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Rationale

• Region-based memory management (→ lecture 4) is novel, trades 
program complexity for predictable resource management 

• Garbage collection widely implemented, but less predictable 

• Need to understand garbage collector operation to understand the 
performance-complexity trade-off
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Lecture Outline

• Garbage collection 
• Mark-sweep 

• Mark-compact 

• Copying collectors 

• Generational algorithms 

• Incremental algorithms 

• Real-time garbage collection 

• Practical factors
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Abstract. We survey basic garbage collection algorithms, and variations 
such as incremental and generational collection. The basic algorithms in- 
clude reference counting, mark-sweep, mark-compact, copying, and treadmill 
collection. Incremental techniques can kccp garbage concction pause times 
short, by interleaving small amounts of collection work with program execu- 
tion. Generationalschemes improve efficiency and locality by garbage collect- 
ing a smaller area more often, while exploiting typical lifetime characteristics 
to avoid undue overhead from long-lived objects. 

1 A u t o m a t i c  S t o r a g e  R e c l a m a t i o n  

Garbage collection is the automatic reclamation of computer storage [Knu69, Coh81, 
App91]. While in many systems programmers must explicitly reclaim heap memory 
at some point in the program, by using a '~free" or "dispose" statement,  garbage 
collected systems free the programmer from this burden. The garbage collector's 
function is to find data  objects I that  are no longer in use and make their space 
available for reuse by the the running program. An object is considered garbage 
(and subject to reclamation) if it is not reachable by the running program via any 
path  of pointer traversals. Live (potentially reachable) objects are preserved by the 
collector, ensuring that  the program can never traverse a "dangling pointer" into a 
deallocated object. 

This paper is intended to be an introductory survey of garbage collectors for 
uniprocessors, especially those developed in the last decade. For a more thorough 
treatment  of older techniques, see [Knu69, Coh81]. 

1.1 M o t i v a t i o n  

Garbage collection is necessary for fully modular programming, to avoid introducing 
unnecessary inter-module dependencies. A routine operating on a data  structure 
should not have to know what other routines may be operating on the same structure, 
unless there is some good reason to coordinate their activities. If objects must be 
deallocated explicitly, some module must be responsible for knowing when olher 
modules are not interested in a particular object. 

1 We use the term object loosely, to include any kind of structured data record, such 
as Pascal records or C structs, as well as full-fledged objects with encapsulation and 
inheritance, in the sense of object-oriented programming. 

P. R. Wilson, “Uniprocessor garbage collection techniques”, 
Proceedings of the International Workshop on Memory Management, 

St. Malo, France, September 1992. DOI: 10.1007/BFb0017182
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Basic Garbage Collection
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• Mark-sweep 

• Mark-compact 

• Copying collectors
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Garbage Collection

• Avoid problems of reference counting and complexity of compile-time 
ownership tracking via tracing garbage collection 
• Explicitly trace through the allocated objects, recording which are in use, rather 

than continually maintaining reference counts; dispose of unused objects 

• This moves garbage collection to be a separate phase of the program’s 
execution, rather than an integrated part of an objects lifecycle 
• A garbage collector runs and disposes of objects 

• An object is reclaimed when its reference count becomes zero 

• Many tracing garbage collection algorithms exist: 
• Mark-sweep, mark-compact, copying 

• Generational algorithms
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Mark-Sweep Collectors

• Simplest automatic garbage collection scheme 

• Two phase algorithm 
• Distinguish live objects from garbage (mark) 

• Reclaim the garbage (sweep) 

• Non-incremental algorithm: program is paused to perform collection 
when memory becomes tight 

• Will collect all garbage, whether or not there are cycles 

"6

https://csperkins.org/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/


Colin Perkins | https://csperkins.org/ | Copyright © 2019

Distinguishing Live Objects

• Find the root set of objects 
• Global and stack variables 

• Traverse the object relationship graph staring at the root set to find all 
other reachable, live, objects 
• Breadth-first or depth-first search  

• Must read every pointer in every object in the system to systematically find all 
reachable objects 

• Mark reachable objects 
• Stop traversal at previously seen objects to avoid following cycles 

• Either set a bit in the object header, or in some separate table of live objects
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Reclaiming the Garbage

• Sweep through the entire heap, examining every object for liveness in 
turn 
• If marked as alive, keep it, otherwise reclaim the object’s space 

• Space occupied by reclaimed objects is marked as free: the system must 
maintain one or more free lists to track available space 

• New objects are allocated in the space previously reclaimed 

• No problem with collecting cycles, since the mark phase will not reach 
unreferenced cycles
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Problems with Mark-Sweep Collectors

• Cost proportional to size of heap 
• Program is stopped with the collector runs; unpredictable collection time 

• All live objects must be marked, and all garbage must be reclaimed 

• Unlike reference counting, mark-sweep garbage collection is slower if the 
program has lots of memory allocated 

• Fragmentation 
• Since objects are not moved, space may become fragmented, making it 

difficult to allocate large objects (even though space available overall)  

• Locality of reference 
• Passing through the entire heap in unpredictable order disrupts operation of 

cache and virtual memory subsystem 

• Objects located where they fit (due to fragmentation), rather than where it 
makes sense from a locality of reference viewpoint
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Mark-Compact Collectors

• Traverse object graph, mark live objects 

• Reclaim unreachable objects, then 
compact live objects, moving them to 
leave a contiguous free space 
• Reclaiming and compacting memory can be 

done in a single pass, but still touches the 
entire address space 

• Advantages:  
• Solves fragmentation problems 

• Allocation is very quick (increment pointer to 
next free space, return previous value) 

• Disadvantages: 
• Collection is slow, due to moving objects in 

memory, and time taken is unpredictable 

• Collection has poor locality of reference
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Copying Collectors

• Copying collectors integrate the traversal (marking) and copying 
phases into one pass 
• All the live data is copied into one region of memory 

• All the remaining memory contains garbage, or has not yet been used 

• Similar to mark-compact, but more efficient 

• Time taken to collect is proportional to the number of live objects
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Stop-and-copy Using Semispaces (1)

• Standard approach: a semispace collector, 
that uses the Cheney algorithm for copying 
traversal 

• Divide the heap into two halves, each one a 
contiguous block of memory 

• Allocations made linearly from one half of the 
heap only 
• Memory is allocated contiguously, so allocation is 

fast (as in the mark-compact collector) 

• No problems with fragmentation due to allocating 
data of different sizes 

• When an allocation is requested that won’t fit 
into the active half of the heap, a collection is 
triggered
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Fig. 3. A simple semispace garbage collector before garbage collection. 

descendants. This means that there are no more reachable objects to be copied, and 
the scavenging process is finished. 

Actually, a slightly more complex process is needed, so that objects that are 
reached by multiple paths are not copied to tospace multiple times. When an object 
is transported to tospace, a forwarding pointer is installed in the old version of the 
object. The forwarding pointer signifies that the old object is obsolete and indicates 
where to find the new copy of the object. When the scanning process finds a pointer 
into fromspace, the object it refers to is checked for a forwarding pointer. If it has 
one, it has already been moved to tospace, so the pointer it has been reached by is 
simply updated to point to its new location. This ensures that each live object is 
transported exactly once, and that all pointers to the object are updated to refer to 
the new copy. 

Source: P. Wilson, “Uniprocessor garbage collection 
techniques”, Proc IWMM’92, DOI 10.1007/BFb0017182
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Stop-and-copy Using Semispaces (2)

• Collection stops execution of the program 

• A pass is made through the active space, and 
all live objects are copied to the other half of 
the heap 
• The Cheney algorithm is commonly used to make 

the copy in a single pass 

• Anything not copied is unreachable, and is simply 
ignored (and will eventually be overwritten by a later 
allocation phase) 

• The program is then restarted, using the other 
half of the heap as the active allocation region 

• The role of the two parts of the heap (the two 
semispaces) reverses each time a collection 
is triggered
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Fig. 4. Semispace collector after garbage collection. 

Efficiency of  Copying  Collect ion.  A copying garbage collector can be made ar- 
bitrarily efficient if sufficient memory is available [Lar77, App87]. The work done at 
each collection is proportional to the amount of live data at the time of garbage col- 
lection. Assuming that approximately the same amount of data is live at any given 
time during the program's execution, decreasing the frequency of garbage collections 
will decrease the total amount of garbage collection effort. 

A simple way to decrease the frequency of garbage collections is to increase the 
amount of memory in the heap. If each semispace is bigger, the program will run 
longer before filling it. Another way of looking at this is that by decreasing the 
frequency of garbage collections, we are increasing the average age of objects at 
garbage collection time. Objects that become garbage before a garbage collection 
needn't be copied, so the chance that an object will n e v e r  have to be copied is 

Source: P. Wilson, “Uniprocessor garbage collection 
techniques”, Proc IWMM’92, DOI 10.1007/BFb0017182
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Breadth-first Copying: Cheney Algorithm

• The root set of objects is identified, forms 
initial queue of live objects to be copied 

• Objects in the queue examined in turn: 
• Each unprocessed object directly referenced by 

the object in the queue is itself added to the end 
of the queue 

• The object in the queue is copied to the other 
space, and the original is marked as having 
been processed (pointers are updated as the 
copy is made) 

• Once the end of the queue is reached, all 
live objects have been copied
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Fig. 5. The Cheney algorithm of breadth-first copying. 
Source: P. Wilson, “Uniprocessor garbage collection 
techniques”, Proc IWMM’92, DOI 10.1007/BFb0017182
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Efficiency of Copying Collectors

• Time taken for collection depends on the amount of data copied, 
which depends on the number of live objects 

• Collection only happens when the semispace is full 

• If most objects die young, then can reduce the data to be copied by 
increasing the size of the heap 
• Increasing the size of the heap increases the age to which objects need to live 

in order to be copied; most don’t live that long, and so aren’t copied 

• Trade-off memory for collection time: more memory used, less fraction of time 
spent copying data
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Summary: Basic Garbage Collection

• These approaches have broadly similar costs 
• But they move where the cost is paid: on allocation or collection; in terms of 

memory or processing time 

• Considering efficiency of copying collectors, and object lifetimes, leads to a 
possible optimisation: generational collectors (next lecture) 

• Mark-sweep and reference counting don’t move data, and so can 
work with weakly-typed data 
• In languages like C and C++, with casting and pointer arithmetic, it’s hard to 

identify all possible pointers, but can usually identify values that might be 
pointers and be conservative in what’s collected 

• But – can’t move an object, if you can’t be sure all pointers to it have been 
updated
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Generational Garbage Collection
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Object Lifetimes

• Studies have shown that most objects live a very short time, while a 
small percentage of them live much longer 
• This seems to be generally true, no matter what programming language is 

considered, across numerous studies 

• Although, obviously, different programs and different languages produce 
varying amount of garbage 

• Implication: when the garbage collector runs, live objects will be in a 
minority 
• Statistically, the longer an object has lived, the longer it is likely to live 

• Can we design a garbage collector to take advantage?
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A Copying Generational Collector (1)

• In a generational garbage collector, the heap 
is split into regions for long-lived and young 
objects 
• Regions holding young objects are garbage 

collected more frequently 

• Objects are moved to the region for long-lived 
objects if they’re still alive after several collections 

• More sophisticated approaches may have multiple 
generations, although the gains diminish rapidly with 
increasing numbers of generations 

• Example: stop-and-copy using semispaces 
with two generations 
• All allocations occurs in the younger generation’s 

region of the heap 

• When that region is full, collection occurs as normal 

• … 
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A Copying Generational Collector (2)

• …  

• Objects are tagged with the number of collections of 
the younger generation they have survived; if they’re 
alive after some threshold, they’re copied to the 
older generation’s space during collection 

• Eventually, the older generation’s space is full, and 
is collected as normal 

• Note: not to scale: older generations are generally 
much larger than the younger, as they’re collected 
much less often
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Detecting Intergenerational References

• In generational collectors, younger generation must collected 
independent of the long-lived generation 
• But – there may be object references between the generations 

• Young objects referencing long-lived objects common but straight-forward 
since most young objects die before the long-lived objects are collected 
• Treat the younger generation objects as part of the root set for the older generation, if 

collection of the older generation is needed 

• Direct pointers from old-to-young generation are problematic, since they 
require a scan of the old generation to detect 

• May be appropriate to use an indirection table (“pointers-to-pointers”) for old-to-
young generation references 
• The indirection table forms part of the root set of the younger generation 

• Movement on objects in the younger generation requires an update to the indirection table, 
but not to long-lived objects 

• Note: this is conservative: the death of a long-lived object isn’t observed until that generation 
is collected, but that may be several collections of the younger generation, in which time the 
younger object appears to be referenced
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Generational Garbage Collection

• Variations on this concept are widely used 
• E.g., the HotSpot JVM uses a generational garbage collector 

• Generational collectors achieve good efficiency: 
• Cost of collection is generally proportional to number of live objects 

• Most objects don’t live long enough to be collected; those that do are moved to 
a more rarely collected generation 

• But – eventually the longer-lived generation must be collected; this can be very 
slow
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Incremental Garbage Collection

• Preceding discussion has assumed the collector “stops-the-world” 
when it runs 
• Clearly problematic for interactive or real-time applications 

• Desire a collector that can operate incrementally 
• Interleave small amounts of garbage collection with small runs of program 

execution 

• Implication: the garbage collector can’t scan the entire heap when it runs; must 
scan a fragment of the heap each time 

• Problem: the program (the “mutator”) can change the heap between runs of the 
garbage collector 

• Need to track changes made to the heap between garbage collector runs; be 
conservative and don’t collect objects that might be referenced – can always 
collect on the next complete scan
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Tricolour Marking

• For each complete collection cycle, each object is labelled with a 
colour: 
• White  –  not yet checked 

• Grey   –  live, but some direct children not yet checked 

• Black  –  live 

• Basic incremental collector operation: 
• Garbage collection proceeds with a wavefront of grey objects, where the 

collector is checking them, or objects they reference, for liveness 

• Black objects behind are behind the wavefront, and are known to be live 

• Objects ahead of the wavefront, not yet reached by the collection, are white; 
anything still white once all objects have been traced is garbage 

• No direct pointers from black objects to white – any program operation that will 
create such a pointer requires coordination with the collector
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Tricolour Marking: Need for Coordination

• Garbage collector runs 
• Object A scanned, known to be live → black 

• Objects B and C are reachable via A, and are live, 
but some of their children have not been scanned 
→ grey 

• Object D not checked → white 

• Program runs, and swaps the pointers from 
A→C and B→D such that A→D and B→C 

• This creates a pointer from black to white 
• Program must now coordinate with the collector, 

else collection will continue, marking object B 
black and its children grey, but D will not be 
reached since children of A have already been 
scanned
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A A 

Before After 

Fig. 7. A violation of the coloring invariant. 

rather than their source. That is, if a pointer to a white object is copied into a black 
object, that new copy of the pointer will be found. Conceptually, the black object (or 
part of it) is reverted to grey when the mutator "undoes" the collector's traversal. 
(Alternatively, the pointed-to object may be greyed immediately.) This ensures that 
the traversal is updated in the face of mutator changes. 

3.2 Baker's Incremental Copying. 

The best-known real-time garbage collector is Baker's incremental copying scheme 
[Bak78]. It is an adaptation of the simple copy collection scheme described in Sect. 2.5, 
and uses a read barrier for coordination with the mutator. For the most part, the 
copying of data proceeds in the Cheney (breadth-first) fashion, by advancing the scan 
pointer through the unscanned area of tospace and moving any referred-to objects 
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Coordination Strategies

• Read barrier: trap attempts by the program to read pointers to white 
objects, colour those objects grey, and let the program continue 
• Makes it impossible for the program to get a pointer to a white object, so it 

cannot make a black object point to a white 

• Write barrier: trap attempts to change pointers from black objects to 
point to white objects 
• Either then re-colour the black object as grey, or re-colour the white object 

being referenced as grey 

• The object coloured grey is moved onto the list of objects whose children must 
be checked
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Incremental Collection

• Many variants on read- and write-barrier tricolour algorithms 
• Performance trade-off differs depending on hardware characteristics, and on 

the way pointers are represented 

• Write barrier generally cheaper to implement than read barrier, as writes are 
less common in most code 

• There is a balance between collector operation and program 
operation 
• If the program tries to create too many new references from black to white 

objects, requiring coordination with the collector, the collection may never 
complete 

• Resolve by forcing a complete stop-the-world collection if free memory is 
exhausted, or after a certain amount of time
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Real-time Garbage Collection

• Real-time collectors build incremental collectors 
• Two basic approaches: 

• Work based: every request to allocate an object or assign an object 
reference does some garbage collection; amortise collection cost 
with allocation cost 

• Time based: schedule an incremental collector as a periodic task 

• Obtain timing guarantees by limiting amount of garbage that 
can be created in a given interval to less than that which can be 
collected 

• The amount of garbage that can be collected can be measured: 
how fast can the collector scan memory (and copy objects, if a 
copying collector) 
• Cannot collect garbage faster than the collector can scan memory 

to determine if objects are free to be collected 

• This must be a worse-case collection rate, if the collector has 
varying runtime 

• The programmer must bound the amount of garbage generated 
to within the capacity of the collector
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ABSTRACT
Now that the use of garbage collection in languages like Java is be-
coming widely accepted due to the safety and software engineering
benefits it provides, there is significant interest in applying garbage
collection to hard real-time systems. Past approaches have gener-
ally suffered from one of two major flaws: either they were not
provably real-time, or they imposed large space overheads to meet
the real-time bounds. We present a mostly non-moving, dynami-
cally defragmenting collector that overcomes both of these limita-
tions: by avoiding copying in most cases, space requirements are
kept low; and by fully incrementalizing the collector we are able to
meet real-time bounds. We implemented our algorithm in the Jikes
RVM and show that at real-time resolution we are able to obtain
mutator utilization rates of 45% with only 1.6–2.5 times the ac-
tual space required by the application, a factor of 4 improvement in
utilization over the best previously published results. Defragmen-
tation causes no more than 4% of the traced data to be copied.

General Terms
Algorithms, Languages, Measurement, Performance

Categories and Subject Descriptors
C.3 [Special-Purpose and Application-Based Systems]: Real-
time and embedded systems; D.3.2 [Programming Languages]:
Java; D.3.4 [Programming Languages]: Processors—Memory
management (garbage collection)

Keywords
Read barrier, defragmentation, real-time scheduling, utilization

1. INTRODUCTION
Garbage collected languages like Java are making significant in-

roads into domains with hard real-time concerns, such as automo-
tive command-and-control systems. However, the engineering and
product life-cycle advantages consequent from the simplicity of

Permission to make digital or hard copies of all or part of this work for
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not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

POPL’03, January 15–17, 2003, New Orleans, Louisiana, USA.
Copyright c 2003 ACM 1-58113-628-5/03/0001 $5.00.

programming with garbage collection remain unavailable for use in
the core functionality of such systems, where hard real-time con-
straints must be met. As a result, real-time programming requires
the use of multiple languages, or at least (in the case of the Real-
Time Specification for Java [9]) two programming models within
the same language. Therefore, there is a pressing practical need
for a system that can provide real-time guarantees for Java without
imposing major penalties in space or time.

We present a design for a real-time garbage collector for Java,
an analysis of its real-time properties, and implementation results
that show that we are able to run applications with high mutator
utilization and low variance in pause times.

The target is uniprocessor embedded systems. The collector is
therefore concurrent, but not parallel. This choice both complicates
and simplifies the design: the design is complicated by the fact that
the collector must be interleaved with the mutators, instead of being
able to run on a separate processor; the design is simplified since
the programming model is sequentially consistent.

Previous incremental collectors either attempt to avoid overhead
and complexity by using a non-copying approach (and are there-
fore subject to potentially unbounded fragmentation), or attempt
to prevent fragmentation by performing concurrent copying (and
therefore require a minimum of a factor of two overhead in space,
as well as requiring barriers on reads and/or writes, which are costly
and tend to make response time unpredictable).

Our collector is unique in that it occupies an under-explored por-
tion of the design space for real-time incremental collectors: it
is a mostly non-copying hybrid. As long as space is available, it
acts like a non-copying collector, with the consequent advantages.
When space becomes scarce, it performs defragmentation with lim-
ited copying of objects. We show experimentally that such a design
is able to achieve low space and time overhead, and high and con-
sistent mutator CPU utilization.

In order to achieve high performance with a copying collector,
we have developed optimization techniques for the Brooks-style
read barrier [10] using an “eager invariant” that keeps read barrier
overhead to 4%, an order of magnitude faster than previous soft-
ware read barriers.

Our collector can use either time- or work-based scheduling.
Most previous work on real-time garbage collection, starting with
Baker’s algorithm [5], has used work-based scheduling. We show
both analytically and experimentally that time-based scheduling is
superior, particularly at the short intervals that are typically of in-
terest in real-time systems. Work-based algorithms may achieve
short individual pause times, but are unable to achieve consistent
utilization.

The paper is organized as follows: Section 2 describes previ-
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Practical Factors
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• Interaction with Virtual Memory 

• Garbage Collection for Weakly-
Typed Languages
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Practical Factors

• Two significant limitations: 
• Interaction with virtual memory 

• Garbage collection for C-like languages 

• In general, garbage collected programs will use significantly more 
memory than (correct) programs with manual memory management 
• E.g., many of the copying collectors must maintain two regions, and so a naïve 

implementation doubles memory usage
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Interaction with Virtual Memory

• Virtual memory subsystems page out unused data in an LRU manner 

• Garbage collector scans objects, paging data back into memory 

• Leads to thrashing if the working set of the garbage collector larger 
than memory 
• Open research issue: combining virtual memory with garbage collector
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Garbage Collection for Weakly-typed Languages

• Collectors rely on being able to identify and follow pointers, to 
determine what is a live object 

• Weakly typed, such as C, can cast any integer to a pointer, and 
perform pointer arithmetic 
• Implementation-defined behaviour, since pointers and integers are not 

guaranteed to be the same size 

• Greatly complicates garbage collection:  
• Need to be conservative: any memory that might be a pointer must be treated 

as one 

• The Boehm-Demers-Weiser garbage collector can be used for C and C++ 
(http://www.hboehm.info/gc/) – this works for strictly conforming ANSI C code, 
but beware that much code is not conforming
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Memory Management Trade-offs

• Rust pushes memory management complexity onto the programmer 
• Predictable run-time performance, low run-time overheads 

• Uniform resource management framework, including memory 

• Limits the programs that may be expressed – matches common patterns in good C code 

• Garbage collection imposes run-time costs and complexity, but simpler for the 
programmer
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Run-time Compile-time

Less Predictable More Predictable

Complexity

Performance
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http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/


Colin Perkins | https://csperkins.org/ | Copyright © 2019

Summary
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• Garbage collection 
• Mark-sweep 

• Mark-compact 

• Copying collectors 

• Generational algorithms 

• Incremental algorithms 

• Real-time garbage collection 

• Practical factors
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