
Colin Perkins | https://csperkins.org/ | Copyright © 2019 | This work is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International License. To
view a copy of this license, visit http://creativecommons.org/licenses/by-nd/4.0/ or send a letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.

Garbage Collection

Advanced Systems Programming (M)
Lecture 5

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/
http://creativecommons.org/licenses/by-nd/4.0/

Colin Perkins | https://csperkins.org/ | Copyright © 2019

Rationale

• Region-based memory management (→ lecture 4) is novel, trades
program complexity for predictable resource management

• Garbage collection widely implemented, but less predictable

• Need to understand garbage collector operation to understand the
performance-complexity trade-off

"2

https://csperkins.org/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/

Colin Perkins | https://csperkins.org/ | Copyright © 2019

Lecture Outline

• Garbage collection
• Mark-sweep

• Mark-compact

• Copying collectors

• Generational algorithms

• Incremental algorithms

• Real-time garbage collection

• Practical factors

"3

Uniprocessor Garbage Collection Techniques

Paul R. Wilson

University of Texas
Austin, Texas 78712-1188 USA

(wilson@cs.ut exas.edu)

Abstract. We survey basic garbage collection algorithms, and variations
such as incremental and generational collection. The basic algorithms in-
clude reference counting, mark-sweep, mark-compact, copying, and treadmill
collection. Incremental techniques can kccp garbage concction pause times
short, by interleaving small amounts of collection work with program execu-
tion. Generationalschemes improve efficiency and locality by garbage collect-
ing a smaller area more often, while exploiting typical lifetime characteristics
to avoid undue overhead from long-lived objects.

1 A u t o m a t i c S t o r a g e R e c l a m a t i o n

Garbage collection is the automatic reclamation of computer storage [Knu69, Coh81,
App91]. While in many systems programmers must explicitly reclaim heap memory
at some point in the program, by using a '~free" or "dispose" statement, garbage
collected systems free the programmer from this burden. The garbage collector's
function is to find data objects I that are no longer in use and make their space
available for reuse by the the running program. An object is considered garbage
(and subject to reclamation) if it is not reachable by the running program via any
path of pointer traversals. Live (potentially reachable) objects are preserved by the
collector, ensuring that the program can never traverse a "dangling pointer" into a
deallocated object.

This paper is intended to be an introductory survey of garbage collectors for
uniprocessors, especially those developed in the last decade. For a more thorough
treatment of older techniques, see [Knu69, Coh81].

1.1 M o t i v a t i o n

Garbage collection is necessary for fully modular programming, to avoid introducing
unnecessary inter-module dependencies. A routine operating on a data structure
should not have to know what other routines may be operating on the same structure,
unless there is some good reason to coordinate their activities. If objects must be
deallocated explicitly, some module must be responsible for knowing when olher
modules are not interested in a particular object.

1 We use the term object loosely, to include any kind of structured data record, such
as Pascal records or C structs, as well as full-fledged objects with encapsulation and
inheritance, in the sense of object-oriented programming.

P. R. Wilson, “Uniprocessor garbage collection techniques”,
Proceedings of the International Workshop on Memory Management,

St. Malo, France, September 1992. DOI: 10.1007/BFb0017182

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/
https://dx.doi.org/10.1007/BFb0017182
https://dx.doi.org/10.1007/BFb0017182

Colin Perkins | https://csperkins.org/ | Copyright © 2019

Basic Garbage Collection

"4

• Mark-sweep

• Mark-compact

• Copying collectors

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2019

Garbage Collection

• Avoid problems of reference counting and complexity of compile-time
ownership tracking via tracing garbage collection
• Explicitly trace through the allocated objects, recording which are in use, rather

than continually maintaining reference counts; dispose of unused objects

• This moves garbage collection to be a separate phase of the program’s
execution, rather than an integrated part of an objects lifecycle
• A garbage collector runs and disposes of objects

• An object is reclaimed when its reference count becomes zero

• Many tracing garbage collection algorithms exist:
• Mark-sweep, mark-compact, copying

• Generational algorithms

"5

https://csperkins.org/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/

Colin Perkins | https://csperkins.org/ | Copyright © 2019

Mark-Sweep Collectors

• Simplest automatic garbage collection scheme

• Two phase algorithm
• Distinguish live objects from garbage (mark)

• Reclaim the garbage (sweep)

• Non-incremental algorithm: program is paused to perform collection
when memory becomes tight

• Will collect all garbage, whether or not there are cycles

"6

https://csperkins.org/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/

Colin Perkins | https://csperkins.org/ | Copyright © 2019

Distinguishing Live Objects

• Find the root set of objects
• Global and stack variables

• Traverse the object relationship graph staring at the root set to find all
other reachable, live, objects
• Breadth-first or depth-first search

• Must read every pointer in every object in the system to systematically find all
reachable objects

• Mark reachable objects
• Stop traversal at previously seen objects to avoid following cycles

• Either set a bit in the object header, or in some separate table of live objects

"7

https://csperkins.org/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/

Colin Perkins | https://csperkins.org/ | Copyright © 2019

Reclaiming the Garbage

• Sweep through the entire heap, examining every object for liveness in
turn
• If marked as alive, keep it, otherwise reclaim the object’s space

• Space occupied by reclaimed objects is marked as free: the system must
maintain one or more free lists to track available space

• New objects are allocated in the space previously reclaimed

• No problem with collecting cycles, since the mark phase will not reach
unreferenced cycles

"8

https://csperkins.org/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/

Colin Perkins | https://csperkins.org/ | Copyright © 2019

Problems with Mark-Sweep Collectors

• Cost proportional to size of heap
• Program is stopped with the collector runs; unpredictable collection time

• All live objects must be marked, and all garbage must be reclaimed

• Unlike reference counting, mark-sweep garbage collection is slower if the
program has lots of memory allocated

• Fragmentation
• Since objects are not moved, space may become fragmented, making it

difficult to allocate large objects (even though space available overall)

• Locality of reference
• Passing through the entire heap in unpredictable order disrupts operation of

cache and virtual memory subsystem

• Objects located where they fit (due to fragmentation), rather than where it
makes sense from a locality of reference viewpoint

"9

https://csperkins.org/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/

Colin Perkins | https://csperkins.org/ | Copyright © 2019

Mark-Compact Collectors

• Traverse object graph, mark live objects

• Reclaim unreachable objects, then
compact live objects, moving them to
leave a contiguous free space
• Reclaiming and compacting memory can be

done in a single pass, but still touches the
entire address space

• Advantages:
• Solves fragmentation problems

• Allocation is very quick (increment pointer to
next free space, return previous value)

• Disadvantages:
• Collection is slow, due to moving objects in

memory, and time taken is unpredictable

• Collection has poor locality of reference

"10

Mark Reclaim Compact

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2019

Copying Collectors

• Copying collectors integrate the traversal (marking) and copying
phases into one pass
• All the live data is copied into one region of memory

• All the remaining memory contains garbage, or has not yet been used

• Similar to mark-compact, but more efficient

• Time taken to collect is proportional to the number of live objects

"11

https://csperkins.org/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/

Colin Perkins | https://csperkins.org/ | Copyright © 2019

Stop-and-copy Using Semispaces (1)

• Standard approach: a semispace collector,
that uses the Cheney algorithm for copying
traversal

• Divide the heap into two halves, each one a
contiguous block of memory

• Allocations made linearly from one half of the
heap only
• Memory is allocated contiguously, so allocation is

fast (as in the mark-compact collector)

• No problems with fragmentation due to allocating
data of different sizes

• When an allocation is requested that won’t fit
into the active half of the heap, a collection is
triggered

"12

13

ROOT
t ' s ~ e w s

FROMSPACE TOSPACE

Fig. 3. A simple semispace garbage collector before garbage collection.

descendants. This means that there are no more reachable objects to be copied, and
the scavenging process is finished.

Actually, a slightly more complex process is needed, so that objects that are
reached by multiple paths are not copied to tospace multiple times. When an object
is transported to tospace, a forwarding pointer is installed in the old version of the
object. The forwarding pointer signifies that the old object is obsolete and indicates
where to find the new copy of the object. When the scanning process finds a pointer
into fromspace, the object it refers to is checked for a forwarding pointer. If it has
one, it has already been moved to tospace, so the pointer it has been reached by is
simply updated to point to its new location. This ensures that each live object is
transported exactly once, and that all pointers to the object are updated to refer to
the new copy.

Source: P. Wilson, “Uniprocessor garbage collection
techniques”, Proc IWMM’92, DOI 10.1007/BFb0017182

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2019

Stop-and-copy Using Semispaces (2)

• Collection stops execution of the program

• A pass is made through the active space, and
all live objects are copied to the other half of
the heap
• The Cheney algorithm is commonly used to make

the copy in a single pass

• Anything not copied is unreachable, and is simply
ignored (and will eventually be overwritten by a later
allocation phase)

• The program is then restarted, using the other
half of the heap as the active allocation region

• The role of the two parts of the heap (the two
semispaces) reverses each time a collection
is triggered

"13

ROOT
SET

iii
0

FROMSPACE

14

TOSPACE

Fig. 4. Semispace collector after garbage collection.

Efficiency of Copying Collect ion. A copying garbage collector can be made ar-
bitrarily efficient if sufficient memory is available [Lar77, App87]. The work done at
each collection is proportional to the amount of live data at the time of garbage col-
lection. Assuming that approximately the same amount of data is live at any given
time during the program's execution, decreasing the frequency of garbage collections
will decrease the total amount of garbage collection effort.

A simple way to decrease the frequency of garbage collections is to increase the
amount of memory in the heap. If each semispace is bigger, the program will run
longer before filling it. Another way of looking at this is that by decreasing the
frequency of garbage collections, we are increasing the average age of objects at
garbage collection time. Objects that become garbage before a garbage collection
needn't be copied, so the chance that an object will n e v e r have to be copied is

Source: P. Wilson, “Uniprocessor garbage collection
techniques”, Proc IWMM’92, DOI 10.1007/BFb0017182

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2019

Breadth-first Copying: Cheney Algorithm

• The root set of objects is identified, forms
initial queue of live objects to be copied

• Objects in the queue examined in turn:
• Each unprocessed object directly referenced by

the object in the queue is itself added to the end
of the queue

• The object in the queue is copied to the other
space, and the original is marked as having
been processed (pointers are updated as the
copy is made)

• Once the end of the queue is reached, all
live objects have been copied

"14

15

ROOT A t

B

E

I I I

F
iI

t
I I

I i

i~ I!!!!ii!!!!!lli!!!!l J!!l
~ n B ~
Scan Free

Scan Free

Scan Free

a B~ c D ~
Scan Free

v)

Scan Free

Fig. 5. The Cheney algorithm of breadth-first copying.
Source: P. Wilson, “Uniprocessor garbage collection
techniques”, Proc IWMM’92, DOI 10.1007/BFb0017182

Object
graph

Copying
queue

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2019

Efficiency of Copying Collectors

• Time taken for collection depends on the amount of data copied,
which depends on the number of live objects

• Collection only happens when the semispace is full

• If most objects die young, then can reduce the data to be copied by
increasing the size of the heap
• Increasing the size of the heap increases the age to which objects need to live

in order to be copied; most don’t live that long, and so aren’t copied

• Trade-off memory for collection time: more memory used, less fraction of time
spent copying data

"15

https://csperkins.org/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/

Colin Perkins | https://csperkins.org/ | Copyright © 2019

Summary: Basic Garbage Collection

• These approaches have broadly similar costs
• But they move where the cost is paid: on allocation or collection; in terms of

memory or processing time

• Considering efficiency of copying collectors, and object lifetimes, leads to a
possible optimisation: generational collectors (next lecture)

• Mark-sweep and reference counting don’t move data, and so can
work with weakly-typed data
• In languages like C and C++, with casting and pointer arithmetic, it’s hard to

identify all possible pointers, but can usually identify values that might be
pointers and be conservative in what’s collected

• But – can’t move an object, if you can’t be sure all pointers to it have been
updated

"16

https://csperkins.org/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/

Colin Perkins | https://csperkins.org/ | Copyright © 2019

Generational Garbage Collection

"17

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2019

Object Lifetimes

• Studies have shown that most objects live a very short time, while a
small percentage of them live much longer
• This seems to be generally true, no matter what programming language is

considered, across numerous studies

• Although, obviously, different programs and different languages produce
varying amount of garbage

• Implication: when the garbage collector runs, live objects will be in a
minority
• Statistically, the longer an object has lived, the longer it is likely to live

• Can we design a garbage collector to take advantage?

"18

https://csperkins.org/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/

Colin Perkins | https://csperkins.org/ | Copyright © 2019

A Copying Generational Collector (1)

• In a generational garbage collector, the heap
is split into regions for long-lived and young
objects
• Regions holding young objects are garbage

collected more frequently

• Objects are moved to the region for long-lived
objects if they’re still alive after several collections

• More sophisticated approaches may have multiple
generations, although the gains diminish rapidly with
increasing numbers of generations

• Example: stop-and-copy using semispaces
with two generations
• All allocations occurs in the younger generation’s

region of the heap

• When that region is full, collection occurs as normal

• …

"19

Younger Generation

ROOT

32

Fig. O. A generational copying garbage collector before garbage collection.

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2019

A Copying Generational Collector (2)

• …

• Objects are tagged with the number of collections of
the younger generation they have survived; if they’re
alive after some threshold, they’re copied to the
older generation’s space during collection

• Eventually, the older generation’s space is full, and
is collected as normal

• Note: not to scale: older generations are generally
much larger than the younger, as they’re collected
much less often

"20

33

v~.. r--

%

. .2 i

~ J

Younger Generation

ROOT
SET %

f
t

Older Generation

Fig . 10. Generational collector after garbage collection.

First (New)
Generation
Memory

Second

Memory

CO 4~

Fig. 11. Memory use in a generational copy collector with semispaces for each generation.

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2019

Detecting Intergenerational References

• In generational collectors, younger generation must collected
independent of the long-lived generation
• But – there may be object references between the generations

• Young objects referencing long-lived objects common but straight-forward
since most young objects die before the long-lived objects are collected
• Treat the younger generation objects as part of the root set for the older generation, if

collection of the older generation is needed

• Direct pointers from old-to-young generation are problematic, since they
require a scan of the old generation to detect

• May be appropriate to use an indirection table (“pointers-to-pointers”) for old-to-
young generation references
• The indirection table forms part of the root set of the younger generation

• Movement on objects in the younger generation requires an update to the indirection table,
but not to long-lived objects

• Note: this is conservative: the death of a long-lived object isn’t observed until that generation
is collected, but that may be several collections of the younger generation, in which time the
younger object appears to be referenced

"21

https://csperkins.org/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/

Colin Perkins | https://csperkins.org/ | Copyright © 2019

Generational Garbage Collection

• Variations on this concept are widely used
• E.g., the HotSpot JVM uses a generational garbage collector

• Generational collectors achieve good efficiency:
• Cost of collection is generally proportional to number of live objects

• Most objects don’t live long enough to be collected; those that do are moved to
a more rarely collected generation

• But – eventually the longer-lived generation must be collected; this can be very
slow

"22

https://csperkins.org/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/

Colin Perkins | https://csperkins.org/ | Copyright © 2019

Incremental Garbage Collection

• Preceding discussion has assumed the collector “stops-the-world”
when it runs
• Clearly problematic for interactive or real-time applications

• Desire a collector that can operate incrementally
• Interleave small amounts of garbage collection with small runs of program

execution

• Implication: the garbage collector can’t scan the entire heap when it runs; must
scan a fragment of the heap each time

• Problem: the program (the “mutator”) can change the heap between runs of the
garbage collector

• Need to track changes made to the heap between garbage collector runs; be
conservative and don’t collect objects that might be referenced – can always
collect on the next complete scan

"23

https://csperkins.org/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/

Colin Perkins | https://csperkins.org/ | Copyright © 2019

Tricolour Marking

• For each complete collection cycle, each object is labelled with a
colour:
• White – not yet checked

• Grey – live, but some direct children not yet checked

• Black – live

• Basic incremental collector operation:
• Garbage collection proceeds with a wavefront of grey objects, where the

collector is checking them, or objects they reference, for liveness

• Black objects behind are behind the wavefront, and are known to be live

• Objects ahead of the wavefront, not yet reached by the collection, are white;
anything still white once all objects have been traced is garbage

• No direct pointers from black objects to white – any program operation that will
create such a pointer requires coordination with the collector

"24

https://csperkins.org/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/

Colin Perkins | https://csperkins.org/ | Copyright © 2019

Tricolour Marking: Need for Coordination

• Garbage collector runs
• Object A scanned, known to be live → black

• Objects B and C are reachable via A, and are live,
but some of their children have not been scanned
→ grey

• Object D not checked → white

• Program runs, and swaps the pointers from
A→C and B→D such that A→D and B→C

• This creates a pointer from black to white
• Program must now coordinate with the collector,

else collection will continue, marking object B
black and its children grey, but D will not be
reached since children of A have already been
scanned

"25

23

A A

Before After

Fig. 7. A violation of the coloring invariant.

rather than their source. That is, if a pointer to a white object is copied into a black
object, that new copy of the pointer will be found. Conceptually, the black object (or
part of it) is reverted to grey when the mutator "undoes" the collector's traversal.
(Alternatively, the pointed-to object may be greyed immediately.) This ensures that
the traversal is updated in the face of mutator changes.

3.2 Baker's Incremental Copying.

The best-known real-time garbage collector is Baker's incremental copying scheme
[Bak78]. It is an adaptation of the simple copy collection scheme described in Sect. 2.5,
and uses a read barrier for coordination with the mutator. For the most part, the
copying of data proceeds in the Cheney (breadth-first) fashion, by advancing the scan
pointer through the unscanned area of tospace and moving any referred-to objects

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2019

Coordination Strategies

• Read barrier: trap attempts by the program to read pointers to white
objects, colour those objects grey, and let the program continue
• Makes it impossible for the program to get a pointer to a white object, so it

cannot make a black object point to a white

• Write barrier: trap attempts to change pointers from black objects to
point to white objects
• Either then re-colour the black object as grey, or re-colour the white object

being referenced as grey

• The object coloured grey is moved onto the list of objects whose children must
be checked

"26

https://csperkins.org/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/

Colin Perkins | https://csperkins.org/ | Copyright © 2019

Incremental Collection

• Many variants on read- and write-barrier tricolour algorithms
• Performance trade-off differs depending on hardware characteristics, and on

the way pointers are represented

• Write barrier generally cheaper to implement than read barrier, as writes are
less common in most code

• There is a balance between collector operation and program
operation
• If the program tries to create too many new references from black to white

objects, requiring coordination with the collector, the collection may never
complete

• Resolve by forcing a complete stop-the-world collection if free memory is
exhausted, or after a certain amount of time

"27

https://csperkins.org/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/

Colin Perkins | https://csperkins.org/ | Copyright © 2019

Real-time Garbage Collection

• Real-time collectors build incremental collectors
• Two basic approaches:

• Work based: every request to allocate an object or assign an object
reference does some garbage collection; amortise collection cost
with allocation cost

• Time based: schedule an incremental collector as a periodic task

• Obtain timing guarantees by limiting amount of garbage that
can be created in a given interval to less than that which can be
collected

• The amount of garbage that can be collected can be measured:
how fast can the collector scan memory (and copy objects, if a
copying collector)
• Cannot collect garbage faster than the collector can scan memory

to determine if objects are free to be collected

• This must be a worse-case collection rate, if the collector has
varying runtime

• The programmer must bound the amount of garbage generated
to within the capacity of the collector

"28

Bacon et al., “A real-time garbage
collector with low overhead and

consistent utilization”. ACM
Symposium on Principles of

Programming Languages, New
Orleans, LA, USA, January 2003.

DOI: 10.1145/604131.604155

A Real-time Garbage Collector
with Low Overhead and Consistent Utilization

David F. Bacon
dfb@watson.ibm.com

Perry Cheng
perryche@us.ibm.com

V.T. Rajan
vtrajan@us.ibm.com

IBM T.J. Watson Research Center
P.O. Box 704

Yorktown Heights, NY 10598

ABSTRACT
Now that the use of garbage collection in languages like Java is be-
coming widely accepted due to the safety and software engineering
benefits it provides, there is significant interest in applying garbage
collection to hard real-time systems. Past approaches have gener-
ally suffered from one of two major flaws: either they were not
provably real-time, or they imposed large space overheads to meet
the real-time bounds. We present a mostly non-moving, dynami-
cally defragmenting collector that overcomes both of these limita-
tions: by avoiding copying in most cases, space requirements are
kept low; and by fully incrementalizing the collector we are able to
meet real-time bounds. We implemented our algorithm in the Jikes
RVM and show that at real-time resolution we are able to obtain
mutator utilization rates of 45% with only 1.6–2.5 times the ac-
tual space required by the application, a factor of 4 improvement in
utilization over the best previously published results. Defragmen-
tation causes no more than 4% of the traced data to be copied.

General Terms
Algorithms, Languages, Measurement, Performance

Categories and Subject Descriptors
C.3 [Special-Purpose and Application-Based Systems]: Real-
time and embedded systems; D.3.2 [Programming Languages]:
Java; D.3.4 [Programming Languages]: Processors—Memory
management (garbage collection)

Keywords
Read barrier, defragmentation, real-time scheduling, utilization

1. INTRODUCTION
Garbage collected languages like Java are making significant in-

roads into domains with hard real-time concerns, such as automo-
tive command-and-control systems. However, the engineering and
product life-cycle advantages consequent from the simplicity of

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

POPL’03, January 15–17, 2003, New Orleans, Louisiana, USA.
Copyright c 2003 ACM 1-58113-628-5/03/0001 $5.00.

programming with garbage collection remain unavailable for use in
the core functionality of such systems, where hard real-time con-
straints must be met. As a result, real-time programming requires
the use of multiple languages, or at least (in the case of the Real-
Time Specification for Java [9]) two programming models within
the same language. Therefore, there is a pressing practical need
for a system that can provide real-time guarantees for Java without
imposing major penalties in space or time.

We present a design for a real-time garbage collector for Java,
an analysis of its real-time properties, and implementation results
that show that we are able to run applications with high mutator
utilization and low variance in pause times.

The target is uniprocessor embedded systems. The collector is
therefore concurrent, but not parallel. This choice both complicates
and simplifies the design: the design is complicated by the fact that
the collector must be interleaved with the mutators, instead of being
able to run on a separate processor; the design is simplified since
the programming model is sequentially consistent.

Previous incremental collectors either attempt to avoid overhead
and complexity by using a non-copying approach (and are there-
fore subject to potentially unbounded fragmentation), or attempt
to prevent fragmentation by performing concurrent copying (and
therefore require a minimum of a factor of two overhead in space,
as well as requiring barriers on reads and/or writes, which are costly
and tend to make response time unpredictable).

Our collector is unique in that it occupies an under-explored por-
tion of the design space for real-time incremental collectors: it
is a mostly non-copying hybrid. As long as space is available, it
acts like a non-copying collector, with the consequent advantages.
When space becomes scarce, it performs defragmentation with lim-
ited copying of objects. We show experimentally that such a design
is able to achieve low space and time overhead, and high and con-
sistent mutator CPU utilization.

In order to achieve high performance with a copying collector,
we have developed optimization techniques for the Brooks-style
read barrier [10] using an “eager invariant” that keeps read barrier
overhead to 4%, an order of magnitude faster than previous soft-
ware read barriers.

Our collector can use either time- or work-based scheduling.
Most previous work on real-time garbage collection, starting with
Baker’s algorithm [5], has used work-based scheduling. We show
both analytically and experimentally that time-based scheduling is
superior, particularly at the short intervals that are typically of in-
terest in real-time systems. Work-based algorithms may achieve
short individual pause times, but are unable to achieve consistent
utilization.

The paper is organized as follows: Section 2 describes previ-

285

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/
https://dx.doi.org/10.1145/604131.604155
https://dx.doi.org/10.1145/604131.604155

Colin Perkins | https://csperkins.org/ | Copyright © 2019

Practical Factors

"29

• Interaction with Virtual Memory

• Garbage Collection for Weakly-
Typed Languages

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2019

Practical Factors

• Two significant limitations:
• Interaction with virtual memory

• Garbage collection for C-like languages

• In general, garbage collected programs will use significantly more
memory than (correct) programs with manual memory management
• E.g., many of the copying collectors must maintain two regions, and so a naïve

implementation doubles memory usage

"30

https://csperkins.org/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/

Colin Perkins | https://csperkins.org/ | Copyright © 2019

Interaction with Virtual Memory

• Virtual memory subsystems page out unused data in an LRU manner

• Garbage collector scans objects, paging data back into memory

• Leads to thrashing if the working set of the garbage collector larger
than memory
• Open research issue: combining virtual memory with garbage collector

"31

https://csperkins.org/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/

Colin Perkins | https://csperkins.org/ | Copyright © 2019

Garbage Collection for Weakly-typed Languages

• Collectors rely on being able to identify and follow pointers, to
determine what is a live object

• Weakly typed, such as C, can cast any integer to a pointer, and
perform pointer arithmetic
• Implementation-defined behaviour, since pointers and integers are not

guaranteed to be the same size

• Greatly complicates garbage collection:
• Need to be conservative: any memory that might be a pointer must be treated

as one

• The Boehm-Demers-Weiser garbage collector can be used for C and C++
(http://www.hboehm.info/gc/) – this works for strictly conforming ANSI C code,
but beware that much code is not conforming

"32

https://csperkins.org/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://www.hpl.hp.com/personal/Hans_Boehm
http://www.cs.cornell.edu/annual_report/00-01/bios.htm#demers
http://www-sul.stanford.edu/weiser/
http://www.hboehm.info/gc/

Colin Perkins | https://csperkins.org/ | Copyright © 2019

Memory Management Trade-offs

• Rust pushes memory management complexity onto the programmer
• Predictable run-time performance, low run-time overheads

• Uniform resource management framework, including memory

• Limits the programs that may be expressed – matches common patterns in good C code

• Garbage collection imposes run-time costs and complexity, but simpler for the
programmer

"33

Run-time Compile-time

Less Predictable More Predictable

Complexity

Performance

Garbage Collected Region-based

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2019

Summary

"34

• Garbage collection
• Mark-sweep

• Mark-compact

• Copying collectors

• Generational algorithms

• Incremental algorithms

• Real-time garbage collection

• Practical factors

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

