23

https://csperkins.org/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/

Tricolour Marking

©Nolo

For each complete collection cycle, each object is labelled with a
colour:

 White — not yet checked
e Grey — live, but some direct children not yet checked
e Black — live

Basic incremental collector operation:

e Garbage collection proceeds with a wavefront of grey objects, where the
collector is checking them, or objects they reference, for liveness

e Black objects behind are behind the wavefront, and are known to be live

 Objects ahead of the wavefront, not yet reached by the collection, are white;
anything still white once all objects have been traced is garbage

e No direct pointers from black objects to white — any program operation that will
create such a pointer requires coordination with the collector

24

https://csperkins.org/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/

Tricolour Marking: Need for Coordination

* Garbage collector runs

* Object A scanned, known to be live — black

* Objects B and C are reachable via A, and are live,
but some of their children have not been scanned
— grey

* Object D not checked — white

* Program runs, and swaps the pointers from
A—C and B—D such that A—D and B—C Before After

* This creates a pointer from black to white

* Program must now coordinate with the collector,
else collection will continue, marking object B
black and its children grey, but D will not be
reached since children of A have already been
scanned

©Nolo

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Coordination Strategies

e Read barrier: trap attempts by the program to read pointers to white
objects, colour those objects grey, and let the program continue

 Makes it impossible for the program to get a pointer to a white object, so it
cannot make a black object point to a white

 Write barrier: trap attempts to change pointers from black objects to
point to white objects

e Either then re-colour the black object as grey, or re-colour the white object
being referenced as grey

 The object coloured grey is moved onto the list of objects whose children must
be checked

©Nolo

26

https://csperkins.org/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/

Incremental Collection

 Many variants on read- and write-barrier tricolour algorithms

e Performance trade-off differs depending on hardware characteristics, and on
the way pointers are represented

* Write barrier generally cheaper to implement than read barrier, as writes are
less common in most code

e There is a balance between collector operation and program
operation

o |f the program tries to create too many new references from black to white
objects, requiring coordination with the collector, the collection may never

complete

* Resolve by forcing a complete stop-the-world collection if free memory is
exhausted, or after a certain amount of time

©Nolo

27

https://csperkins.org/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/

Real-time Garbage Collection

©Nolo

e Real-time collectors build incremental collectors

 Two basic approaches:

o Work based: every request to allocate an object or assign an object
reference does some garbage collection; amortise collection cost
with allocation cost

 Time based: schedule an incremental collector as a periodic task

* Obtain timing guarantees by limiting amount of garbage that
can be created in a given interval to less than that which can be
collected

 The amount of garbage that can be collected can be measured:
how fast can the collector scan memory (and copy objects, if a
copying collector)

o Cannot collect garbage faster than the collector can scan memory
to determine if objects are free to be collected

e This must be a worse-case collection rate, if the collector has
varying runtime

 The programmer must bound the amount of garbage generated
to within the capacity of the collector

A Real-time Garbage Collector
with Low Overhead and Consistent Utilization

Bacon et al., “A real-time garbage
collector with low overhead and
consistent utilization”. ACM
Symposium on Principles of
Programming Languages, New
Orleans, LA, USA, January 2003.
DOI: 10.1145/604131.604155

28

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/
https://dx.doi.org/10.1145/604131.604155
https://dx.doi.org/10.1145/604131.604155

Practical Factors

Colin Perkins | https://csperkins.org/ | Copyright © 2019
BY ND

e Interaction with Virtual Memory

o Garbage Collection for Weakly-
Typed Languages

29

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Practical Factors

e Two significant limitations:

e Interaction with virtual memory

e Garbage collection for C-like languages

* In general, garbage collected programs will use significantly more
memory than (correct) programs with manual memory management

e E.g., many of the copying collectors must maintain two regions, and so a naive
Implementation doubles memory usage

©Nolo

30

https://csperkins.org/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/

Interaction with Virtual Memory

e Virtual memory subsystems page out unused data in an LRU manner
« Garbage collector scans objects, paging data back into memory

e Leads to thrashing if the working set of the garbage collector larger
than memory

 Open research issue: combining virtual memory with garbage collector

©Nolo

31

https://csperkins.org/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/

Garbage Collection for Weakly-typed Languages

e Collectors rely on being able to identify and follow pointers, to
determine what is a live object

 Weakly typed, such as C, can cast any integer to a pointer, and
perform pointer arithmetic

e Implementation-defined behaviour, since pointers and integers are not
guaranteed to be the same size

o Greatly complicates garbage collection:

 Need to be conservative: any memory that might be a pointer must be treated
as one

e The Boehm-Demers-Weiser garbage collector can be used for C and C++
(http://www.hboehm.info/gc/) — this works for strictly conforming ANSI C code,
but beware that much code is not conforming

©Nolo

32

https://csperkins.org/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://www.hpl.hp.com/personal/Hans_Boehm
http://www.cs.cornell.edu/annual_report/00-01/bios.htm#demers
http://www-sul.stanford.edu/weiser/
http://www.hboehm.info/gc/

Memory Management Trade-offs

Run-time <« Comp|eX|ty »Compile-time

Garbage Collected Region-based

Less Predictable < Perf()rmance » More Predictable

 Rust pushes memory management complexity onto the programmer

e Predictable run-time performance, low run-time overheads
e Uniform resource management framework, including memory
e Limits the programs that may be expressed — matches common patterns in good C code

e Garbage collection imposes run-time costs and complexity, but simpler for the
programmer

©Nole

33

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Summary

Colin Perkins | https://csperkins.org/ | Copyright © 2019
BY ND

e Garbage collection

Mark-sweep
Mark-compact

Copying collectors
Generational algorithms

Incremental algorithms

e Real-time garbage collection

 Practical factors

34

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

