
Colin Perkins | https://csperkins.org/ | Copyright © 2019 | This work is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International License. To
view a copy of this license, visit http://creativecommons.org/licenses/by-nd/4.0/ or send a letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.

Coroutines and Asynchronous Programming

Advanced Systems Programming (M)
Lecture 7

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/
http://creativecommons.org/licenses/by-nd/4.0/

Colin Perkins | https://csperkins.org/ | Copyright © 2019

Lecture Outline

• Motivation

• async and await

• Design patterns for asynchronous code

• Cooperative Multitasking

!2

https://csperkins.org/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/

Colin Perkins | https://csperkins.org/ | Copyright © 2019

Motivation

!3

• Blocking I/O

• Multi-threading → overheads

• select() → complex

• Coroutines and asynchronous code

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2019

Blocking I/O

• I/O operations are slow
• Need to wait for the network, disk, etc.

• Operations can take millions of cycles

• Blocks execution until I/O completes
• Blocks the user interface

• Prevents other computations

• Desirable to perform I/O concurrently to other operations
• To overlap I/O and computation

• To allow multiple I/O operations to occur at once

!4

extern crate reqwest;

fn main() {
 match reqwest::get("https://www.rust-lang.org/") {
 Ok(res) => {
 println!("Status: {}", res.status());
 println!("Headers:\n{:?}", res.headers());
 },
 Err(_) => {
 println!("failed");
 }
 }
}

fn read_exact<T: Read>(input: &mut T, buf: &mut [u8]) -> Result<(), std::io::Error> {
 let mut cursor = 0;
 while cursor < buf.len() {
 cursor += input.read(&mut buf[cursor..])?;
 }
}

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2019

Concurrent I/O using Multiple Threads (1/2)

• Move blocking operations into separate threads
• Spawn dedicated threads to perform I/O operations concurrently

• Re-join main thread/pass back result as message once complete

• Advantages:
• Simple

• No new language or runtime features

• Don’t have to change the way we do I/O

• Do have to move I/O to a separate thread, communicate and synchronise

• Concurrent code can run in parallel if the system has multiple cores

• Safe, if using Rust, due to ownership rules preventing data races

!5

fn main() {
 …
 let (tx, rx) = channel();
 thread::spawn(move|| {
 …perform I/O…
 tx.send(results);
 });
 …
 let data = rx.recv();
 …
}

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2019

Concurrent I/O using Multiple Threads (2/2)

• Move blocking operations into separate threads
• Spawn dedicated threads to perform I/O operations concurrently

• Re-join main thread/pass back result as message once complete

• Disadvantages:
• Complex

• Requires partitioning the application into multiple threads

• Resource heavy
• Each thread has its own stack

• Context switch overheads

• Parallelism offers limited benefits for I/O
• Threads performing I/O often spend majority of time blocked

• Wasteful to start a new thread that spends most of its time doing nothing

!6

fn main() {
 …
 let (tx, rx) = channel();
 thread::spawn(move|| {
 …perform I/O…
 tx.send(results);
 });
 …
 let data = rx.recv();
 …
}

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2019

Non-blocking I/O and Polling (1/3)

• Threads provide concurrent I/O abstraction, but with high overhead
• Multithreading can be inexpensive → Erlang

• But has high overhead on general purpose operating systems
• Higher context switch overhead due to security requirements

• Higher memory overhead due to separate stack

• Higher overhead due to greater isolation, preemptive scheduling

• Limited opportunities for parallelism with I/O bound code
• Threads can be scheduled in parallel, but to little benefit unless CPU bound

• Alternative: multiplex I/O onto a single thread
• The operating system kernel runs concurrently to user processes – and handles I/O

• Provide a mechanism to trigger non-blocking I/O and poll the kernel for I/O events – all within a
single application thread
• Start an I/O operation

• Periodically check for progress – handle incoming data/send next chunk/handle errors

!7

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2019

Non-blocking I/O and Polling (2/3)

• Mechanisms for polling I/O for readiness
• Berkeley Sockets API select() function in C

• Or higher-performance, but less portable, variants such as epoll (Linux/Android), kqueue
(FreeBSD/macOS/iOS), I/O completion ports (Windows)

• Libraries such as libevent, libev, or libuv – common API for such system services

• Rust mio library

• Key functionality:

• Trigger non-blocking I/O operations: read() or write() to files, sockets, etc.

• Poll kernel to check for readable or writeable data, or if errors are outstanding

• Efficient and only requires a single thread, but requires code restructuring to
avoid blocking → complex

!8

https://csperkins.org/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/

Colin Perkins | https://csperkins.org/ | Copyright © 2019

Non-blocking I/O and Polling (3/3)

!9

FD_ZERO(&rfds);
FD_SET(fd1, &rfds);
FD_SET(fd2, &rfds);

tv.tv_sec = 5; // Timeout
tv.tv_usec = 0;

int rc = select(1, &rfds, &wfds, &efds, &tv);
if (rc < 0) {
 … handle error
} else if (rc == 0) {
 … handle timeout
} else {
 if (FD_ISSET(fd1, &rfds)) {
 … data available to read() on fd1
 }
 if (FD_ISSET(fd2, &rfds)) {
 … data available to read() on fd2
 }
 …
}

• Berkeley Sockets API select() function in C

select() polls a set of file descriptors for
their readiness to read(), write(), or to
deliver errors

FD_ISSET() checks particular file descriptor
for readiness after select()

• Low-level API well-suited to C programming; other libraries/languages provide
comparable features

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2019

Coroutines and Asynchronous Code

• Non-blocking I/O can be highly efficient
• Single thread handles multiple I/O sources at once

• Network sockets

• File descriptors

• Or application can partition I/O sources across a thread pool

• But – requires significant re-write of application code
• Non-blocking I/O

• Polling of I/O sources

• Re-assembly of data

• Can we get the efficiency of non-blocking I/O in a more usable manner?

!10

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2019

Coroutines and Asynchronous Code

• Provide language and run-time support for I/O multiplexing on a single thread, in
a more natural style

• Runtime schedules async functions on a thread pool, yielding to other code on
await!() calls → low-overhead concurrent I/O

!11

async fn read_exact<T: AsyncRead>(input: &mut T, buf: &mut [u8]) -> Result<(), std::io::Error> {
 let mut cursor = 0;
 while cursor < buf.len() {
 cursor += await!(input.read(&mut buf[cursor..]))?;
 }
}

fn read_exact<T: Read>(input: &mut T, buf: &mut [u8]) -> Result<(), std::io::Error> {
 let mut cursor = 0;
 while cursor < buf.len() {
 cursor += input.read(&mut buf[cursor..])?;
 }
}

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2019

async and await

!12

• Coroutines and asynchronous code

• Runtime support requirements

• Benefits and trade-offs

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2019

Programming Model

!13

• Structure I/O-based code as a set of concurrent coroutines that
accept data from I/O sources and yield in place of blocking

What is a coroutine?

def countdown(n):
 while n > 0:
 yield n
 n -= 1

>>> for i in countdown(5):
... print i,
...
5 4 3 2 1
>>>

A generator yields a sequence of values:

A function that can repeatedly run, yielding a sequence of values, while maintaining internal state

Calling countdown(5) produces a generator object. The for loop protocol calls next() on that
object, causing it to execute until the next yield statement and return the yielded value.
→ Heap allocated; maintains state; executes only in response to external stimulus

Based on: http://www.dabeaz.com/coroutines/Coroutines.pdf

https://csperkins.org/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/

Colin Perkins | https://csperkins.org/ | Copyright © 2019

Programming Model

!14

What is a coroutine?

def grep(pattern):
 print "Looking for %s" % pattern
 while True:
 line = (yield)
 if pattern in line:
 print line

>>> g = grep("python")  
>>> g.next()
Looking for python  
>>> g.send("Yeah, but no, but yeah, but no")  
>>> g.send("A series of tubes")  
>>> g.send("python generators rock!")  
python generators rock!  
>>>

A coroutine more generally consumes and yields values:

Based on: http://www.dabeaz.com/coroutines/Coroutines.pdf

The coroutines executes in response to
next() or send() calls

Calls to next() make it execute until it
next call yield to return a value

Calls to send() pass a value into the
coroutine, to be returned by (yield)

• Structure I/O-based code as a set of concurrent coroutines that
accept data from I/O sources and yield in place of blocking

https://csperkins.org/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://www.dabeaz.com/coroutines/Coroutines.pdf

Colin Perkins | https://csperkins.org/ | Copyright © 2019

Programming Model

!15

What is a coroutine?

A coroutine is a function that executes concurrently to – but not in parallel with – the rest of the code

It is event driven, and can accept and return values

• Structure I/O-based code as a set of concurrent coroutines that
accept data from I/O sources and yield in place of blocking

https://csperkins.org/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/

Colin Perkins | https://csperkins.org/ | Copyright © 2019

Programming Model

• Structure I/O-based code as a set of concurrent coroutines that
accept data from I/O sources and yield in place of blocking
• An async function is a coroutine

• Blocking I/O operations are labelled in the code – await – and cause control to pass to
another coroutine while the I/O is performed

• Provides concurrency without parallelism
• Coroutines operate concurrently, but typically within a single thread

• await passes control to another coroutine, and schedules a later wake-up for when the
awaited operation completes

• Encodes down to a state machine with calls to select(), or similar

• Mimics structure of code with multi-threaded I/O – within a single thread

!16

https://csperkins.org/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/

Colin Perkins | https://csperkins.org/ | Copyright © 2019

async Functions

• An async function is one that can act as a coroutine
• It is executed asynchronously by the runtime

• Widely supported – Python 3, JavaScript, C#, Rust (in progress), …

• Main program must trigger asynchronous execution by the runtime:

• Starts asynchronous polling runtime, runs until specified async function completes

• Runtime drives async functions to completion and handles switching between coroutines

!17

#!/usr/bin/env python3

import asyncio

async def fetch_html(url: str, session: ClientSession) -> str:
 resp = await session.request(method="GET", url=url)
 html = await resp.text()
 return html
…

asyncio.run(async function)

async tag on function
yield → await

But essentially a coroutine

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2019

await Future Results

• An await operation yields from the coroutine
• Triggers an I/O operation – and adds corresponding file descriptor to set polled by the runtime

• Puts the coroutine in queue to be woken by the runtime, when file descriptor becomes ready

• If another coroutine is ready to execute then schedule wake-up once the I/O completes, and
pass control passes to the other coroutine; else runtime blocks until either this, or some other,
I/O operation becomes ready

• At some later time the file descriptor becomes ready and the runtime reschedules the coroutine
– the I/O completes and the execution continues

!18

#!/usr/bin/env python3

import asyncio

async def fetch_html(url: str, session: ClientSession) -> str:
 resp = await session.request(method="GET", url=url)
 html = await resp.text()
 return html
…

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2019

async and await programming model

• Resulting asynchronous code should follow structure of synchronous (blocking)
code:

• Annotations (async, await) indicate asynchrony, context switch points
• Compiler and runtime work together to generate code that can be executed in fragments when

I/O operations occur

!19

async fn read_exact<T: AsyncRead>(input: &mut T, buf: &mut [u8]) -> Result<(), std::io::Error> {
 let mut cursor = 0;
 while cursor < buf.len() {
 cursor += await!(input.read(&mut buf[cursor..]))?;
 }
}

fn read_exact<T: Read>(input: &mut T, buf: &mut [u8]) -> Result<(), std::io::Error> {
 let mut cursor = 0;
 while cursor < buf.len() {
 cursor += input.read(&mut buf[cursor..])?;
 }
}

Requires experimental (“nightly”) Rust compiler – async/await support still evolving

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2019

Runtime Support

• Asynchronous code needs runtime support to execute the coroutines and poll the
I/O sources for activity
• Good support in Python 3 or JavaScript

• The Rust asynchronous runtime is https://tokio.rs – experimental

• An async function that returns data of type T compiles to a regular function that
returns impl Future<Output=T>

• i.e., it returns a Future value that represents a value that will become available later

• The runtime continually calls poll() on Future values until all are Ready

• A future returns Ready when complete

• A future returns Pending when blocked on awaiting some I/O operation

• Calling tokio::run(future) starts the runtime

• Analogous to the Python or JavaScript implementations

!20

pub trait Future {
 type Output;
 fn poll(self: Pin<&mut Self>, lw: &LocalWaker) -> Poll<Self::Output>;
}

pub enum Poll<T> {
 Ready(T),
 Pending,
}

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/
https://tokio.rs

Colin Perkins | https://csperkins.org/ | Copyright © 2019

Design Patterns for
Asynchronous Code

!21

• Compose Future values

• Avoid blocking I/O

• Avoid long-running computations

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2019

Compose Future Values

• async functions should be small, limited scope

• Perform a single well-defined task:
• Read and parse a file

• Read, process, and respond to a network request

• Rust provides combinators that can combine Future values, to
produce a new Future:
• for_each(), and_then(), read_exact(), select()

• Can ease composition of asynchronous functions – but can also obfuscate

!22

https://csperkins.org/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/

Colin Perkins | https://csperkins.org/ | Copyright © 2019

Avoid Blocking Operations

• Asynchronous code multiplexes I/O operations on single thread
• Provides asynchronous aware versions of I/O operations

• File I/O, network I/O (TCP, UDP, Unix sockets)

• Non-blocking, return Future values that interact with the runtime

• Does not interact well with blocking I/O

• A Future that blocks on I/O will block entire runtime

• Programmer discipline required to ensure asynchronous and
blocking I/O are not mixed within a code base
• Including within library functions, etc.

!23

Read → AsyncRead
Write → AsyncWrite

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2019

Avoid Long-running Computations

• Control passing between Future values is explicit
• await calls switch control back to the runtime

• Next runnable Future is then scheduled

• A Future that doesn’t call await, and instead performs some long-running
computation, will starve other tasks

• Programmer discipline required to spawn separate threads for long-
running computations
• Communicate with these via message passing – that can be scheduled within

a Future

!24

https://csperkins.org/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/

Colin Perkins | https://csperkins.org/ | Copyright © 2019

Cooperative Multitasking

!25

• Is asynchronous code a good idea?

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2019

When to use Asynchronous I/O?

• async/await restructure code to efficiently multiplex large numbers
of I/O operations on a single thread
• Assumes each task is I/O bound → many tasks can run concurrently on a

single thread, since each task is largely blocked awaiting I/O

• Superficially similar to blocking code, but must take care to avoid blocking or
long-running computations, emplace enough context switches to avoid other
task starvation

• Isn’t this just cooperative multitasking reimagined?
• Windows 3.1, MacOS System 7

• Manual context switching? (await)

!26

https://csperkins.org/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/

Colin Perkins | https://csperkins.org/ | Copyright © 2019

Blocking Multithreaded I/O

• Do you really need asynchronous I/O?
• Threads are more expensive than async functions, but are not that expensive

– a properly configured modern machine can run thousands of threads
• ~2,200 threads running on the laptop these slides were prepared on, in normal use

• Varnish web cache (https://varnish-cache.org): “it’s common to operate with 500 to 1000
threads minimum” but they “rarely recommend running with more than 5000 threads”

• Unless you’re doing something very unusual you can likely just spawn a thread, or use a
pre-configure thread pool, to perform blocking I/O – communicate using channels
• Even if this means spawning thousands of threads

• Asynchronous I/O can give a performance benefit
• But at the expense of code complexity, context-switching/blocking bugs

• Unclear the benefits are worth the complexity vs. multithreaded code in a modern language

!27

https://csperkins.org/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://varnish-cache.org

Colin Perkins | https://csperkins.org/ | Copyright © 2019

Summary

!28

• Blocking I/O
• Multi-threading → overheads

• select() → complex

• Coroutines and asynchronous code

• Is it worth it?

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

