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Lecture Outline

• Memory Safety  

• Parsing and LangSec 

• Modern Type Systems and Security
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Memory Safety
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Memory Safety in Programming Languages

• A memory safe language is one that ensures 
that the only memory accessed is that owned 
by the program, and that such access is done 
in a manner consistent of the declared type of 
the data 
• The program can access memory through its global 

and local variables, or through explicit references to 
them 

• The program can access heap memory it allocated 
via an explicit reference to that memory 

• All accesses obey the type rules of the language 
• Array bounds are respected 

• Memory cannot be accessed after it’s freed 

• References can only refer to objects of matching type 

• …
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Memory Safe Memory Unsafe

Java, Scala, C#, 
Rust, Go, 

Python, Ruby, 
Tcl, FORTRAN, 

COBOL, 
Modula-2, 

Occam, Erlang, 
Ada, Pascal, 
Haskell, …

C, C++, 
Objective-C
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Memory Unsafe Languages

• What types of memory unsafe behaviour can 
occur in C and C++?
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Memory Unsafe Languages

• What types of memory unsafe behaviour can 
occur in C and C++? 
• Type unsafe allocation

!6

double *d = malloc(sizeof(float));

A call to malloc() does not check if the amount of memory 
allocated corresponds to the size required to store the type 

A memory safe language will require the size of the allocation 
to match the size of the allocated type at compile time 

Operation ought to be “allocate enough memory for an object 
of type T and return a reference-to-T” and not “allocate n 

bytes of memory and return an untyped reference”
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Memory Unsafe Languages

• What types of memory unsafe behaviour can 
occur in C and C++? 
• Type unsafe allocation 

• Use before allocation
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char *buffer;

int rc = recv(fd, buffer, BUFLEN, 0);
if (rc < 0) {
    perror(“Cannot receive”);
} else {
    // Handle data
}

Passes a pointer to the buffer to the recv() function, but forgets 
to malloc() the memory – or assumes it’ll be allocated in recv() 

Memory safe languages require that all references be initialised and 
refer to valid data – good C compilers warn about this too
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Memory Unsafe Languages

• What types of memory unsafe behaviour can 
occur in C and C++? 
• Type unsafe allocation 

• Use before allocation 

• Use after explicit free()
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#include <stdlib.h>
#include <stdio.h>

int main() {
  char *x = malloc(14);
  sprintf(x, "Hello, world!");
  free(x);
  printf("%s\n", x);
}

Accesses memory that has been 
explicitly freed, and hence is no 

longer accessible 

Automatic memory management 
eliminates this class of bug

use std::mem::drop; // free() equivalent

fn main() {
  let x = "Hello".to_string();
  drop(x);
  println!("{}", x);
}
error[E0382]: use of moved value: `x`
 --> test.rs:6:18
  |
5 |   drop(x);
  |        - value moved here
6 |   println!("{}", x);
  |                  ^ value used here after move
  |
  = note: move occurs because `x` has type `std::string::String`, which does not implement the `Copy` trait
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Memory Unsafe Languages

• What types of memory unsafe behaviour can 
occur in C and C++? 
• Type unsafe allocation 

• Use before allocation 

• Use after explicit free() 

• Use after implicit free
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fn foo() -> &i32 {
  let n = 42;
  &n
}
% rustc test.rs 
error[E0106]: missing lifetime specifier
 --> test.rs:1:13
  |
1 | fn foo() -> &i32 {
  |             ^ expected lifetime parameter
  |
  = help: this function's return type contains a borrowed value, but there is no  
  = help: value for it to be borrowed from

int *foo() {
  int n = 42;
  return &n;
}

Return reference to stack 
allocated memory that is used after 

the stack frame has been destroyed 

Automatic memory management 
eliminates this class of bug
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Memory Unsafe Languages

• What types of memory unsafe behaviour can 
occur in C and C++? 
• Type unsafe allocation 

• Use before allocation 

• Use after explicit free() 

• Use after implicit free 

• Use of memory as the wrong type
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char *buffer = malloc(BUFLEN);

int rc = recv(fd, buffer, BUFLEN, 0);
if (rc < 0) {
    …
} else {
    struct pkt *p = (struct pkt *) buffer;
    if (p->version != 1) {
        …
    }
    …
}

Common in C code to see casts from char * buffers to a more specific type  
(e.g., to a struct representing a network packet format) 

Efficient – no copies of memory – but  unsafe since makes assumptions of 
struct layout in memory, size of block being cast 

Memory safe language disallow arbitrary casts – write conversion functions 
instead; eliminates undefined behaviour
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Memory Unsafe Languages

• What types of memory unsafe behaviour can 
occur in C and C++? 
• Type unsafe allocation 

• Use before allocation 

• Use after explicit free() 

• Use after implicit free 

• Use of memory as the wrong type 

• Use of string functions on non-string values
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// Send the requested file
while ((rlen = read(inf, buf, BUFLEN)) > 0) {
  if (send_response(fd, buf, strlen(buf)) == -1) {
    return -1;
  }
}

Strings in C are zero terminated, but read() does not add a 
terminator; buffer overflow results 

Memory safe languages apply string bounds checks – 
runtime exception; safe failure, no undefined behaviour
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Memory Unsafe Languages

• What types of memory unsafe behaviour can 
occur in C and C++? 
• Type unsafe allocation 

• Use before allocation 

• Use after explicit free() 

• Use after implicit free 

• Use of memory as the wrong type 

• Use of string functions on non-string values 

• Heap allocation overflow
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#define BUFSIZE 256
int main(int argc, char *argv[]) {
    char *buf;
    buf = malloc(sizeof(char) * BUFSIZE);
    strcpy(buf, argv[1]);
}

Memory safe languages apply bounds checks to heap 
allocated memory – runtime exception; safe failure, no 

undefined behaviour
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Memory Unsafe Languages

• What types of memory unsafe behaviour can 
occur in C and C++? 
• Type unsafe allocation 

• Use before allocation 

• Use after explicit free() 

• Use after implicit free 

• Use of memory as the wrong type 

• Use of string functions on non-string values 

• Heap allocation overflow 

• Array bounds overflow
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int main(int argc, char *argv[]) {
    char buf[256];
    strcpy(buf, argv[1]);
}

Memory safe languages apply array bounds checks – 
runtime exception; safe failure, no undefined behaviour
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Memory Unsafe Languages

• What types of memory unsafe behaviour can 
occur in C and C++? 
• Type unsafe allocation 

• Use before allocation 

• Use after explicit free() 

• Use after implicit free 

• Use of memory as the wrong type 

• Use of string functions on non-string values 

• Heap allocation overflow 

• Array bounds overflow 

• Arbitrary pointer arithmetic
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int buf[INTBUFSIZE];
int *buf_ptr = buf;
 
while (havedata() && (buf_ptr < (buf + sizeof(buf)))) {
  *buf_ptr++ = parseint(getdata());
}

sizeof() returns size in bytes, arithmetic on int * pointers is 
on pointer sized values; bounds check is too lax 

Memory safe languages disallow arbitrary pointer arithmetic
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Memory Unsafe Languages

• What types of memory unsafe behaviour can 
occur in C and C++? 
• Type unsafe allocation 

• Use before allocation 

• Use after explicit free() 

• Use after implicit free 

• Use of memory as the wrong type 

• Use of string functions on non-string values 

• Heap allocation overflow 

• Array bounds overflow 

• Arbitrary pointer arithmetic 

• Use of uninitialised memory
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static char *
read_headers(int fd)
{
  char     buf[BUFLEN];
  char    *headers   = malloc(1);
  size_t   headerLen = 0;
  ssize_t  rlen;

  while (strstr(headers, "\r\n\r\n") == NULL) {
    rlen = recv(fd, buf, BUFLEN, 0);
    if (rlen ==  0) { 
      // Connection closed by client
      free(headers);
      return NULL;
    } else if (rlen < 0)  {
      free(headers);
      perror("Cannot read HTTP request");
      return NULL;
    } else {
      headerLen += (size_t) rlen;
      headers = realloc(headers, headerLen + 1);
      strncat(headers, buf, (size_t) rlen);
    }
  }
  return headers;
}

Memory allocated with malloc() has undefined contents 

Memory safe languages require memory to be initialised,  
or mandate that the runtime fills with known value
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Memory Unsafe Languages

• What types of memory unsafe behaviour can 
occur in C and C++? 
• Type unsafe allocation 

• Use before allocation 

• Use after explicit free() 

• Use after implicit free 

• Use of memory as the wrong type 

• Use of string functions on non-string values 

• Heap allocation overflow 

• Array bounds overflow 

• Arbitrary pointer arithmetic 

• Use of uninitialised memory 

• Use of memory via dangling pointer 

• Use of memory via null pointer
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struct user *u = lookup(db, key);
printf(“%s\n”, u->name);

The lookup() call may fail, returning null pointer 

Memory safe languages either: fail safely with an 
exception; or use Option<> types to enforce that 

the null pointer check is done
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Memory Unsafe Languages

• What types of memory unsafe behaviour can 
occur in C and C++? 
• Type unsafe allocation 

• Use before allocation 

• Use after explicit free() 

• Use after implicit free 

• Use of memory as the wrong type 

• Use of string functions on non-string values 

• Heap allocation overflow 

• Array bounds overflow 

• Arbitrary pointer arithmetic 

• Use of uninitialised memory 

• Use of memory via dangling pointer 

• Use of memory via null pointer 

• …? https://cwe.mitre.org/data/definitions/658.html 
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Impact of Memory Unsafe Languages

• Lack of memory safety breaks the machine abstraction 
• With luck, program crashes – segmentation violation 

• If unlucky, memory unsafe behaviour corrupts other data owned by program 
• Undefined behaviour occurs 

• Cannot predict without knowing precise layout of program in memory 

• Difficult to debug 

• Potential security risk – corrupt program state to force arbitrary code execution
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Impact of Memory Unsafe Languages – Security (1/2)
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Source: https://www.cvedetails.com/vulnerabilities-by-types.php 

Half of all reported security vulnerabilities are memory safety 
violations that should be caught by a modern type system – 
buffer overflows, use-after-free, memory corruption, treating data as executable code 

Use of type based modelling of the problem domain can help 
address others – by more rigorous checking of assumptions
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Impact of Memory Unsafe Languages – Security (2/2)

• ~70% of Microsoft security updates fix bugs relating to unsafe memory usage 
• Interestingly, this has not significantly changed in >10 years 

• We’re not getting better at writing secure code in memory unsafe languages
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~70% of the vulnerabilities addressed through a security update each year continue to be memory safety issues
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Source: Matt Miller, Microsoft, presentation at BlueHat IL conference, February 2019 
https://github.com/Microsoft/MSRC-Security-Research/tree/master/presentations/2019_02_BlueHatIL
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Mitigations for Memory Unsafe Languages (1/2)

• Use modern tooling for C and C++ development: 
• Compile C code with, at least, clang —W -Wall -Werror 

• Review documentation to find additional warnings it makes sense to enable 

• Fix all warnings – let the compiler help you debug your code 

• Use clang static analysis tools during debugging: 
• https://clang.llvm.org/docs/AddressSanitizer.html 

• https://clang.llvm.org/docs/MemorySanitizer.html 

• https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html 

• https://clang.llvm.org/docs/ThreadSafetyAnalysis.html  

• https://clang.llvm.org/docs/ThreadSanitizer.html 

• These have very high overhead, but catch many memory and thread safety problems
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Mitigations for Memory Unsafe Languages (2/2)

• Use modern C++ language features: 
• I advise against C++ programming – language is too complex to understand 

• Too many features have been added over time, and too few removed; code mixes old and 
new features 

• Very few people know the whole language 

• In hindsight, some C++ defaults were inappropriate 

• Modern C++ addresses many of these issues – but must retain backwards compatibility 
• Rust adopts many lessons learned in the development of C++ 

• And can be simpler, since doesn’t need worry about compatibility with legacy code 

• But if you have to use C++, modernise the code base, to use newer – safer – 
language features and idioms, where possible

!22

https://csperkins.org/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/


Colin Perkins | https://csperkins.org/ | Copyright © 2019

Gradually Rewrite code into a Memory Safe Language

• Consider rewriting the most critical sections of the code in a memory 
safe language: 
• Rust can call C functions directly, and can be compiled into a library that can 

be directly linked with C or C++ 
• https://doc.rust-lang.org/nomicon/ffi.html  

• https://unhandledexpression.com/rust/2017/07/10/why-you-should-actually-rewrite-it-in-
rust.html 

• Possible – if not necessarily easy – to do a gradual rewrite of C or C++ into a safe language, 
while keeping the application usable and building at each stage 

• Objective-C and Swift can similarly be combined in the Apple ecosystem, to do 
a gradual rewrite of an application into Swift 

• Difficult when languages have very different amount of runtime 
• e.g., rewriting parts of a C program in Java likely not feasible
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Parsing and LangSec

!24

• Postel’s law 

• Parsing
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Remotely Exploitable Vulnerabilities

• Writing safe code in unsafe languages is difficult 
• Easy to rationalise each individual bug – “How could anyone write that?” 

• But, people will continue to make mistakes 

• Memory safe languages eliminate common classes of vulnerability; strong type 
systems help detect mistakes early 

• Remotely exploitable vulnerabilities threaten any networked system – 
are there particular classes of bug that cause such vulnerabilities? 
• Can we address those classes of bug?
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  if ((err = SSLHashSHA1.update(&hashCtx, &signedParams)) != 0)
    goto fail;
    goto fail;
  ... other checks ...
  fail:
    ... buffer frees (cleanups) ...
    return err;

https://dwheeler.com/essays/apple-goto-fail.html
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The Robustness Principle (Postel’s Law)
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At every layer of the protocols, there is a general rule whose
application can lead to enormous benefits in robustness and
interoperability:

       “Be liberal in what you accept, and 
        conservative in what you send"

Software should be written to deal with every conceivable
error, no matter how unlikely; sooner or later a packet will
come in with that particular combination of errors and
attributes, and unless the software is prepared, chaos can
ensue.  In general, it is best to assume that the network is
filled with malevolent entities that will send in packets
designed to have the worst possible effect.  This assumption
will lead to suitable protective design, although the most
serious problems in the Internet have been caused by
un-envisaged mechanisms triggered by low-probability events;
mere human malice would never have taken so devious a course! R
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22

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/


Colin Perkins | https://csperkins.org/ | Copyright © 2019

The Robustness Principle (Postel’s Law)
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“Be liberal in what you accept, and 
 conservative in what you send"

“Postel lived on a network with all his friends. 
We live on a network with all our enemies. 
Postel was wrong for todays internet.” 
— Poul-Henning Kamp

See also: https://datatracker.ietf.org/doc/draft-iab-protocol-maintenance/ 
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Parsing Untrusted Input

• The input parser is critical to security of a networked system 
• Takes untrusted input from the network 

• Generates validated, strongly typed, data structures that are processed by the rest of the code 

• How can we ensure parsers are safe?
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Network

Untrusted 
Protocol Data

Parsing Validated 
Data Structures

Protocol CodeSerialisation
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Define Legal Inputs and Failure Responses

• A parser is an automaton, driven by a set of 
rules and the input data 
• It parses the input according to some grammar 

• If the input does not match the grammar, it fails 

• Formally specify the protocol grammar 
• Define what is legal, and what is not – write this 

down in a machine checkable manner 
• Define the grammar in as restrictive a manner as 

possible – e.g., don’t use a Turing-complete parse 
when a regular expression will suffice 

• Specify what happens if the input data does not 
match the grammar 
• What causes a failure? 

• How is it handled?
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SIDEBAR

The Chomsky hierarchy ranks languages 
according to their expressive power in a strict 
classification of language/grammar/automata 
classes that establishes a correspondence 
between language classes, their grammars, 
and the minimum strength of a computational 
model required to recognize and parse them.

Regular languages, the weakest class of lan-
guages, need only a finite state machine and 
can be parsed with regular expressions.

Unambiguous context-free grammars, the first 
class that allows some recursively nested data 
structures, need deterministic pushdown 
automata (i.e., they require adding a stack to 
the limited memory of a finite state machine).

Ambiguous context-free grammars need non-
deterministic pushdown automata to account 
for ambiguity.

The more powerful classes of languages, 
context-sensitive languages and recursively 
enumerable languages, require linear bounded 
automata and Turing machines, respectively, 
to recognize them. Turing-recognizable lan-
guages are UNDECIDABLE. There is a bound-
ary of decidability which it is unwise for an 
input language or protocol designer to cross, as 
is discussed in Principle 1 (p. 29, below).

For the regular and deterministic context-free 
grammars, the equivalence problem—do two 
grammars produce exactly the same lan-
guage?—is DECIDABLE. For all other classes 
of grammar, the equivalence problem is 
UNDECIDABLE, and they should be avoided 
wherever security relies on computational 
equivalence of parser implementations, as 
Principle 2 posits.

possible, no matter how much effort is put into making the input data 
“safe.” In such situations, whatever actual checks the software per-
forms on its inputs at various points are unlikely to correspond to the 
programmer assumptions of validity or safety at these points or after 
them. This greatly raises the likelihood of exploitable input handling 
errors. 

A protocol that appears to frustratingly resist efforts to implement it 
securely (or even to watch it effectively with an IDS) behaves that way, 
we argue, because its very design puts programmers in the position of 
unwittingly trying to solve (or approximate a solution to) an UNDE-
CIDABLE problem. Conversely, understanding the flavor of mismatch 
between the expected and the required (or impossible) recognizer 
power for the protocol as an input language to a program eases the task 
of 0-day hunting. 

Yet we realize it is all too easy to offer general theories of insecurity 
without improving anything in practice. We set the following three-
pronged practical test as a threshold for a theory’s usefulness, and hope 
to convince the reader that ours passes it. We posit that a theory of inse-
curity must: 

◆ explain why designs that are known to practitioners as hard to secure 
are so, by providing a fundamental theoretical reason for this hard-
ness; 

◆ give programmers and architects clear ways to avoid such designs in 
the future, and prevent them from misinvesting their effort into try-
ing to secure unsecurable systems rather than replacing them; 

◆ significantly facilitate finding insecurity when applied to analysis 
of existing systems and protocols—that is, either help point out new 
classes of 0-day vulnerabilities or find previously missed clusters of 
familiar ones. 

As with any attempted concise formulation of a general principle, 
parts of an up-front formulation may sound similar to some previously 
mooted pieces of security wisdom; to offset such confusion, we precede 
the general principles with a number of fundamental examples. We 
regret that we cannot review the large corpus of formal methods work 
that relates to various aspects of our discussion; for this, we refer the 
reader to our upcoming publications (see langsec.org). 

The Need for a New Understanding of Computer  
(In)Security

Just as usefulness of a computing system and its software in particu-
lar has become synonymous with it being network-capable, network-
accessible, or containing a network stack of its own, we are clearly at an 
impasse as to how to combine this usefulness with security. 

A quote commonly attributed to Einstein is, “The significant problems 
we face cannot be solved at the same level of thinking we were at when 
we created them.” We possess sophisticated taxonomies of vulnerabili-
ties and, thanks to hacker research publications, intimate knowledge 
of how they are exploited. We also possess books on how to program 

Source: http://langsec.org/papers/Sassaman.pdf
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Generate the Parser (1/3)

• Difficult to reason about ad-hoc, manually 
written, parsing code 
• It performs low-level bit manipulation, string parsing, 

etc., all of which are hard to get correct 

• It tends to be poorly structured, hard to follow 

• Rather, auto-generate the parsing code: 
• If the input language is regular, use a regular 

expression  

• If the input language is context free, use a context 
free grammar 

• If neither of these work, use a more sophisticated 
parser, with minimal computational power 

• Generate strongly typed data structures, with explicit 
types to identify different data items 

• Focus on parser correctness and readability 
• Parsing performance matters less than security
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SIDEBAR

The Chomsky hierarchy ranks languages 
according to their expressive power in a strict 
classification of language/grammar/automata 
classes that establishes a correspondence 
between language classes, their grammars, 
and the minimum strength of a computational 
model required to recognize and parse them.

Regular languages, the weakest class of lan-
guages, need only a finite state machine and 
can be parsed with regular expressions.

Unambiguous context-free grammars, the first 
class that allows some recursively nested data 
structures, need deterministic pushdown 
automata (i.e., they require adding a stack to 
the limited memory of a finite state machine).

Ambiguous context-free grammars need non-
deterministic pushdown automata to account 
for ambiguity.

The more powerful classes of languages, 
context-sensitive languages and recursively 
enumerable languages, require linear bounded 
automata and Turing machines, respectively, 
to recognize them. Turing-recognizable lan-
guages are UNDECIDABLE. There is a bound-
ary of decidability which it is unwise for an 
input language or protocol designer to cross, as 
is discussed in Principle 1 (p. 29, below).

For the regular and deterministic context-free 
grammars, the equivalence problem—do two 
grammars produce exactly the same lan-
guage?—is DECIDABLE. For all other classes 
of grammar, the equivalence problem is 
UNDECIDABLE, and they should be avoided 
wherever security relies on computational 
equivalence of parser implementations, as 
Principle 2 posits.

possible, no matter how much effort is put into making the input data 
“safe.” In such situations, whatever actual checks the software per-
forms on its inputs at various points are unlikely to correspond to the 
programmer assumptions of validity or safety at these points or after 
them. This greatly raises the likelihood of exploitable input handling 
errors. 

A protocol that appears to frustratingly resist efforts to implement it 
securely (or even to watch it effectively with an IDS) behaves that way, 
we argue, because its very design puts programmers in the position of 
unwittingly trying to solve (or approximate a solution to) an UNDE-
CIDABLE problem. Conversely, understanding the flavor of mismatch 
between the expected and the required (or impossible) recognizer 
power for the protocol as an input language to a program eases the task 
of 0-day hunting. 

Yet we realize it is all too easy to offer general theories of insecurity 
without improving anything in practice. We set the following three-
pronged practical test as a threshold for a theory’s usefulness, and hope 
to convince the reader that ours passes it. We posit that a theory of inse-
curity must: 

◆ explain why designs that are known to practitioners as hard to secure 
are so, by providing a fundamental theoretical reason for this hard-
ness; 

◆ give programmers and architects clear ways to avoid such designs in 
the future, and prevent them from misinvesting their effort into try-
ing to secure unsecurable systems rather than replacing them; 

◆ significantly facilitate finding insecurity when applied to analysis 
of existing systems and protocols—that is, either help point out new 
classes of 0-day vulnerabilities or find previously missed clusters of 
familiar ones. 

As with any attempted concise formulation of a general principle, 
parts of an up-front formulation may sound similar to some previously 
mooted pieces of security wisdom; to offset such confusion, we precede 
the general principles with a number of fundamental examples. We 
regret that we cannot review the large corpus of formal methods work 
that relates to various aspects of our discussion; for this, we refer the 
reader to our upcoming publications (see langsec.org). 

The Need for a New Understanding of Computer  
(In)Security

Just as usefulness of a computing system and its software in particu-
lar has become synonymous with it being network-capable, network-
accessible, or containing a network stack of its own, we are clearly at an 
impasse as to how to combine this usefulness with security. 

A quote commonly attributed to Einstein is, “The significant problems 
we face cannot be solved at the same level of thinking we were at when 
we created them.” We possess sophisticated taxonomies of vulnerabili-
ties and, thanks to hacker research publications, intimate knowledge 
of how they are exploited. We also possess books on how to program 

“Some people, when confronted with a problem, think ‘I know, I'll use 
regular expressions’. Now they have two problems.” – Jamie Zawinski
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Generate the Parser (2/3)

• Use existing, well-tested, parser libraries 
• For Rust code, use nom or combine 

• For C or C++, use hammer
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nom, eating data byte by byte
https://github.com/Geal/nom

https://github.com/Marwes/combine

Combine: A parser combinator library for Rust

Hammer: Parser combinators for binary 
formats, in C. Yes, in C. What? Don't look at 

me like that.
https://github.com/UpstandingHackers/hammer

Writing parsers like it is 2017
Pierre Chifflier

Agence Nationale de la Sécurité
des Systèmes d’Information

Geoffroy Couprie
Clever Cloud

Abstract—Despite being known since a long time, memory
violations are still a very important cause of security problems
in low-level programming languages containing data parsers. We
address this problem by proposing a pragmatic solution to fix
not only bugs, but classes of bugs. First, using a fast and safe
language such as Rust, and then using a parser combinator. We
discuss the advantages and difficulties of this solution, and we
present two cases of how to implement safe parsers and insert
them in large C projects. The implementation is provided as a
set of parsers and projects in the Rust language.

I. INTRODUCTION

In 2016, like every year for a long time, memory corruption
bugs have been one of the first causes of vulnerabilities of
compiled programs [1]. When looking at the C programming
language, many errors lead to memory corruption: buffer
overflow, use after free, double free, etc. Some of these issues
can be complicated to diagnose, and the consequence is that
a huge quantity of bugs is hidden in almost all C software.

Any software manipulating untrusted data is particularly
exposed: it needs to parse and interpret data that can be
controlled by the attacker. Unfortunately, data parsing is often
done in a very unsafe way, especially for network protocols
and file formats. For example, many bugs were discovered in
media parsing libraries in Android [2], leading to the possible
remote exploitation of all devices by a simple MMS message.
Today, many applications embed a lot of parsers that could be
targeted: web browsers like Firefox or Chrome, media players
(VLC), document viewers, etc.

Ironically, security tools such as intrusion detection systems
or network analyzers suffer from the same problems, making
the security tools a possible and interesting target for an
attacker. For example, Wireshark had 95 vulnerabilities in
2016 that could crash the application or be exploited.

As a result, most programs written in C are unsafe, es-
pecially in the parts of the code parsing data. For example,
more than 500 vulnerabilities on XML parsers are listed in the
US National Vulnerability Database (NVD). Even for simple
formats like JSON, it’s hard [3]: some parsers crash, others
have bugs, and many of them give different results because of
a different interpretation of the specifications.

The Cloudbleed [4] vulnerability, caused by a bug in a
HTML parser written in C, caused sensitive data to leak, and
is estimated to impact more than 5 million websites. This bug
was possible because of the use of an unsafe programming
language, despite using a parser generator (Ragel).

In this paper, we propose a pragmatic solution to write
robust parsers and significantly improve software security.

First, we show how changing the programming language
can solve most of the memory-related problems. Second, we
show how parser combinators both help prevent bugs and
create faster parsers. We then explain how this solution was
implemented in two different large C programs, VLC media
player and Suricata, to integrate safe parsers by changing only
a small amount of code.

II. CURRENT SOLUTIONS, AND HOW TO GO FURTHER

A. Partial and bad solutions

Many tools, like fuzzing or code audits, come too late in
the development process: bugs are already present in the code.
Instead, developers should focus on solutions allowing them
to prevent bugs during development.

Some are trying to improve quality by integrating auto-
mated tests during the development process. The devops trend
encourages pushing code into production as fast as possible,
minimizing the delay by relying on automated tests to assess
security. It is important to be agile and be able to fix bugs very
quickly. However, the problem with that approach is that it will
catch only known (tested) bugs, and will never be exhaustive:
this is more compliance testing than security tests. While it
can protect against most regressions, it tends to create a false
sense of security.

B. Reduce Damage

Hardening methods can be applied to restrict the software
to its intended behavior, or limit the consequences in case
of successful attacks. While these mechanisms significantly
improve the security of the software and the system, they
will not fix the initial problem: the restricted application
manipulating data is still vulnerable and affected by all the
parsing problems. Still, they are interesting, and applications
should consider using them as much as possible.

Compiler and OS offer hardening functions that can be used.
Some of them can be applied without modifying the software,
but the others require a modification or recompilation. We list
here only categories of system hardening features.

a) Compiler functions: The compiler can apply harden-
ing functions during the compilation: randomization of the
address space (ASLR), stack protector, marking sections and
the relocation table as read-only, etc. These functions are
activated by compilation flags, and will also trigger build errors
on some vulnerable code patterns.
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Generate the Parser (3/3)

• Specify the types into which parsed data 
is stored 

• Describe the parser using an appropriate 
formal language – example uses nom

• Generate the parser from that language
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named!(pub header<Header>,
do_parse!(

tag!("FLV") >>
version: be_u8 >>
flags: be_u8 >>
offset: be_u32 >>
(Header {

version: version,
audio: flags & 4 == 4,
video: flags & 1 == 1,
offset: offset

})
)

);

Listing 2. FLV file header parsing

Rust’s unit testing facilities and nom’s approach focused on
slices helps in writing tests for our parsers. In the following
example, we can use the include bytes! feature to include
directly into the executable a test file, and refer to it as a
byte slice. Of course, the file is only present in the unit tests,
and would not be included by the library in another project.

The file header parser can then be tested on a subslice of
the first nine bytes of the file. We can refer to other subslices
by index for other parsers as well.

#[cfg(test)]
mod tests {

use super::*;
use nom::IResult;

const zelda : &’static [u8] = include_bytes!("../assets/
zelda.flv");

#[test]
fn headers() {

assert_eq!(
header(&zelda[..9]),
IResult::Done(

// the parser consumed the whole slice
&b""[..],
Header { version: 1, audio: true, video: true,

offset: 9 }
)

);
}

}

Listing 3. FLV file header unit testing

B. VLC Media Player Architecture

To accommodate the long list of formats, codecs, and input
or output devices on multiple platforms, VLC media player
is built with a main library called libvlccore, that handles the
media pipeline, synchronization, loading modules. The codecs,
demuxers and other parts are built as plugins, dynamic libraries
that libvlccore loads depending on the media that should be
played, recorded or converted, as seen in figure 2.

Those modules just need to export some C functions that
will be called by libvlccore to determine the module’s type and
get useful metadata as C structures and function callbacks.

Since Rust can reproduce most of C’s calling conventions,
it is relatively easy to create a dynamic library that directly
emulates a VLC plugin’s behavior.

Figure 1. Plugin architecture for VLC media player

C. Integrating Rust code in a C application

1) Writing bindings: The first step in writing Rust code to
insert inside a C program is to make bindings to the required
functions. In the case of VLC, libvlccore provides a number
of helper functions to manipulate streams or metadata.

Rust is well suited to write those bindings manually, as seen
in the following listing, but due to the large API provided
by libvlccore, we used rust-bindgen [19] to generate those
bindings automatically from C headers.

// structure definitions
#[repr(C)]
pub struct vlc_object_t {

pub psz_object_type: *const c_char,
pub psz_header: *mut c_char,
pub i_flags: c_int,
pub b_force: bool,
pub p_libvlc: *mut libvlc_int_t,
pub p_parent: *mut vlc_object_t,

}

// function imports
#[link(name = "vlccore")]
extern {

pub fn stream_Peek(stream: *mut stream_t, buf: *mut *
const uint8_t, size: size_t) -> ssize_t;

pub fn stream_Read(stream: *mut stream_t, buf: *const
c_void, size: size_t) -> ssize_t;

pub fn stream_Tell(stream: *mut stream_t) -> uint64_t;
}

Listing 4. Manual declaration of structures and import of functions

2) Exporting C functions from Rust: Once the bindings are
generated, the Rust code can call into the C API, and we
now need the C code to call into Rust. A VLC module must
export a vlc entry <VERSION> function that libvlccore will
call. This function declares the module’s name and description,
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way for parsers, since they would be rewritten in a completely
different style. Still, a Rust project can expose C compatible
functions and even emulate the C style to communicate with
the host program.

We recommend that the parser be written and tested in
a separate Rust project, to facilitate testing and reuse in
other applications. The interface code is then tasked with
transforming unsafe C types like pointers to void, to richer
Rust types, and the reverse when returning values to C. This
approach also works when integrating with other languages
like Java with JNI or JNA.

The Rust code must appear as a set of deterministic,
reentrant functions from the C side to facilitate usage. In
some cases, we want to keep some state around. If needed,
we can wrap a Rust value in a Box that will be passed to the
C code as an opaque pointer, for which we provide accessor
functions. Since Rust can apply the repr(C) attribute to data
structures to make them accessible from C code, we could
avoid the opaque pointer, but it gives stronger guarantees
over referencing internal data that could be deallocated at any
moment by the Rust code.

On the allocations side, the Rust code can work with its
own allocator instead of the host application. In cases where
it is not wanted, one can build a custom allocator calling the
host one. In the end, this is not an important issue here, since
nom mainly uses the stack and returns slices to data allocated
by the host code.

To further reduce its impact, we can make sure that the
Rust part never owns the data to parse, by only working
on slices, and returning slices. That way, the only important
values moving back and forth are pointers and lengths. This
is especially interesting for media parsers where we parse a
small header, then return a slice to a part of the data we never
need to see.

B. Build systems
Integrating the Rust code in the build system is a large part

of the work needed. While it is not especially hard, it requires
fixing a lot of details, like passing the platform triplets between
compilers, setting up the right paths for intermediary or final
objects, ordering the build of components and linking them.

We found three ways to integrate Rust projects. The first
consists in making a static library and C headers that will
be used like any other library in the C code. This is by far
the easiest way, if the application can work that way. For
our examples in VLC media player and Suricata, making
a dynamic library that emulates the behavior of C dynamic
libraries makes a well-contained process, as long as we can
assemble everything in the right folders. In the case of VLC
media player, we ended up building the module as an object
file to let the build system take care of linking libraries.

V. EXAMPLE: A FLV DEMUXER FOR VLC MEDIA PLAYER

The goal of VLC media player [15] is to be able to play
every existing video format or protocol. As such, it embeds
parsers for a lot of different formats, and those parsers are

mainly written in C or C++. Multiple security vulnerabilities
were found in those parsers over the past few years [16].

The video container formats and the streaming protocols
tend to be complex and ambiguous. They evolved organically
from the needs of different companies and will usually trade
convenience for decoding performance.

VLC media player is then a good target for experimentation
of Rust parsers. The goal of the project is to integrate a FLV
parser as a VLC plugin.

A. Writing a FLV demuxer
The format [17] we chose is quite simple. It contains first

a file header, then a list of audio, video or metadata packets,
each being part of an audio or video stream.

It can contain 12 audio codecs and 9 video codecs, with
specific parameters, and time synchronization information.

A demuxer usually has two roles. First, it must decide if
it can parse the stream. Media players will usually test a few
demuxers on a file, then use the one that recognized the file.
Then, for each new data packet, it must obtain the following
information:

• to which stream this packet belongs to
• which codec is used
• when it should be presented to the user
• which parts of the data stream contains the encoded audio

or video
1) Writing a FLV parser with nom: The nom FLV file

parser, called flavors [18], declares separately each packet
header to parse (file header, audio packet, video packet, etc.).
This is done that way for two reasons:

• each header parser can be written and tested indepen-
dently

• the parser will typically only see the header’s part of the
input, and let the calling code handle the encoded data

The code follows a process where we first declare a structure
that will contain the parsed data, then we use the named!
nom macro to declare a parser returning that structure. In
the following example, the file header begins with the ”FLV”
characters, then a byte encoding the version number, then a
flag byte indicating if there is audio or video data, and a big
endian 32 bit unsigned integer for the offset at which the data
may begin.

We used the do parse! combinator to apply multiple parsers
in a row and aggregate the results. Partial data consumption is
done automatically: the first parser will consume the ”FLV”
characters, the next parser will take the next byte and store it
in version, and so on and so forth. If there was not enough
data, the parser would indicate how much more data it needs
to advance to the next step.

#[derive(Debug,PartialEq,Eq)]
pub struct Header {

pub version: u8,
pub audio: bool,
pub video: bool,
pub offset: u32,

}
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Example from: P. Chifflier and G. Couprie. Writing parsers like it is 2017. In Proceedings of 
the Workshop on Language-Theoretic Security (LangSec), pages 80–92, San Jose, CA, 

USA, May 2017. IEEE. https://dx.doi.org/10.1109/SPW.2017.39 
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Define Parsable Protocols

• If designing network protocols, consider ease of parsing 
• Minimise the amount of state and look-ahead required to parse the data 

• Prefer a predictable, regular, grammar to one that saves bits at the expense of 
complex parsing 
• Networks get faster, security vulnerabilities remain 

• The benefit of saving a few bits gets less over time 

• The benefit of being easy to parse securely remains
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Parsing and LangSec

• Review “The Bugs We Have to Kill”  
• Is this approach realistic? 

• Can we combine better parsing with modern, 
strongly typed, languages to improve network 
security? 

• Is performance good enough? 

• Can we improve the way we design protocols?
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The code that parses inputs is the first and often the only protection 
for the rest of a program from malicious inputs. No programmer can 
afford to verify every implied condition on every line of code—even 

if this were possible to implement without slowing execution to a crawl. The 
parser is the part that is supposed to create a world for the rest of the pro-
gram where all these implied conditions are true and need not be explicitly 
checked at every turn. Sadly, this is exactly where most parsers fail, and the 
rest of the program fails with them. In this article, we explain why parsers 
continue to be such a problem, as well as point to potential solutions that can 
kill large classes of bugs.
To do so, we are going to look at the problem from the computer science theory angle. Parsers, 
being input-consuming machines, are quite close to the theory’s classic computing models, 
each one an input-consuming machine: finite automata, pushdown automata, and Turing 
machines. The latter is our principal model of general-purpose programming, the comput-
ing model with the ultimate power and flexibility. Yet this high-end power and flexibility 
come with a high price, which Alan Turing demonstrated (and to whose proof we owe our 
very model of general-purpose programming): our inability to predict, by any general static 
analysis algorithm, how programs for it will execute.

Yet most of our parsers are just a layer on top of this totally flexible computing model. It is 
not surprising, then, that without carefully limiting our parsers’ design and code to much 
simpler models, we are left unable to prove these input-consuming machines secure. This is 
a powerful argument for making parsers and their input formats and protocols simpler, so 
that securing them does not require having to solve undecidable problems!  

Parsers, Parsers Everywhere
To quote Koprowski and Binsztok [1]:

Parsing is of major interest in computer science. Classically discovered by students 
as the first step in compilation, parsing is present in almost every program 
which performs data-manipulation. For instance, the Web is built on parsers. 
The HyperText Transfer Protocol (HTTP) is a parsed dialog between the client, 
or browser, and the server. This protocol transfers pages in HyperText Markup 
Language (HTML), which is also parsed by the browser. When running web-
applications, browsers interpret JavaScript programs which, again, begins with 
parsing. Data exchange between browser(s) and server(s) uses languages or formats 
like XML and JSON. Even inside the server, several components (for instance 
the trio made of the HTTP server Apache, the PHP interpreter and the MySQL 
database) often manipulate programs and data dynamically; all require parsers.

So do the lower layers of the network stack down to the IP and the link layer protocols, and 
also other OS parts such as the USB drivers [2] (and even the hardware: turning PHY layer 
symbol streams into frames is parsing, too!). For all of these core protocols, we add, their 
parsers have had a long history of failures, resulting in an Internet where any site, program, 
or system that receives untrusted input can be presumed compromised.

S. Bratus, M. L. Patterson, and A. Shubina. The bugs we have to kill. ;login:, 
40(4):4–10, August 2015. http://langsec.org/papers/the-bugs-we-have-to-kill.pdf 
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Modern Type Systems and 
Security
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• Make assumptions explicit 

• Eliminate undefined behaviour
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Causes of Security Vulnerabilities

• Security vulnerabilities generally caused by persuading a program to 
do something that the programmer did not expect 
• Write past the end of a buffer 

• Treat user input as executable 

• Confuse a permission check 

• … 

• Violate an assumption in the code
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Causes of Security Vulnerabilities

• Strong typing makes assumptions explicit 
• Use explicit types rather than generic types 

• Define safe conversion functions 

• Use phantom types where necessary, to apply semantic tags to data
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Prefer Explicit Types 

• Vulnerabilities come from inconsistent data 
processing: 
• e.g., passing un-sanitised user entered data to a 

function that expects valid SQL  

• A StudentName and an SqlString are different; give 
them different types so compiler can catch inconsistent 
usage 

• Certain characters must be escaped before an arbitrary 
student name can be safely stored in an SQL database 

• If String used everywhere, the programmer 
must manually check for consistency 
• Easy to make mistakes 

• If all the types are the same, the compiler can’t help
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Convert Data Carefully

• Explicit types require type conversions 
• Enforce security boundaries 

• Untrusted user input → escaped, safe, internal form; 
validate input before using it 

• Ensure only legal conversions occur
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Use Phantom Types to Add Semantic Tags

• A phantom type parameter is one that doesn't show up at runtime, but 
is checked at compile time 
• In Rust, a struct with no fields has a type but is zero sized 

• Useful as type parameters to add semantic tags to data: 

• Useful to represent states in a state machine
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struct UserInput;  // As received from the user
struct Sanitised;  // After HTML codes have been escaped

fn sanitise_html(html : Html<UserInput>) -> Html<Sanitised> {
   …
}
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No Silver Bullet
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Memory safety and strong typing won’t eliminate security vulnerabilities

But, used carefully, they eliminate certain classes of vulnerability, and make others 
less likely by making hidden assumptions – and their consequences – visible
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Liability and Ethics
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1.1 Contribute to society and to human well-being, acknowledging that 
all people are stakeholders in computing. 

This principle, which concerns the quality of life of all people, affirms an obligation of computing 
professionals, both individually and collectively, to use their skills for the benefit of society, its 
members, and the environment surrounding them. This obligation includes promoting 
fundamental human rights and protecting each individual's right to autonomy. An essential aim 
of computing professionals is to minimize negative consequences of computing, including 
threats to health, safety, personal security, and privacy. When the interests of multiple groups 
conflict, the needs of those less advantaged should be given increased attention and priority. 

Computing professionals should consider whether the results of their efforts will respect 
diversity, will be used in socially responsible ways, will meet social needs, and will be broadly 
accessible. They are encouraged to actively contribute to society by engaging in pro bono or 
volunteer work that benefits the public good.  

In addition to a safe social environment, human well-being requires a safe natural environment. 
Therefore, computing professionals should promote environmental sustainability both locally 
and globally. 

1.2 Avoid harm. 

In this document, "harm" means negative consequences, especially when those consequences 
are significant and unjust. Examples of harm include unjustified physical or mental injury, 
unjustified destruction or disclosure of information, and unjustified damage to property, 
reputation, and the environment. This list is not exhaustive. 

Well-intended actions, including those that accomplish assigned duties, may lead to harm. 
When that harm is unintended, those responsible are obliged to undo or mitigate the harm as 
much as possible. Avoiding harm begins with careful consideration of potential impacts on all 
those affected by decisions. When harm is an intentional part of the system, those responsible 
are obligated to ensure that the harm is ethically justified. In either case, ensure that all harm is 
minimized. 

To minimize the possibility of indirectly or unintentionally harming others, computing 
professionals should follow generally accepted best practices unless there is a compelling 
ethical reason to do otherwise. Additionally, the consequences of data aggregation and 
emergent properties of systems should be carefully analyzed. Those involved with pervasive or 
infrastructure systems should also consider Principle 3.7. 

A computing professional has an additional obligation to report any signs of system risks that 
might result in harm. If leaders do not act to curtail or mitigate such risks, it may be necessary to 
"blow the whistle" to reduce potential harm. However, capricious or misguided reporting of risks 
can itself be harmful. Before reporting risks, a computing professional should carefully assess 
relevant aspects of the situation. 

https://www.acm.org/binaries/content/assets/about/acm-code-of-ethics-and-professional-conduct.pdf

ACM code of ethics and professional conduct:

Security vulnerabilities and software failures routinely cause harm –
can you justify your professional practice?
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Summary
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• Memory safety 

• Parsing and LangSec 

• Modern Type Systems and Security 

• Ethics and Liability
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