
Colin Perkins | https://csperkins.org/ | Copyright © 2019 | This work is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International License. To 
view a copy of this license, visit http://creativecommons.org/licenses/by-nd/4.0/ or send a letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.

Concurrency

Advanced Systems Programming (M) 
Lecture 6

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/
http://creativecommons.org/licenses/by-nd/4.0/


Colin Perkins | https://csperkins.org/ | Copyright © 2019

Lecture Outline

• Implications of Multicore Systems 
• Memory models 

• Concurrency, threads, and locks 

• Alternatives to multithreading 
• Transactions 

• Message passing 
• Immutable data 

• Linear types
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Implications of Multicore
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• Memory Models 

• Concurrency, threads, and locks
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Memory Models and Multicore Systems

• Hardware trends: multicore with non-uniform 
memory access 
• Cache coherency expensive → cores communicate 

by message passing, memory is remote 

• When do writes made by one core become 
visible to other cores? 
• What is the memory model for the language? 

• Prohibitively expensive for all threads on all core to 
have the exact same view of memory (“sequential 
consistency”) 

• For performance, allow cores inconsistent views of 
memory, except at synchronisation points; introduce 
synchronisation primitives with well-defined 
semantics 

• Hardware guarantees vary between processors 
• Differences hidden by language runtime, provided 

language has a clear memory model
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Figure 1. Structure of the Intel system
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Figure 2. Structure of the AMD system

To run our benchmarks, we booted the hardware using our bare
Barrelfish kernel. No interrupts, other than the interprocessor in-
terrupt when required, were enabled and no tasks other than the
benchmark were running. Every benchmark was repeated 1,000,000
times, the aggregate measured by the processor’s cycle counter, and
the average taken.

3.1 IPI latency
To learn more about the communication latencies within a modern
PC, we measured the interprocessor interrupt (IPI) latency between
cores in our test systems. IPI is one example of direct communi-
cation between cores, and can be important for OS messaging and
synchronisation operations.

IPI roundtrip latency was measured using IPI ping-pong. In-
cluded in the total number of ticks is the code overhead needed to
send the IPI and to acknowledge the last interrupt in the APIC. For
our measurements, this overhead is not relevant, because we are
interested in the differences rather than absolute latencies.

We measured the various IPI latencies on our two systems; the
results are shown in Tables 1 and 2. As expected, sending an IPI
between two cores on the same socket is faster than sending to a
different socket, and sending an IPI to a core on the same die (in
the Intel case) is the fastest operation. The differences are of the

Roundtrip Latency
Ticks µ sec

Same Die 1096 0.41
Same Socket 1160 0.43
Different Socket 1265 0.47

Table 1. IPI latencies on the Intel system

Roundtrip Latency
Ticks µ sec

Same Socket 794 0.28
Different Socket 879 0.31

Table 2. IPI latencies on the AMD system

order of 10–15%. These may be significant, but it seems plausible
that a simple OS abstraction on this hardware that treats all cores
the same will not suffer severe performance loss over one that is
aware of the interconnect topology.

3.2 Memory hierarchy
Modern multicore systems often have CPU-local memory, to re-
duce memory contention and shared bus load. In such NUMA sys-
tems, it is possible to access non-local memory, and these accesses
are cache-coherent, but they require significantly more time than
accesses to local memory.

We measured the differences in memory access time from the
four cores on our AMD-based system. Each socket in this system
is connected to two banks of local memory while the other two
banks are accessed over the HyperTransport bus between the two
sockets. Our system has 8 gigabytes of memory installed evenly
across the four available memory banks. The benchmark accesses
memory within two gigabyte regions to measure its the latency. The
memory regions were accessed through uncached mappings, and
were touched before starting to prime the TLB. This benchmark
was executed on all four cores.

Table 3 shows the results as average latencies per core and mem-
ory region. As can be seen, the differences are significant. We
also ran the same benchmark on the Intel-based SMP system. As
expected, the latencies were the same (299 cycles) for every core.

Memory access is one case where current hardware shows sub-
stantial diversity, and not surprisingly is therefore where most of
the current scalability work on commodity operating systems has
focused.

3.3 Device access
In systems (such as our AMD machine) with more of a network-
like interconnect, the time to access devices depending on core.
Modern systems, such as our AMD machine, have more than one
PCI root complex; cores near the root complex have faster access to

Memory region Core 0 Core 1 Core 2 Core 3
0–2GB 192 192 319 323
2–4GB 192 192 319 323
4–6GB 323 323 191 192
6–8GB 323 323 191 192

Table 3. Memory access latencies (in cycles) on the AMD system
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Memory Models: Java

• Java has a formally defined memory model 

• Between multiple threads: 
• Changes to a field made by one thread are visible to other threads if: 

• The writing thread has released a synchronisation lock, and that same lock has 
subsequently been acquired by the reading thread (writes with lock held are atomic to other 
locked code) 

• If a thread writes to a field declared volatile, that write is done atomically, and 
immediately becomes visible to other threads 

• A newly created thread sees the state of the system as if it had just acquired a 
synchronisation lock that had just been released by the creating thread 

• When a thread terminates, its writes complete and become visible to other threads 

• Access to fields is atomic 
• i.e., you can never observe a half-way completed write, even if incorrectly synchronised 

• Except for long and double fields, for which writes are only atomic if field is volatile, or 
if a synchronisation lock is held 

• Within a thread: actions are seen in program order
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Java Language Specification, Chapter 17 
http://docs.oracle.com/javase/specs/jls/se7/jls7.pdf
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Memory Models: Others

• Java is unusual in having such a clearly-specified memory model 
• Other languages are less well specified, running the risk that new processor 

designs can subtly break previously working programs 

• C and C++ have historically had very poorly specified memory models – latest 
versions of standards address this, but not widely implemented 

• Rust does not (yet) have a fully specified memory model 
• Recognised as a limitation – research efforts underway to fix this 

• Complicated by multiplicity of reference types and unsafe code
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Concurrency, Threads, and Locks

• Operating systems expose concurrency via 
processes and threads 
• Processes are isolated with separate memory areas 

• Threads share access to a common pool of memory 

• The processor/language memory models specify 
how concurrent access to shared memory works 
• e.g., synchronise by explicitly locking critical sections 

• synchronized methods and statements in Java 

• pthread_mutex_lock()/pthread_mutex_unlock() 

• Limited guarantees about unlocked concurrent access 
to shared memory
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Limitations of Lock-based Concurrency

• Major problems with lock-based concurrency: 
• Difficult to define a memory model that enables good performance, while 

allowing programmers to reason about the code 

• Difficult to ensure correctness when composing code 
• Difficult to enforce correct locking 

• Difficult to guarantee freedom from deadlocks 

• Failures are silent – errors tend to manifest only under heavy load 

• Balancing performance and correctness difficult – easy to over- or under-lock 
systems
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Composition of Lock-based Code

• Correctness of small-scale code using locks can be ensured by careful coding  
(at least in theory) 

• A more fundamental issue: lock-based code does not compose to larger scale 
• Assume a correctly locked bank account class, with 

methods to credit and debit money from an account 

• Want to take money from a1 and move it to a2,  
without exposing an intermediate state where  
the money is in neither account 

• Can’t be done without locking all other access  
to a1 and a2 while the transfer is in progress 

• The individual operations are correct, but the combined operation is not 

• This is lack of abstraction a limitation of the lock-based concurrency model, and 
cannot be fixed by careful coding 

• Locking requirements form part of the API of an object
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a1.debit(v)
a2.credit(v)

Preemption exposes 
intermediate state
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Alternative Concurrency Models

• Concurrency increasingly important 
• Multicore systems now ubiquitous 

• Asynchronous interactions between software and hardware devices 

• Threads and synchronisation primitives problematic 

• Are there alternatives that avoid these issues? 
• Transactions 

• Message passing
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Managing Concurrency 
Using Transactions

!11

• Programming model 

• Integration into Haskell 

• Integration into other languages 

• Discussion
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Transactions for Managing Concurrency

• An alternative to locking: use atomic transactions to manage 
concurrency 
• A program is a sequence of concurrent atomic actions 

• Atomic actions succeed or fail in their entirety, and 
intermediate states are not visible to other threads 

• The runtime must ensure actions have the usual ACID properties: 
• Atomicity – all changes to the data are performed, or none are 

• Consistency – data is in a consistent state when a transaction starts, and when it ends 

• Isolation – intermediate states of a transaction are invisible to other transactions 

• Durability – once committed, results of a transaction persist 

• Advantages: 
• Transactions can be composed arbitrarily, without affecting correctness 

• Avoid deadlock due to incorrect locking, since there are no locks
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atomic {
  a1.debit(v)
  a2.credit(v)
}
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Programming Model

• Simple programming model: 
• Blocks of code can be labelled atomic {…} 

• Run concurrently and atomically with respect to every other atomic {…} 
blocks – controls concurrency and ensures consistent data structures 

• Implemented via optimistic synchronisation 
• A thread-local transaction log is maintained, records every memory read and 

write made by the atomic block 

• When an atomic block completes, the log is validated to check that it has seen 
a consistent view of memory 

• If validation succeeds, the transaction commits its changes to memory; if not, 
the transaction is rolled-back and retried from scratch 

• Progress may be slow if conflicting transactions cause repeated validation 
failures, but will eventually occur
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Programming Model – Consequences

• Transactions may be re-run automatically, if their transaction log fails 
to validate 

• Places restrictions on transaction behaviour: 
• Transactions must be referentially transparent – produce the same answer 

each time they’re executed 

• Transactions must do nothing irrevocable: 

• Might launch the missiles multiple times, if it gets re-run due to validation failure caused by 
doMoreStuff() 

• Might accidentally launch the missiles if a concurrent thread modifies n or k while the 
transaction is running (this will cause a transaction failure, but too late to stop the launch) 

• These restrictions must be enforced, else we trade hard-to-find locking bugs for 
hard-to-find transaction bugs
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atomic(n, k) {
  doSomeStuff()
  if (n > k) then launchMissiles();
  doMoreStuff();
}
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Controlling I/O

• Unrestricted I/O breaks transaction isolation 
• Reading and writing files 

• Sending and receiving data over the networks 

• Taking mouse or keyboard input; changing the display 

• Require language control of when I/O is performed 
• Remove global functions to perform I/O from the standard library 

• Add an I/O context object, local to main(), passed explicitly to functions that 
need to perform I/O 
• Compare sockets, that behave in this manner, with file I/O that typically does not 

• I/O functions (e.g., printf() and friends) then become methods on the I/O context object 

• The I/O context is not passed to transactions, so they cannot perform I/O 

• Example: the IO monad in Haskell
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Controlling Side Effects

• Code that has side effects must be controlled 
• Pure and referentially transparent functions can be executed normally 

• Functions that only perform memory actions can be executed normally, 
provided transaction log tracks the memory actions and validates them 
before the transaction commits – and can potentially roll them back 
• A memory action is an operation that manipulates data on the heap, that could be seen by 

other threads 

• Tracking memory actions can be done by language runtime (STM; software transactional 
memory), or via hardware enforced transactional memory behaviour and rollback 

• Similar principle as controlling I/O 
• Disallow unrestricted heap access – only see data in transaction context 

• Pass transaction context explicitly to transactions; this has operations to 
perform transactional memory operations, and rollback if the transaction fails to 
commit 

• Very similar to the state monad in Haskell
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Monadic STM Implementation (1)

• Monads → way to control side-effects in functional languages 
• A monad M a describes an action (i.e., a function) that, when executed, 

produces a result of type a performed in the context M 
• Along with rules for chaining operations in that context 

• A common use is for controlling I/O operations: 
• The putChar function takes a character, operates on the IO 

context to add the character, and returns nothing 

• The getChar operates on the IO context to return a character 

• The main function has an IO context, that wraps and performs other actions 

• The definition of the I/O monad type ensures that a function that is not passed 
the IO context cannot perform I/O operations 

• One part of a software transactional memory implementation: ensure type of 
the atomic {…} function does not allow it to be passed an IO context, hence 
preventing I/O
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putChar :: Char -> IO ()
getChar :: IO Char
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Monadic STM Implementation (2)

• How to track side-effecting memory actions?  
• Define an STM monad to wrap transactions 

• Based on the state monad; manages side-effects via a TVar type 
• The newTVar function takes a value of type a,  

returns a new TVar to hold the value, wrapped 
in an STM monad 

• readTVar takes a TVar and returns an STM monad; when performed this returns the value 
of that TVar; writeTVar function takes a TVar and a value, returns an STM monad that 
can validate the transaction and commit the value to the TVar 

• The atomic {…} function operates in an STM 
context and returns an IO context that performs  
the operations needed to validate and commit the transaction 
• The newTVar, readTVar, and writeTVar functions need an STM action, and so can only 

run in the context of an atomic block that provides such an action 

• I/O is prohibited within the transaction, since operations in atomic {…} don’t have access 
to the I/O context
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newTVar   :: a -> STM (TVar a) 
readTVar  :: TVar a -> STM a 
writeTVar :: TVar a -> a -> STM ()

atomic :: STM a -> IO a
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Integration into Haskell

• Transactional memory is a good fit with Haskell  
• Pure functions and monads ensure transaction semantics are preserved 

• I/O and side-effects contained in STM monad of an atomic {…} block 
• The TVar implementation is responsible for tracking side effects 

• The atomic {…} block validates, then commits the transaction (by returning an IO monad 
action to perform the transaction) 

• Untracked I/O or side-effects cannot be performed within an atomic {…} 
block, since there is no way to access the IO monad directly 
• There is no IO monad in scope within the transaction, so code requiring one will not compile 

• A TVar requires an STM monad, but these are only available in an atomic {…} block;  
can’t update a TVar outside a transaction, so can’t break atomicity guidelines – Haskell 
doesn’t allow unrestricted heap access via pointers, so can’t subvert
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Integration into Other Languages

• STM in Haskell is very powerful – but relies on the type system to 
ensure safe composition and retry 

• Integration into mainstream languages is difficult 
• Most languages cannot enforce use of pure functions 

• Most languages cannot limit the use of I/O and side effects 

• Transaction memory can be used without these, but requires programmer 
discipline to ensure correctness – and has silent failure modes 

• Unclear if the transactional approach generalises to other languages
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Further Reading

• Is transactional memory a realistic technique?  
• Assumption: shared memory system, doesn't work with  

distributed and networked systems – is this true? 

• Concurrent Haskell: 
• Monadic IO; do notation; IORefs; spawning threads 

• Type system separates state and stateless computation  

• The STM interface 

• Do its requirements for a purely functional language, 
with controlled I/O, restrict it to being a research toy? 

• How much benefit can be gained from transactional 
memory in more traditional languages?
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Composable Memory Transactions
By Tim Harris, Simon Marlow, Simon Peyton Jones, and Maurice Herlihy

Abstract
Writing concurrent programs is notoriously difficult and 
is of increasing practical importance. A particular source 
of concern is that even correctly implemented concurrency 
abstractions cannot be composed together to form larger 
abstractions. In this paper we present a concurrency model, 
based on transactional memory, that offers far richer com-
position. All the usual benefits of transactional memory are 
present (e.g., freedom from low-level deadlock), but in addi-
tion we describe modular forms of blocking and choice that 
were inaccessible in earlier work.

1. INTRODUCTION
The free lunch is over.25 We have been used to the idea that 
our programs will go faster when we buy a next- generation 
processor, but that time has passed. While that next-
 generation chip will have more CPUs, each individual CPU 
will be no faster than the previous year’s model. If we want 
our programs to run faster, we must learn to write parallel 
programs.

Writing parallel programs is notoriously tricky. Main-
stream lock-based abstractions are difficult to use and they 
make it hard to design computer systems that are reliable 
and scalable. Furthermore, systems built using locks are dif-
ficult to compose without knowing about their internals.

To address some of these difficulties, several research-
ers (including ourselves) have proposed building program-
ming language features over software transactional memory 
(STM), which can perform groups of memory operations 
atomically.23 Using transactional memory instead of locks 
brings well-known advantages: freedom from deadlock and 
priority inversion, automatic roll-back on exceptions or tim-
eouts, and freedom from the tension between lock granular-
ity and concurrency.

Early work on software transactional memory suffered 
several shortcomings. Firstly, it did not prevent transactional 
code from bypassing the STM interface and accessing data 
directly at the same time as it is being accessed within a trans-
action. Such conflicts can go undetected and prevent transac-
tions executing atomically. Furthermore, early STM systems 
did not provide a convincing story for building operations 
that may block—for example, a shared work-queue support-
ing operations that wait if the queue becomes empty.

Our work on STM-Haskell set out to address these prob-
lems. In particular, our original paper makes the following 
contributions:

We re-express the ideas of transactional memory in the 
setting of the purely functional language Haskell 
(Section 3). As we show, STM can be expressed particu-
larly elegantly in a declarative language, and we are able 
to use Haskell’s type system to give far stronger guaran-

tees than are conventionally possible. In particular, we 
guarantee “strong atomicity”15 in which transactions 
always appear to execute atomically, no matter what 
the rest of the program is doing. Furthermore transac-
tions are compositional: small transactions can be 
glued together to form larger transactions.
We present a modular form of blocking (Section 3.2). 
The idea is simple: a transaction calls a retry opera-
tion to signal that it is not yet ready to run (e.g., it is try-
ing to take data from an empty queue). The programmer 
does not have to identify the condition which will 
enable it; this is detected automatically by the STM.
The retry function allows possibly blocking transac-
tions to be composed in sequence. Beyond this, we also 
provide orElse, which allows them to be composed as 
alternatives, so that the second is run if the first retries 
(see Section 3.4). This ability allows threads to wait for 
many things at once, like the Unix select system 
call—except that orElse composes, whereas select 
does not.

Everything we describe is fully implemented in the Glas-
gow Haskell Compiler (GHC), a fully fledged optimizing 
compiler for Concurrent Haskell; the STM enhancements 
were incorporated in the GHC 6.4 release in 2005. Further 
examples and a programmer-oriented tutorial are also 
available.19

Our main war cry is compositionality: a programmer can 
control atomicity and blocking behavior in a modular way 
that respects abstraction barriers. In contrast, lock-based 
approaches lead to a direct conflict between abstraction and 
concurrency (see Section 2). Taken together, these ideas offer 
a qualitative improvement in language support for modular 
concurrency, similar to the improvement in moving from as-
sembly code to a high-level language. Just as with assembly 
code, a programmer with sufficient time and skills may ob-
tain better performance programming directly with low-level 
concurrency control mechanisms rather than transactions—
but for all but the most demanding applications, our higher-
level STM abstractions perform quite well enough.

This paper is an abbreviated and polished version of an 
earlier paper with the same title.9 Since then there has been 
a tremendous amount of activity on various aspects of trans-
actional memory, but almost all of it deals with the question 
of atomic memory update, while much less attention is paid 
to our central concerns of blocking and synchronization be-
tween threads, exemplified by retry and orElse. In our 
view this is a serious omission: locks without condition vari-
ables would be of limited use.

Transactional memory has tricky semantics, and the 
original paper gives a precise, formal semantics for transac-
tions, as well as a description of our implementation. Both 
are omitted here due to space limitations.
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Message Passing Systems
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• Actors and message passing 

• Ensuring safety: 
• Immutable data 

• Control of ownership
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Message Passing Systems

• System is structured as a set of communicating 
processes, actors, with no shared mutable state 

• All communication via exchange of messages 
• Messages are generally required to be immutable – data 

conceptually copied between processes 

• Some systems use linear types to ensure messages are not 
referenced after they are sent, allowing mutable data to be 
safely transferred  

• Implementation 
• Implementation within a single system usually built with shared 

memory and locks, passing a reference to the message – rely 
on correct locking of message passing implementation 

• Trivial to distribute, by sending the message down a network 
channel – the runtime needs to know about the network, but the 
application can be unaware that the system is distributed
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Message Handling

• Receivers pattern match against messages 
• Match against message types, not just values 

• Type system can ensure an exhaustive match 

• Messages queued for processing 
• Dispatcher manages a thread pool servicing  

receiver components of the actors 

• Receivers operate in message processing loop – 
single-threaded, with no concern for concurrency  

• Sent messages enqueued for processing by other 
actors
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Types of Message Passing

• Several different message passing system designs: 
• Synchronous vs asynchronous 

• Statically or dynamically typed 

• Direct or indirect message delivery 

• Each has advantages and disadvantages
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Types of Message Passing: Interaction Models

• Message passing can involve rendezvous between sender and 
receiver 
• A synchronous message passing model – sender waits for receiver 

• Alternatively, communication may be asynchronous 
• The sender continues immediately after sending a message 

• Message is buffered, for later delivery to the receiver 

• Synchronous rendezvous can be simulated by waiting for a reply
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Types of Message Passing: Typed Communication

• Statically-typed communication 
• Explicitly define the types of message that can be transferred 

• Compiler checks that receiver can handle all messages it can receive –
 robustness, since a receiver is guaranteed to understand all messages 

• Dynamically-typed communication 
• Communication medium conveys any time of message; receiver uses pattern 

matching on the received message types to determine if it can respond to the 
messages 

• Potentially leads to run-time errors if a receiver gets a message that it doesn’t 
understand
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Types of Message Passing: Naming

• Are messages sent between named processes or indirectly via 
channels? 
• Some systems directly send messages to actors (processes), each of which 

has its own mailbox 

• Others use explicit channels, with messages being sent indirectly to a mailbox 
via a channel 

• Explicit channels require more plumbing, but the extra level of indirection 
between sender and receiver may be useful for evolving systems 

• Explicit channels are a natural place to define a communications protocol for 
statically typed messages
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Implementations

• Message passing starting to see wide deployment, with two widely 
used architectures: 
• Dynamically typed with direct delivery 

• Erlang programming language (https://www.erlang.org/) 

• Scala programming language (http://www.scala-lang.org) and Akka library (http://akka.io) 

• Dynamically typed – any type of message may be sent to any receiver 

• Messages sent directly to named actors, not via channels 

• Both provide transparent distribution of processes in a networked system 

• Statically typed, with explicit channels 
• Rust programming language (https://www.rust-lang.org/) 

• Use asynchronous statically typed messages passed via explicit channels
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Example: Scala+Akka
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import akka.actor.Actor
import akka.actor.ActorSystem
import akka.actor.Props

class HelloActor extends Actor {
  def receive = {
    case "hello" => println("hello back at you")
    case _       => println("huh?")
  }
}

object Main extends App {
  // Initialise actor runtime
  val runtime = ActorSystem("HelloSystem")

  // Create an actor, running concurrently
  val helloActor = runtime.actorOf(Props[HelloActor], name = "helloactor")

  // Send it some messages
  helloActor ! "hello"
  helloActor ! "buenos dias"
}

The actor comprises a receive loop that reacts 
to messages as they’re received 

Complete program is a collection of actors that 
exchange messages
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Example: Rust
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use std::sync::mpsc::channel; 
use std::thread; 

fn main() { 
  let (tx, rx) = channel(); 

  thread::spawn(move|| { 
    let _ = tx.send(42); 
  }); 

  match rx.recv() { 
    Ok(value)  => { 
      println!(“Got {}”, value); 
    } 
    Err(error) => { 
      // An error occurred… 
    } 
  } 
}
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Example: Rust

!32

use std::sync::mpsc::channel; 
use std::thread; 

fn main() { 
  let (tx, rx) = channel(); 

  thread::spawn(move|| { 
    let _ = tx.send(42); 
  }); 

  match rx.recv() { 
    Ok(value)  => { 
      println!(“Got {}”, value); 
    } 
    Err(error) => { 
      // An error occurred… 
    } 
  } 
}

main()
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Example: Rust
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use std::sync::mpsc::channel; 
use std::thread; 

fn main() { 
  let (tx, rx) = channel(); 

  thread::spawn(move|| { 
    let _ = tx.send(42); 
  }); 

  match rx.recv() { 
    Ok(value)  => { 
      println!(“Got {}”, value); 
    } 
    Err(error) => { 
      // An error occurred… 
    } 
  } 
}

main()

rx

tx
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Example: Rust
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use std::sync::mpsc::channel; 
use std::thread; 

fn main() { 
  let (tx, rx) = channel(); 

  thread::spawn(move|| { 
    let _ = tx.send(42); 
  }); 

  match rx.recv() { 
    Ok(value)  => { 
      println!(“Got {}”, value); 
    } 
    Err(error) => { 
      // An error occurred… 
    } 
  } 
}

main()

rx

tx
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Example: Rust
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use std::sync::mpsc::channel; 
use std::thread; 

fn main() { 
  let (tx, rx) = channel(); 

  thread::spawn(move|| { 
    let _ = tx.send(42); 
  }); 

  match rx.recv() { 
    Ok(value)  => { 
      println!(“Got {}”, value); 
    } 
    Err(error) => { 
      // An error occurred… 
    } 
  } 
}

main()

rx
tx

anonymous closure

42

|args| {
    code
}

Define a closure that borrows its environment:

move |args| {
    code
}

Define a closure that takes ownership of its environment:
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Example: Rust
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use std::sync::mpsc::channel; 
use std::thread; 

fn main() { 
  let (tx, rx) = channel(); 

  thread::spawn(move|| { 
    let _ = tx.send(42); 
  }); 

  match rx.recv() { 
    Ok(value)  => { 
      println!(“Got {}”, value); 
    } 
    Err(error) => { 
      // An error occurred… 
    } 
  } 
}

main()

rx
tx

anonymous closure

42
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Trade-offs

• The two approaches behave quite differently: 
• The Scala+Akka model allows weakly coupled processes to communicate via 

asynchronous and dynamically typed messages: 
• Expressive, flexible, and extensible actor model 

• Robust framework for error handling via separate processes 

• Relative ease of upgrading running systems via dynamic actor insertion 

• Checking happens at run time, so guarantees of robustness are probabilistic 

• Rust’s statically typed message passing provides compile-time checking that a 
process can respond to messages 
• But, requires more plumbing to connect channels 

• Has more explicit error handling 

• The usual static vs. dynamic typing debate
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Avoiding Race Conditions

• Runtime ensures a receiver processes messages sequentially, but it 
is part of a concurrent system 
• Sending and receiving actors may run concurrently 

• Message data is shared between sender and receiver 

• Important to ensure message data is immutable 
• Erlang ensures this in the language → data is immutable 

• Scala+Akka requires programmer discipline → potential race conditions if 
message data modified after message sent 

• Or, at least, never mutated once the message has been sent…
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Ownership Transfer

• Alternative to immutability: type system ensures ownership of 
message data is transferred 

• A variable with linear type must be used only once; it goes out of 
scope after use 

• Potentially useful when sharing mutable data between threads 
• Implement sharing via a send function that takes a linear type for the data to 

be shared 

• Message data consumed by send function and receiver, so can’t be used by 
the sender after message has been sent 

• Data doesn’t need to be locked → can only be used by one thread at once 

• The compiler enforces that linear data is not shared between 
threads
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Ownership Transfer: Example

!40

use std::sync::mpsc::channel; 
use std::thread; 

struct State { 
    x : i32, 
    y : i32 
} 

fn main() { 
  let (tx, rx) = channel(); 

  thread::spawn(move|| { 
    let mut message = Box::new(State {x : 4, y : 2}); 

    let _ = tx.send(message); 

    message.x = 6; 
  }); 

  let result = rx.recv().unwrap(); 
} 

% rustc test.rs 
test.rs:15:5: 15:18 error: use of moved value: `message` [E0382] 
test.rs:15     message.x = 6; 
              ^~~~~~~~~~~~~

Race condition avoided – can’t use data after send()
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Efficiency of Message Passing

• Assuming immutable message or linear types, 
message passing has efficient implementation 
• Copy message data in distributed systems 

• Pass pointer to data in shared memory systems 

• Neither case needs to consider shared access to 
message data 

• Garbage collected systems often allocate 
messages from a shared exchange heap 
• Collected separately from per-process heaps 

• Expensive to collect, since data in exchange heap 
owned by multiple threads – need synchronisation 

• Per-process heaps can be collected independently and 
concurrently – ensures good performance
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Singularity communication mechanisms and kernel API do 
not allow pointers to be passed from one SIP to another. 
Taken together, these mechanisms ensure the sealed 
process invariants, even for SIPs executing in the same 
address space. 

A SIP starts with a single thread, enough memory to hold 
its code, an initial set of channel endpoints, and a small 
heap. It obtains additional memory by calling the kernel@s 
page manager, which returns new, unshared pages. These 
pages need not be adjacent to the SIP@s existing address 
space, since safe programming languages do not require 
contiguous address spaces.  

Because user code is verified safe, several SIPs can share 
the same address space. Moreover, SIPS can safely 
execute at the same privileged level as the kernel. 
Eliminating these hardware protection barriers reduces the 
cost to create and switch contexts between SIPs. 

Low cost, in turn, makes it practical to use SIPs as a fine-
grain isolation and extension mechanism. With software 
isolation, system calls and inter-process communication 
execute significantly faster (30L500%) and 
communication-intensive programs run up to 33% faster 
than on hardware-protected operating systems. Aiken et al. 
[2] present an extensive comparison of hardware and 
software isolation in Singularity.  

SIPs are created from a signed manifest [39]. The manifest 
describes the SIP@s code, resources, and dependencies on 
the kernel and on other SIPs. All code within a SIP must 
be listed in the manifest. Singularity SIP manifests are 
entirely declarative. They describe the desired state of the 
application configuration after an installation, not the 
algorithm for installing the application. This frees the OS 
to employ consistent algorithms to update system 
configuration and to verify that an update has the desired 
effect. 

Upon creation, SIPs receive an immutable security 
principal name based on their manifest. Because SIPs are 
sealed, security policies can place high confidence that a 
SIP will not be subverted by third party code. Wobber et 
al. [51] describe how the Singularity security architecture 
builds robust security policies on the foundation of sealed 
processes. 

3.3. Light-Weight Language Runtime 
Unlike previous systems that relied on language safety 
(e.g., Smalltalk, Cedar/Mesa, etc.), Singularity SIPs 
execute autonomously. Each SIP contains its own memory 
pages, language runtime, and garbage collector (GC). 
Moreover, even communicating SIPs need not share a 
common runtime or GC.  

Because of the state isolation invariant, the runtime and 
garbage collector can employ data layout and GC 
algorithms appropriate for code in a particular SIP. 
Experience and the large number of published garbage 
collection algorithms strongly suggest that no one garbage 
collector is appropriate for all applications [17]. 
Singularity@s sealed process architecture decouples the 
algorithm, data structures, and execution of each SIP@s 
garbage collector. Each SIP can select a GC to 
accommodate its objectives. Moreover, the GC in a SIP 
can run without coordinating with any other SIP.  

A light-weight, customizable runtime is an integral part of 
Singularity@s implementation of the closed process 
architecture because it allows developers to use SIPs 
liberally without incurring large memory overheads. 
Because programs are compiled to native code at install 
time, Singularity@s language runtime can be quite small. 
The language runtime includes a GC, exception handling 
mechanisms, and a limited amount of reflection to 
determine the type of objects at runtime. Above the 
language runtime sits the base class library. Because SIPs 
are sealed, Bartok can reduce the footprint of the runtime 
and base class library even further by removing unused 
code, a process called \tree shaking] [16]. 

3.4. Channels 
Singularity SIPs communicate exclusively by sending 
messages over channels [14]. Channels enforce stronger 
semantics than the low-level IPC mechanisms of other 
systems. Channel communication is governed by statically 
verified channel contracts, which describe messages, 
message field types, and valid message interaction 
sequences as finite state machines. 

Messages are tagged collections of values or message 
blocks in the Exchange Heap. Object references are 
excluded from messages by the type system. Messages are 
ownership is transferred from a sending SIP to a receiving 
SIP during communication. 

Endpoints and message data reside in a special set of pages 
known as the Exchange Heap. The Exchange Heap is not 
garbage collected, but instead uses reference counts to 

Exchange Heap

Process 1 Process 2 Process 3

 
Figure 2. The Exchange Heap. [G. Hunt et al., Sealing OS processes to improve dependability and safety. 

In Proc. EuroSys 2007, Lisbon, Portugal. DOI 10.1145/1272996.1273032]
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Summary

• Message passing as an alternative concurrency mechanism 

• Increasingly popular 
• Erlang, Scala+Akka (or Java+Akka…) 

• Rust 

• Go, ZeroMQ, etc. – unchecked message passing 

• Easy to reason about, simple programming model 
• Provided data is immutable, or ownership is tracked
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Summary
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• Concurrency and memory models 

• Transactions 

• Message Passing
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