
Colin Perkins | https://csperkins.org/ | Copyright © 2019 | This work is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International License. To
view a copy of this license, visit http://creativecommons.org/licenses/by-nd/4.0/ or send a letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.

Review and Future Directions

Advanced Systems Programming (M)
Lecture 9

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/
http://creativecommons.org/licenses/by-nd/4.0/

Colin Perkins | https://csperkins.org/ | Copyright © 2019

Review

!2

• Systems Programming

• Memory Management

• Concurrency

• Security

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2019

Systems Programming

!3

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2019

What is Systems Programming?

• Infrastructure components, operating systems,
device drivers, network protocols, services

• Systems programs tend to be constrained by:
• Memory management and data representation

• I/O operations

• Management of shared state

• Performance

!4

Programming Language Challenges in Systems Codes

Why Systems Programmers Still Use C, and What to Do About It

Jonathan Shapiro, Ph.D.

Systems Research Laboratory
Department of Computer Science

Johns Hopkins University

shap@cs.jhu.edu

Abstract
There have been major advances in programming languages
over the last 20 years. Given this, it seems appropriate to
ask why systems programmers continue to largely ignore
these languages. What are the deficiencies in the eyes of
the systems programmers? How have the e↵orts of the
programming language community been misdirected (from
their perspective)? What can/should the PL community do
address this?

As someone whose research straddles these areas, I was
asked to give a talk at this year’s PLOS workshop. What
follows are my thoughts on this subject, which may or not
represent those of other systems programmers.

1. Introduction

Modern programming languages such as ML [16] or
Haskell [17] provide newer, stronger, and more expressive
type systems than systems programming languages such as
C [15, 13] or Ada [12]. Why have they been of so little in-
terest to systems developers, and what can/should we do
about it?

As the primary author of the EROS system [18] and its
successor Coyotos [20], both of which are high-performance
microkernels, it seems fair to characterize myself primarily
as a hardcore systems programmer and security architect.
However, there are skeletons in my closet. In the mid-1980s,
my group at Bell Labs developed one of the first large
commercial C++ applications — perhaps the first. My early
involvement with C++ includes the first book on reusable
C++ programming [21], which is either not well known or
has been graciously disregarded by my colleagues.

In this audience I am tempted to plead for mercy on the
grounds of youth and ignorance, but having been an active

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and
that copies bear this notice and the full citation on the first page. To
copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee.

PLOS 2006, Oct. 22, 2006, San Jose, California, United States
Copyright c� 2006 ACM 1-59593-577-0/10/2006. . . $5.00

advocate of C++ for so long this entails a certain degree
of chutzpah.1 There is hope. Microkernel developers seem to
have abandoned C++ in favor of C. The book is out of print
in most countries, and no longer encourages deviant coding
practices among susceptible young programmers.

A Word About BitC Brewer et al.’s cry that Thirty

Years is Long Enough [6] resonates. It really is a bit dis-
turbing that we are still trying to use a high-level assembly
language created in the early 1970s for critical production
code 35 years later. But Brewer’s lament begs the question:
why has no viable replacement for C emerged from the pro-
gramming languages community? In trying to answer this,
my group at Johns Hopkins has started work on a new pro-
gramming language: BitC. In talking about this work, we
have encountered a curious blindness from the PL commu-
nity.

We are often asked “Why are you building BitC?” The tacit
assumption seems to be that if there is nothing fundamen-
tally new in the language it isn’t interesting. The BitC goal
isn’t to invent a new language or any new language con-
cepts. It is to integrate existing concepts with advances in
prover technology, and reify them in a language that allows
us to build stateful low-level systems codes that we can rea-
son about in varying measure using automated tools. The
feeling seems to be that everything we are doing is straight-
forward (read: uninteresting). Would that it were so.

Systems programming — and BitC — are fundamentally
about engineering rather than programming languages. In
the 1980s, when compiler writers still struggled with inad-
equate machine resources, engineering considerations were
respected criteria for language and compiler design, and a
sense of “transparency” was still regarded as important.2

By the time I left the PL community in 1990, respect for
engineering and pragmatics was fast fading, and today it
is all but gone. The concrete syntax of Standard ML [16]
and Haskell [17] are every bit as bad as C++. It is a curi-
ous measure of the programming language community that
nobody cares. In our pursuit of type theory and semantics,

1 Chutzpah is best defined by example. Chutzpah is when a
person murders both of their parents and then asks the court
for mercy on the grounds that they are an orphan.

2 By “transparent,” I mean implementations in which the pro-
grammer has a relatively direct understanding of machine-level
behavior.

J. Shapiro, “Programming language challenges in systems codes:
why systems programmers still use C, and what to do about it”,

Workshop on Programming Languages and Operating Systems,
San Jose, CA, October 2006. DOI:10.1145/1215995.1216004

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/
https://dx.doi.org/10.1145/1215995.1216004
https://dx.doi.org/10.1145/1215995.1216004

Colin Perkins | https://csperkins.org/ | Copyright © 2019

State of the Art: Unix and C

• Unix gained popularity due to portability and ease
of source code access, but also:
• Small, relatively consistent set of API calls

• Low-level control

• Robust and high performance

• Easy to understand and extend

• Portability due to the C programming language
• Simple, easy to understand, easy to port

• Explicit pointers, memory allocation, and control over data
representation; uniform treatment of memory, devices and
data structures

• Weak type system allows aliasing and sharing

!5

Some Were Meant for C
The Endurance of an Unmanageable Language

Stephen Kell
Computer Laboratory

University of Cambridge
Cambridge, United Kingdom
stephen.kell@cl.cam.ac.uk

Abstract
The C language leads a double life: as an application
programming language of yesteryear, perpetuated by
circumstance, and as a systems programming language
which remains a weapon of choice decades after its cre-
ation. This essay is a C programmer’s reaction to the call
to abandon ship. It questions several properties com-
monly held to define the experience of using C; these
include unsafety, undefined behaviour, and the moti-
vation of performance. It argues all these are in fact
inessential; rather, it traces C’s ultimate strength to a
communicative design which does not fit easily within
the usual conception of “a programming language”, but
can be seen as a counterpoint to so-called “managed
languages”. This communicativity is what facilitates the
essential aspect of system-building: creating parts which
interact with other, remote parts—being “alongside” not
“within”.

CCS Concepts • Software and its engineering � Gen-
eral programming languages; Compilers; • Social and
professional topics � History of programming languages;

Keywords systems programming, virtual machine, man-
aged languages, safety, undefined behavior

ACM Reference Format:
Stephen Kell. 2017. Some Were Meant for C. In Proceedings
of 2017 ACM SIGPLAN International Symposium on New Ideas,
New Paradigms, and Reflections on Programming and Software,
Vancouver, Canada, October 25–27, 2017 (Onward!’17), 18 pages.
https://doi.org/10.1145/3133850.3133867

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page.
Copyrights for components of this work owned by others than the au-
thor(s) must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions
from permissions@acm.org.
Onward!’17, October 25–27, 2017, Vancouver, Canada
© 2017 Copyright held by the owner/author(s). Publication rights
licensed to Association for Computing Machinery.
ACM ISBN 978-1-4503-5530-8/17/10. . . $15.00
https://doi.org/10.1145/3133850.3133867

1 Introduction
While some were meant for sea, in tug-boats
’Round the shore’s knee,
(Milling with the sand,
and always coming back to land),
For others, up above
Is all they care to think of,
Up there with the birds and clouds, and
Words don’t follow.

—Tiny Ruins, from “Priest with Balloons”
I am not ashamed to say that I program in C, and

that I enjoy it. This puts me at odds with much of pro-
gramming language discourse, among both researchers
and influential practitioners, which holds that C is evil
and must be destroyed. If only we had a “safe systems
programming language”! If only we could eke out a
little more performance in implementations of other
languages, to remove the last remaining motivation for
using C! If only we could make “the industry” see the
error of its ways! Then C would be eradicated, and there
would be much rejoicing.

I am a “systems programmer”. It doesn’t mean I hack
kernels, so much as that I build systems—pieces of in-
frastructure that integrate multiple interacting parts,
and sit underneath application code. Programming in
C feels right for doing this; it has a viscerally distinctive
feeling compared to other, safer, higher-level languages.
Certainly, today’s experience of programming in C re-
mains, despite certain advances, unforgiving. But I have
never felt C to be an encumbrance. C is not a language I
use because I’m stuck with it; I use it for positive reasons.
This essay explores those reasons and their apparent
contrast with conventional wisdom.

2 Two viewpoints
The lyric from which this essay borrows its title evokes
two contrasting ways of being: that of the idealist who
longs to be among the clouds, and that of the sea-farers
who carry on their business on the planet’s all-too-limiting
surface. The idealist in the song is a priest, who takes
literally to the clouds: one day, clutching at helium bal-
loons, he steps o� a cli� edge, floats up and away, and

S. Kell, “Some were meant for C: The endurance of an unmanageable language”,
International Symposium on New Ideas, New Paradigms, and Reflections on Programming
& Software, Vancouver, BC, Canada, October 2017. ACM. DOI:10.1145/3133850.3133867

https://dave.cheney.net/2017/12/04/what-have-we-learned-from-the-pdp-11
Image credit: Dennis Ritchie

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/
https://dx.doi.org/10.1145/3133850.3133867
https://dx.doi.org/10.1145/3133850.3133867
https://dave.cheney.net/2017/12/04/what-have-we-learned-from-the-pdp-11

Colin Perkins | https://csperkins.org/ | Copyright © 2019

No More Moore?

• Breakdown of Dennard scaling, impending end of Moore’s law → concurrency

• Ubiquitous networks and cyber-physical systems pushing security to the fore

• Existing approaches to systems programming no longer sufficient

!6

Source: https://www.karlrupp.net/2015/06/40-years-of-microprocessor-trend-data/

Number of coresClock FrequencyTransistor C
ount

Do you agree with this claim?

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/
https://www.karlrupp.net/2015/06/40-years-of-microprocessor-trend-data/
https://www.karlrupp.net/2015/06/40-years-of-microprocessor-trend-data/

Colin Perkins | https://csperkins.org/ | Copyright © 2019

Next Steps in Systems Programming

• Need a programming language and environment that:
• Improves memory management and safety – while maintaining control over

allocation and data representation

• Improves security – eliminates common classes of vulnerability

• Improves support for concurrency – eliminates race conditions

• Improves correctness – eliminates common classes of bug

• Advances in programming language design are starting to provide the
necessary tools – and beginning to be applied to systems languages
• Modern type systems

• Functional programming techniques

!7

https://csperkins.org/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/

Colin Perkins | https://csperkins.org/ | Copyright © 2019

Why is Strong Typing Desirable?

• “Well-typed programs don’t go wrong” – Robin Milner
• The result is well-defined – although not necessarily correct

• The type system ensures results are consistent with the rules of the language, but cannot
check if you calculated the right result

• A strongly-typed system will only ever perform operations on a type that are legal – there is
no undefined behaviour

• Types help model the problem, check for consistency, and eliminate common
classes of bug

!8

https://csperkins.org/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://en.wikipedia.org/wiki/Robin_Milner

Colin Perkins | https://csperkins.org/ | Copyright © 2019 !9

Segmentation fault (core dumped)

Segmentation faults should never happen:
• Compiler and runtime should strongly enforce type rules
• If program violates them, it should be terminated cleanly
• Security vulnerabilities – e.g., buffer overflow attacks –

come from undefined behaviour after type violations

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2019

Challenges in Strongly-typed Systems Programming

• Four fallacies:
• Factors of 1.5x to 2x in performance don’t matter

• Boxed representation can be optimised away

• The optimiser can fix it

• The legacy problem is insurmountable

• Four challenges:
• Application constraint checking

• Idiomatic manual storage management

• Control over data representation

• Managing shared state

• Many good ideas in research languages and operating systems – only recently
that these issues have been considered to make practical tools

!10

Programming Language Challenges in Systems Codes

Why Systems Programmers Still Use C, and What to Do About It

Jonathan Shapiro, Ph.D.

Systems Research Laboratory
Department of Computer Science

Johns Hopkins University

shap@cs.jhu.edu

Abstract
There have been major advances in programming languages
over the last 20 years. Given this, it seems appropriate to
ask why systems programmers continue to largely ignore
these languages. What are the deficiencies in the eyes of
the systems programmers? How have the e↵orts of the
programming language community been misdirected (from
their perspective)? What can/should the PL community do
address this?

As someone whose research straddles these areas, I was
asked to give a talk at this year’s PLOS workshop. What
follows are my thoughts on this subject, which may or not
represent those of other systems programmers.

1. Introduction

Modern programming languages such as ML [16] or
Haskell [17] provide newer, stronger, and more expressive
type systems than systems programming languages such as
C [15, 13] or Ada [12]. Why have they been of so little in-
terest to systems developers, and what can/should we do
about it?

As the primary author of the EROS system [18] and its
successor Coyotos [20], both of which are high-performance
microkernels, it seems fair to characterize myself primarily
as a hardcore systems programmer and security architect.
However, there are skeletons in my closet. In the mid-1980s,
my group at Bell Labs developed one of the first large
commercial C++ applications — perhaps the first. My early
involvement with C++ includes the first book on reusable
C++ programming [21], which is either not well known or
has been graciously disregarded by my colleagues.

In this audience I am tempted to plead for mercy on the
grounds of youth and ignorance, but having been an active

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and
that copies bear this notice and the full citation on the first page. To
copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee.

PLOS 2006, Oct. 22, 2006, San Jose, California, United States
Copyright c� 2006 ACM 1-59593-577-0/10/2006. . . $5.00

advocate of C++ for so long this entails a certain degree
of chutzpah.1 There is hope. Microkernel developers seem to
have abandoned C++ in favor of C. The book is out of print
in most countries, and no longer encourages deviant coding
practices among susceptible young programmers.

A Word About BitC Brewer et al.’s cry that Thirty

Years is Long Enough [6] resonates. It really is a bit dis-
turbing that we are still trying to use a high-level assembly
language created in the early 1970s for critical production
code 35 years later. But Brewer’s lament begs the question:
why has no viable replacement for C emerged from the pro-
gramming languages community? In trying to answer this,
my group at Johns Hopkins has started work on a new pro-
gramming language: BitC. In talking about this work, we
have encountered a curious blindness from the PL commu-
nity.

We are often asked “Why are you building BitC?” The tacit
assumption seems to be that if there is nothing fundamen-
tally new in the language it isn’t interesting. The BitC goal
isn’t to invent a new language or any new language con-
cepts. It is to integrate existing concepts with advances in
prover technology, and reify them in a language that allows
us to build stateful low-level systems codes that we can rea-
son about in varying measure using automated tools. The
feeling seems to be that everything we are doing is straight-
forward (read: uninteresting). Would that it were so.

Systems programming — and BitC — are fundamentally
about engineering rather than programming languages. In
the 1980s, when compiler writers still struggled with inad-
equate machine resources, engineering considerations were
respected criteria for language and compiler design, and a
sense of “transparency” was still regarded as important.2

By the time I left the PL community in 1990, respect for
engineering and pragmatics was fast fading, and today it
is all but gone. The concrete syntax of Standard ML [16]
and Haskell [17] are every bit as bad as C++. It is a curi-
ous measure of the programming language community that
nobody cares. In our pursuit of type theory and semantics,

1 Chutzpah is best defined by example. Chutzpah is when a
person murders both of their parents and then asks the court
for mercy on the grounds that they are an orphan.

2 By “transparent,” I mean implementations in which the pro-
grammer has a relatively direct understanding of machine-level
behavior.

J. Shapiro, “Programming language challenges in systems codes:
why systems programmers still use C, and what to do about it”,

Workshop on Programming Languages and Operating Systems,
San Jose, CA, October 2006. DOI:10.1145/1215995.1216004

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/
https://dx.doi.org/10.1145/1215995.1216004
https://dx.doi.org/10.1145/1215995.1216004

Colin Perkins | https://csperkins.org/ | Copyright © 2019

The Rust Programming Language

• A practical, strongly typed, systems programming language
• Enumerated types and pattern matching: Option and Result

• Structure types and traits as alternative to object oriented design

• Ownership, borrowing, and multiple reference types

• Little is novel – adopts ideas from numerous other languages:

• Syntax → C, Standard ML, and Pascal

• Basic data types → C and C++

• Enumerated types and pattern matching → Standard ML

• Traits → Haskell type classes

• The ownership and borrowing rules → Cyclone

• Strongly typed and permits no-cost abstractions

!11

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2019

Type-driven Development

• Define the types first
• Define concrete numeric types, identifiers

• Define enum types to represent alternatives

• Indicate optional values, results, error types

• Using the types as a guide, write the functions
• Write the input and output types

• Write the function, using the structure of the types as a guide

• Make state machines explicit

• Consider ownership of data

• Refine and edit types and functions as necessary
• Use the compiler as a tool to help you debug your design

• Don't think of the types as checking the code, think of them as a plan, a model,
for the solution – and as machine checkable documentation

!12

M A N N I N G

Edwin Brady

Type-drive development approach
adapted from: E. Brady, "Type-

Driven Development with Idris",
Manning, March 2017.

Is this a good approach to systems development?

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/
https://amzn.to/2RRSOcp
https://amzn.to/2RRSOcp
https://amzn.to/2RRSOcp
https://amzn.to/2RRSOcp

Colin Perkins | https://csperkins.org/ | Copyright © 2019

Memory Management

!13

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2019

Layout of a Processes in Memory

• Layout of process address space:
• Kernel at top of address space

• Program text, data, and global variables at bottom of
virtual address space

• Heap allocated upwards, above BSS

• Stack grows downwards, below kernel

• Memory mapped files and shared libraries between
these

!14

Kernel Space

Stack ⬇

Memory Mapped Files and Libraries ⬇

Heap ⬆

Program Text

Data Segment
BSS Segment

0x00000000

0xC0000000

0xFFFFFFFF

Typical addresses on 32 bit machines

See also http://duartes.org/gustavo/blog/post/anatomy-of-a-program-in-memory/

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/
http://duartes.org/gustavo/blog/post/anatomy-of-a-program-in-memory/

Colin Perkins | https://csperkins.org/ | Copyright © 2019

Automatic Memory Management

• Automatic memory management distrusted by systems programmers
• Perceived high processor and memory overheads, unpredictable timing

• But, memory management problems are common:
• Unpredictable performance

• Calls to malloc()/free() can vary in execution time by several orders of magnitude

• Memory leaks

• Memory corruption and buffer overflows

• Use-after-free

• Iterator invalidation

• New automatic memory management schemes solve many problems
• Garbage collectors → lower overhead, more predictable

• Also system performance improvements made overhead more acceptable

• Region-based memory management → predictability, compile time guarantees

!15

https://csperkins.org/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/

Colin Perkins | https://csperkins.org/ | Copyright © 2019

Reference Counting

• Simplest automatic heap management

• Each allocation also allocates space for an
additional reference count
• An extra int is allocated along with every object

• Counts number of references to the object

• Increased when new reference to the object is created

• Decremented when a reference is removed

• When reference count reaches zero, there are no
references to the object, and it may be reclaimed

• Reclaiming object removes references to other objects

• May reduce their reference count to zero, so triggering
further reclamation

• Incremental, predictable, and understandable

• Potentially high cost; memory leaks with cyclic
data structures

!16

Source: P. Wilson, “Uniprocessor garbage collection
techniques”, Proc IWMM’92, DOI:10.1007/BFb0017182

HEAP SPACE

~ . - - t . . ~

, 1 ' 1 I r a . ~ /

ROOT
SET ! !

' 1 , 1

, 2

Fig. 2. Reference counting with unreclaimable cycle.

which combine advantages of simpler data structures, and the like.
Systems using reference counting garbage collectors therefore usually include

some other kind of garbage collector as well, so that if too much uncollectable cyclic
garbage accumulates, the other method can be used to reclaim it.

Many programmers who use reference-counting systems (such as Interlisp and
early versions of Smalltalk) have modified their programming style to avoid the
creation of cyclic garbage, or to break cycles before they become a nuisance. This
has a negative impact on program structure, and many programs still have storage
"leaks" that accumulate cyclic garbage which must be reclaimed by some other
means. 5 These leaks, in turn, can compromise the real-time nature of the algorithm,

5 [Bob80] describes modifications to reference counting to allow it to handle some spe-
cial cases of cyclic structures, but this restricts the programmer to certain stereotyped

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/
https://dx.doi.org/10.1007/BFb0017182
https://dx.doi.org/10.1007/BFb0017182

Colin Perkins | https://csperkins.org/ | Copyright © 2019

Region-based Memory Management

• Allocate objects with lifetimes corresponding to regions matching program scope

• Track object ownership, and changes of ownership:
• What region owns each object at any time

• Ownership of objects can move between regions

• Deallocate objects at the end of the lifetime of their owning region
• Use scoping rules to ensure objects are not referenced after deallocation

• Efficient and predictable; correctness guarantees prevent common bugs

• Constrains the type of programs that can be written

• Forces programmer to consider resource ownership early in the design – but
eliminates run-time misbehaviours and costs

!17

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2019

Garbage Collection

• Garbage collection algorithms:
• Mark-sweep

• Mark-compact

• Copying collectors

• Generational algorithms

• Incremental approaches

• Real-time collection

!18

Uniprocessor Garbage Collection Techniques

Paul R. Wilson

University of Texas
Austin, Texas 78712-1188 USA

(wilson@cs.ut exas.edu)

Abstract. We survey basic garbage collection algorithms, and variations
such as incremental and generational collection. The basic algorithms in-
clude reference counting, mark-sweep, mark-compact, copying, and treadmill
collection. Incremental techniques can kccp garbage concction pause times
short, by interleaving small amounts of collection work with program execu-
tion. Generationalschemes improve efficiency and locality by garbage collect-
ing a smaller area more often, while exploiting typical lifetime characteristics
to avoid undue overhead from long-lived objects.

1 A u t o m a t i c S t o r a g e R e c l a m a t i o n

Garbage collection is the automatic reclamation of computer storage [Knu69, Coh81,
App91]. While in many systems programmers must explicitly reclaim heap memory
at some point in the program, by using a '~free" or "dispose" statement, garbage
collected systems free the programmer from this burden. The garbage collector's
function is to find data objects I that are no longer in use and make their space
available for reuse by the the running program. An object is considered garbage
(and subject to reclamation) if it is not reachable by the running program via any
path of pointer traversals. Live (potentially reachable) objects are preserved by the
collector, ensuring that the program can never traverse a "dangling pointer" into a
deallocated object.

This paper is intended to be an introductory survey of garbage collectors for
uniprocessors, especially those developed in the last decade. For a more thorough
treatment of older techniques, see [Knu69, Coh81].

1.1 M o t i v a t i o n

Garbage collection is necessary for fully modular programming, to avoid introducing
unnecessary inter-module dependencies. A routine operating on a data structure
should not have to know what other routines may be operating on the same structure,
unless there is some good reason to coordinate their activities. If objects must be
deallocated explicitly, some module must be responsible for knowing when olher
modules are not interested in a particular object.

1 We use the term object loosely, to include any kind of structured data record, such
as Pascal records or C structs, as well as full-fledged objects with encapsulation and
inheritance, in the sense of object-oriented programming.

P. R. Wilson, “Uniprocessor garbage collection techniques”, Proceedings of the
International Workshop on Memory Management, St. Malo, France, September

1992. DOI: 10.1007/BFb0017182

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/
https://dx.doi.org/10.1007/BFb0017182
https://dx.doi.org/10.1007/BFb0017182

Colin Perkins | https://csperkins.org/ | Copyright © 2019

Memory Management Trade-offs

• Rust pushes memory management complexity onto the programmer
• Predictable run-time performance, low run-time overheads

• Uniform resource management framework, including memory

• Limits the programs that may be expressed – matches common patterns in good C code

• Garbage collection imposes run-time costs and complexity, but simpler for the
programmer

!19

Run-time Compile-time

Less Predictable More Predictable

Complexity

Performance

Garbage Collected Region-based

Does Rust make the right trade-off here?

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2019

Concurrency

!20

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2019

Concurrency, Threads, and Locks

• Operating systems expose concurrency via
processes and threads
• Processes are isolated with separate memory areas

• Threads share access to a common pool of memory

• The processor/language memory models specify
how concurrent access to shared memory works
• e.g., synchronise by explicitly locking critical sections

• synchronized methods and statements in Java

• pthread_mutex_lock()/pthread_mutex_unlock()

• Limited guarantees about unlocked concurrent access
to shared memory

!21

Ti
m

e

Thread A Thread B

Critical
Section Blocked

Critical Section

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2019

Limitations of Lock-based Concurrency

• Major problems with lock-based concurrency:
• Difficult to define a memory model that enables good performance, while

allowing programmers to reason about the code

• Difficult to ensure correctness when composing code
• Difficult to enforce correct locking

• Difficult to guarantee freedom from deadlocks

• Failures are silent – errors tend to manifest only under heavy load

• Balancing performance and correctness difficult – easy to over- or under-lock
systems

!22

https://csperkins.org/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/

Colin Perkins | https://csperkins.org/ | Copyright © 2019

Composition of Lock-based Code

• Correctness of small-scale code using locks can be ensured by careful coding
(at least in theory)

• A more fundamental issue: lock-based code does not compose to larger scale
• Assume a correctly locked bank account class, with 

methods to credit and debit money from an account

• Want to take money from a1 and move it to a2,  
without exposing an intermediate state where  
the money is in neither account

• Can’t be done without locking all other access  
to a1 and a2 while the transfer is in progress

• The individual operations are correct, but the combined operation is not

• This is lack of abstraction a limitation of the lock-based concurrency model, and
cannot be fixed by careful coding

• Locking requirements form part of the API of an object

!23

a1.debit(v)
a2.credit(v)

Preemption exposes
intermediate state

https://csperkins.org/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/

Colin Perkins | https://csperkins.org/ | Copyright © 2019

Alternative Concurrency Models

• Concurrency increasingly important
• Multicore systems now ubiquitous

• Asynchronous interactions between software and hardware devices

• Threads and synchronisation primitives problematic

• Are there alternatives that avoid these issues?
• Transactions

• Message passing

!24

https://csperkins.org/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/

Colin Perkins | https://csperkins.org/ | Copyright © 2019

Transactions

• Are transactions a reasonable programming model?

• Is transactional memory a realistic technique?
• Assumption: shared memory system, doesn't work with  

distributed and networked systems – is this true?

• Concurrent Haskell:
• Monadic IO; do notation; IORefs; spawning threads

• Type system separates state and stateless computation

• The STM interface

• Do its requirements for a purely functional language,
with controlled I/O, restrict it to being a research toy?

• How much benefit can be gained from transactional
memory in more traditional languages?

!25

AUGUST 2008 | VOL. 51 | NO. 8 | COMMUNICATIONS OF THE ACM 91

DOI:10.1145/1378704.1378725

Composable Memory Transactions
By Tim Harris, Simon Marlow, Simon Peyton Jones, and Maurice Herlihy

Abstract
Writing concurrent programs is notoriously difficult and
is of increasing practical importance. A particular source
of concern is that even correctly implemented concurrency
abstractions cannot be composed together to form larger
abstractions. In this paper we present a concurrency model,
based on transactional memory, that offers far richer com-
position. All the usual benefits of transactional memory are
present (e.g., freedom from low-level deadlock), but in addi-
tion we describe modular forms of blocking and choice that
were inaccessible in earlier work.

1. INTRODUCTION
The free lunch is over.25 We have been used to the idea that
our programs will go faster when we buy a next- generation
processor, but that time has passed. While that next-
 generation chip will have more CPUs, each individual CPU
will be no faster than the previous year’s model. If we want
our programs to run faster, we must learn to write parallel
programs.

Writing parallel programs is notoriously tricky. Main-
stream lock-based abstractions are difficult to use and they
make it hard to design computer systems that are reliable
and scalable. Furthermore, systems built using locks are dif-
ficult to compose without knowing about their internals.

To address some of these difficulties, several research-
ers (including ourselves) have proposed building program-
ming language features over software transactional memory
(STM), which can perform groups of memory operations
atomically.23 Using transactional memory instead of locks
brings well-known advantages: freedom from deadlock and
priority inversion, automatic roll-back on exceptions or tim-
eouts, and freedom from the tension between lock granular-
ity and concurrency.

Early work on software transactional memory suffered
several shortcomings. Firstly, it did not prevent transactional
code from bypassing the STM interface and accessing data
directly at the same time as it is being accessed within a trans-
action. Such conflicts can go undetected and prevent transac-
tions executing atomically. Furthermore, early STM systems
did not provide a convincing story for building operations
that may block—for example, a shared work-queue support-
ing operations that wait if the queue becomes empty.

Our work on STM-Haskell set out to address these prob-
lems. In particular, our original paper makes the following
contributions:

We re-express the ideas of transactional memory in the
setting of the purely functional language Haskell
(Section 3). As we show, STM can be expressed particu-
larly elegantly in a declarative language, and we are able
to use Haskell’s type system to give far stronger guaran-

tees than are conventionally possible. In particular, we
guarantee “strong atomicity”15 in which transactions
always appear to execute atomically, no matter what
the rest of the program is doing. Furthermore transac-
tions are compositional: small transactions can be
glued together to form larger transactions.
We present a modular form of blocking (Section 3.2).
The idea is simple: a transaction calls a retry opera-
tion to signal that it is not yet ready to run (e.g., it is try-
ing to take data from an empty queue). The programmer
does not have to identify the condition which will
enable it; this is detected automatically by the STM.
The retry function allows possibly blocking transac-
tions to be composed in sequence. Beyond this, we also
provide orElse, which allows them to be composed as
alternatives, so that the second is run if the first retries
(see Section 3.4). This ability allows threads to wait for
many things at once, like the Unix select system
call—except that orElse composes, whereas select
does not.

Everything we describe is fully implemented in the Glas-
gow Haskell Compiler (GHC), a fully fledged optimizing
compiler for Concurrent Haskell; the STM enhancements
were incorporated in the GHC 6.4 release in 2005. Further
examples and a programmer-oriented tutorial are also
available.19

Our main war cry is compositionality: a programmer can
control atomicity and blocking behavior in a modular way
that respects abstraction barriers. In contrast, lock-based
approaches lead to a direct conflict between abstraction and
concurrency (see Section 2). Taken together, these ideas offer
a qualitative improvement in language support for modular
concurrency, similar to the improvement in moving from as-
sembly code to a high-level language. Just as with assembly
code, a programmer with sufficient time and skills may ob-
tain better performance programming directly with low-level
concurrency control mechanisms rather than transactions—
but for all but the most demanding applications, our higher-
level STM abstractions perform quite well enough.

This paper is an abbreviated and polished version of an
earlier paper with the same title.9 Since then there has been
a tremendous amount of activity on various aspects of trans-
actional memory, but almost all of it deals with the question
of atomic memory update, while much less attention is paid
to our central concerns of blocking and synchronization be-
tween threads, exemplified by retry and orElse. In our
view this is a serious omission: locks without condition vari-
ables would be of limited use.

Transactional memory has tricky semantics, and the
original paper gives a precise, formal semantics for transac-
tions, as well as a description of our implementation. Both
are omitted here due to space limitations.

1_CACM_V51.8.indb 91 7/21/08 10:13:41 AM

T. Harris, S. Marlow, S. Peyton Jones, and M.
Herlihy, “Composable Memory Transactions”,

Communications of the ACM, 51(8), August
2008. DOI:10.1145/1378704.1378725.

http://www.cmi.ac.in/~madhavan/courses/pl2009/reading-material/harris-et-al-cacm-2008.pdf

Is this a realistic systems programming model?

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/
http://www.cmi.ac.in/~madhavan/courses/pl2009/reading-material/harris-et-al-cacm-2008.pdf
https://dx.doi.org/10.1145/1378704.1378725
http://www.cmi.ac.in/~madhavan/courses/pl2009/reading-material/harris-et-al-cacm-2008.pdf

Colin Perkins | https://csperkins.org/ | Copyright © 2019

Message Passing Systems

• System is a set of communicating processes – no shared mutable state

• Communication via exchange of messages
• Immutable or linearly typed to ensure safety

!26

use std::sync::mpsc::channel;
use std::thread;

fn main() {
 let (tx, rx) = channel();

 thread::spawn(move|| {
 let _ = tx.send(42);
 });

 match rx.recv() {
 Ok(value) => {
 println!(“Got {}”, value);
 }
 Err(error) => {
 // An error occurred…
 }
 }
}

main()

rx
tx

anonymous closure

42

Does this offer sufficient benefit over shared state concurrency?

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2019

Coroutines and Asynchronous Code

• Provide language and run-time support for I/O multiplexing on a single thread, in
a more natural style

• Runtime schedules async functions on a thread pool, yielding to other code on
await!() calls → low-overhead concurrent I/O

!27

async fn read_exact<T: AsyncRead>(input: &mut T, buf: &mut [u8]) -> Result<(), std::io::Error> {
 let mut cursor = 0;
 while cursor < buf.len() {
 cursor += await!(input.read(&mut buf[cursor..]))?;
 }
}

fn read_exact<T: Read>(input: &mut T, buf: &mut [u8]) -> Result<(), std::io::Error> {
 let mut cursor = 0;
 while cursor < buf.len() {
 cursor += input.read(&mut buf[cursor..])?;
 }
}

Do the benefits outweigh the cooperative multitasking concern?

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2019

Security

!28

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2019

Memory Safety in Programming Languages

• A memory safe language is one that ensures
that the only memory accessed is that owned
by the program, and that such access is done
in a manner consistent of the declared type of
the data
• The program can access memory through its global

and local variables, or through explicit references to
them

• The program can access heap memory it allocated
via an explicit reference to that memory

• All accesses obey the type rules of the language
• Array bounds are respected

• Memory cannot be accessed after it’s freed

• References can only refer to objects of matching type

• …

!29

Memory Safe Memory Unsafe

Java, Scala, C#,
Rust, Go,

Python, Ruby,
Tcl, FORTRAN,

COBOL,
Modula-2,

Occam, Erlang,
Ada, Pascal,
Haskell, …

C, C++,
Objective-C

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2019

Impact of Memory Unsafe Languages

• Lack of memory safety breaks the machine abstraction
• With luck, program crashes – segmentation violation

• If unlucky, memory unsafe behaviour corrupts other data owned by program
• Undefined behaviour occurs

• Cannot predict without knowing precise layout of program in memory

• Difficult to debug

• Potential security risk – corrupt program state to force arbitrary code execution

!30

https://csperkins.org/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/

Colin Perkins | https://csperkins.org/ | Copyright © 2019

Impact of Memory Unsafe Languages – Security (2/2)

• ~70% of Microsoft security updates fix bugs relating to unsafe memory usage
• Interestingly, this has not significantly changed in >10 years

• We’re not getting better at writing secure code in memory unsafe languages

!31

~70% of the vulnerabilities addressed through a security update each year continue to be memory safety issues

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018

%

o

f
C

V
E
s

Patch Year

% of memory safety vs. non-memory safety CVEs by patch year

Memory safety Not memory safety

Source: Matt Miller, Microsoft, presentation at BlueHat IL conference, February 2019
https://github.com/Microsoft/MSRC-Security-Research/tree/master/presentations/2019_02_BlueHatIL

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2019

Mitigations for Memory Unsafe Languages (1/2)

• Use modern tooling for C and C++ development:
• Compile C code with, at least, clang —W -Wall -Werror

• Use clang static analysis tools during debugging:

• Use modern C++ language features:
• I advise against C++ programming – language is too complex to understand

• But if you have to use C++, modernise the code base, to use newer – safer –
language features and idioms, where possible

• Consider rewriting the most critical sections of the code in a memory
safe language:
• Rust can call C functions directly, and can be compiled into a library that can

be directly linked with C or C++

• Objective-C and Swift can similarly be combined in the Apple ecosystem

!32

https://csperkins.org/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/

Colin Perkins | https://csperkins.org/ | Copyright © 2019

Mitigations for Memory Unsafe Languages (2/2)

• Writing safe code in unsafe languages is difficult
• Easy to rationalise each individual bug – “How could anyone write that?”

• But, people will continue to make mistakes

• Memory safe languages eliminate common classes of vulnerability; strong type
systems help detect mistakes early

!33

 if ((err = SSLHashSHA1.update(&hashCtx, &signedParams)) != 0)
 goto fail;
 goto fail;
 ... other checks ...
 fail:
 ... buffer frees (cleanups) ...
 return err;

https://dwheeler.com/essays/apple-goto-fail.html

https://csperkins.org/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/

Colin Perkins | https://csperkins.org/ | Copyright © 2019

Parsing and LangSec

• Can we combine better parsing with
modern, strongly typed, languages to
improve network security?

• Is performance good enough?

• Can we improve the way we design
protocols?

!34

4! AU G U S T 20 1 5 VO L . 4 0, N O. 4 www.usenix.org

SECURITYThe Bugs We Have to Kill
S E R G E Y B R A T U S , M E R E D I T H L . P A T T E R S O N , A N D A N N A S H U B I N A

Sergey Bratus is a Research
Associate Professor of com-
puter science at Dartmouth
College. He sees state-of-
the-art hacking as a distinct

research and engineering discipline that,
although not yet recognized as such, harbors
deep insights into the nature of computing. He
has a PhD in mathematics from Northeastern
University and worked at BBN Technologies on
natural language processing research before
coming to Dartmouth.
sergey@cs.dartmouth.edu

Meredith L. Patterson is
the founder of Upstanding
Hackers. She developed the
first language-theoretic defense
against SQL injection in 2005

as a PhD student at the University of Iowa and
has continued expanding the technique ever
since. She lives in Brussels, Belgium.
mlp@upstandinghackers.com

Anna Shubina is a Research
Associate at the Dartmouth
Institute for Security,
Technology, and Society and
maintains the CRAWDAD.org

repository of traces and data for all kinds of
wireless and sensor network research. She was
the operator of Dartmouth’s Tor node when
the Tor network had about 30 nodes total.
ashubina@cs.dartmouth.edu

The code that parses inputs is the first and often the only protection
for the rest of a program from malicious inputs. No programmer can
afford to verify every implied condition on every line of code—even

if this were possible to implement without slowing execution to a crawl. The
parser is the part that is supposed to create a world for the rest of the pro-
gram where all these implied conditions are true and need not be explicitly
checked at every turn. Sadly, this is exactly where most parsers fail, and the
rest of the program fails with them. In this article, we explain why parsers
continue to be such a problem, as well as point to potential solutions that can
kill large classes of bugs.
To do so, we are going to look at the problem from the computer science theory angle. Parsers,
being input-consuming machines, are quite close to the theory’s classic computing models,
each one an input-consuming machine: finite automata, pushdown automata, and Turing
machines. The latter is our principal model of general-purpose programming, the comput-
ing model with the ultimate power and flexibility. Yet this high-end power and flexibility
come with a high price, which Alan Turing demonstrated (and to whose proof we owe our
very model of general-purpose programming): our inability to predict, by any general static
analysis algorithm, how programs for it will execute.

Yet most of our parsers are just a layer on top of this totally flexible computing model. It is
not surprising, then, that without carefully limiting our parsers’ design and code to much
simpler models, we are left unable to prove these input-consuming machines secure. This is
a powerful argument for making parsers and their input formats and protocols simpler, so
that securing them does not require having to solve undecidable problems!

Parsers, Parsers Everywhere
To quote Koprowski and Binsztok [1]:

Parsing is of major interest in computer science. Classically discovered by students
as the first step in compilation, parsing is present in almost every program
which performs data-manipulation. For instance, the Web is built on parsers.
The HyperText Transfer Protocol (HTTP) is a parsed dialog between the client,
or browser, and the server. This protocol transfers pages in HyperText Markup
Language (HTML), which is also parsed by the browser. When running web-
applications, browsers interpret JavaScript programs which, again, begins with
parsing. Data exchange between browser(s) and server(s) uses languages or formats
like XML and JSON. Even inside the server, several components (for instance
the trio made of the HTTP server Apache, the PHP interpreter and the MySQL
database) often manipulate programs and data dynamically; all require parsers.

So do the lower layers of the network stack down to the IP and the link layer protocols, and
also other OS parts such as the USB drivers [2] (and even the hardware: turning PHY layer
symbol streams into frames is parsing, too!). For all of these core protocols, we add, their
parsers have had a long history of failures, resulting in an Internet where any site, program,
or system that receives untrusted input can be presumed compromised.

S. Bratus, M. L. Patterson, and A. Shubina. The bugs we have to kill. ;login:,
40(4):4–10, August 2015. http://langsec.org/papers/the-bugs-we-have-to-kill.pdf

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/
http://langsec.org/papers/the-bugs-we-have-to-kill.pdf
http://langsec.org/papers/the-bugs-we-have-to-kill.pdf

Colin Perkins | https://csperkins.org/ | Copyright © 2019

Causes of Security Vulnerabilities

• Security vulnerabilities generally caused by persuading a program to
do something that the programmer did not expect
• Write past the end of a buffer

• Treat user input as executable

• Confuse a permission check

• Violate an assumption in the code

• Strong typing makes assumptions explicit
• Use explicit types rather than generic types

• Define safe conversion functions

!35

https://csperkins.org/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/

Colin Perkins | https://csperkins.org/ | Copyright © 2019

No Silver Bullet

!36

Memory safety and strong typing won’t eliminate security vulnerabilities

But, used carefully, they eliminate certain classes of vulnerability, and make others
less likely by making hidden assumptions – and their consequences – visible

Do you agree with this characterisation?

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2019

Future Directions

!37

• Scaling systems programming

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2019

Concurrency

• Still no good solutions for concurrent programming
• Transactional memory doesn’t sit well with impure imperative languages

• Message passing has issues with back pressure, race conditions, deadlocks,
large-scale orchestration

• Asynchronous code is a work-around for heavyweight threads

• None scale to GPU programming → implicit parallelism?

!38

https://csperkins.org/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/

Colin Perkins | https://csperkins.org/ | Copyright © 2019

Data Centre Scale Computing

!39

How do we  
scale systems
programming to the  
scale of a data centre?

• Distributed memory computers with millions of cores
• Hard to configure nodes and communications at this

scale – automatic configuration, scaling, tuning, and
fault tolerance essential

• Unclear that the future should be large-scale Linux
clusters – what comes next?

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2019

Distributed Operating Systems

• Barrelfish – a message passing kernel for multicore
systems
• Each core runs a separate operating systems instance

• All communication between cores is via message passing;
no “main” CPU to act as central orchestrator

• A research prototype to test an idea, not a product
• Where is the boundary for a Barrelfish-like system?

• Distinction between a distributed multi-kernel and a
distributed system of networked computers? Should there
be such a distinction?

• How does it relate to concurrent programming, data centres,
distributed edge computing, etc?

!40

The Multikernel: A new OS architecture for scalable multicore systems

Andrew Baumann�, Paul Barham†, Pierre-Evariste Dagand‡, Tim Harris†, Rebecca Isaacs†,
Simon Peter�, Timothy Roscoe�, Adrian Schüpbach�, and Akhilesh Singhania�

�Systems Group, ETH Zurich
†Microsoft Research, Cambridge ‡ENS Cachan Bretagne

Abstract
Commodity computer systems contain more and more
processor cores and exhibit increasingly diverse archi-
tectural tradeo�s, including memory hierarchies, inter-
connects, instruction sets and variants, and IO configu-
rations. Previous high-performance computing systems
have scaled in specific cases, but the dynamic nature of
modern client and server workloads, coupled with the
impossibility of statically optimizing an OS for all work-
loads and hardware variants pose serious challenges for
operating system structures.

We argue that the challenge of future multicore hard-
ware is best met by embracing the networked nature of
the machine, rethinking OS architecture using ideas from
distributed systems. We investigate a new OS structure,
the multikernel, that treats the machine as a network of
independent cores, assumes no inter-core sharing at the
lowest level, and moves traditional OS functionality to
a distributed system of processes that communicate via
message-passing.

We have implemented a multikernel OS to show that
the approach is promising, and we describe how tradi-
tional scalability problems for operating systems (such
as memory management) can be e�ectively recast using
messages and can exploit insights from distributed sys-
tems and networking. An evaluation of our prototype on
multicore systems shows that, even on present-day ma-
chines, the performance of a multikernel is comparable
with a conventional OS, and can scale better to support
future hardware.

1 Introduction

Computer hardware is changing and diversifying faster
than system software. A diverse mix of cores, caches, in-
terconnect links, IO devices and accelerators, combined
with increasing core counts, leads to substantial scalabil-
ity and correctness challenges for OS designers.

x86

Async messages

App

x64 ARM GPU

App App

OS node OS node OS node OS node

State
replica

State
replica

State
replica

State
replica

App

Agreement
algorithms

Interconnect

Heterogeneous
cores

Arch-specific
code

Figure 1: The multikernel model.

Such hardware, while in some regards similar to ear-
lier parallel systems, is new in the general-purpose com-
puting domain. We increasingly find multicore systems
in a variety of environments ranging from personal com-
puting platforms to data centers, with workloads that are
less predictable, and often more OS-intensive, than tradi-
tional high-performance computing applications. It is no
longer acceptable (or useful) to tune a general-purpose
OS design for a particular hardware model: the deployed
hardware varies wildly, and optimizations become obso-
lete after a few years when new hardware arrives.

Moreover, these optimizations involve tradeo�s spe-
cific to hardware parameters such as the cache hierarchy,
the memory consistency model, and relative costs of lo-
cal and remote cache access, and so are not portable be-
tween di�erent hardware types. Often, they are not even
applicable to future generations of the same architecture.
Typically, because of these di⇥culties, a scalability prob-
lem must a�ect a substantial group of users before it will
receive developer attention.

We attribute these engineering di⇥culties to the ba-
sic structure of a shared-memory kernel with data struc-
tures protected by locks, and in this paper we argue for
rethinking the structure of the OS as a distributed sys-
tem of functional units communicating via explicit mes-

1

A. Baumann et al., “The Multikernel: A new OS
architecture for scalable multicore systems”, Proc. ACM

Symposium on Operating Systems Principles, 2009.
DOI:10.1145/1629575.1629579

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/
https://dx.doi.org/10.1145/1629575.1629579
https://dx.doi.org/10.1145/1629575.1629579

Colin Perkins | https://csperkins.org/ | Copyright © 2019

Future Systems Programming Languages

• Increasingly seeing research ideas incorporated
into mainstream programming languages
• Rust, Swift – abstraction, resource management, strong

and expressive type systems, low-level control

• Erlang, Go – concurrency, fault tolerance, communication

• Choose the language based on problem domain,
available tooling, and expertise
• Good solutions for programming single systems

• We still have a lot to learn about scaling to large clusters

!41

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2019

Scaling Systems Programming

• Unix and C made sense when programming simple single-core systems
• And form the basis of most existing systems – but what comes next?

• Modern massively concurrent and distributed applications need new approaches:
• Low-level performance still crucial, but also need type systems and abstractions to hide the

complexity – no-one can hold all the details in their head

• Tooling is essential – to check invariants, document assumptions, ensure consistency

• Deployment, configuration, and management must become increasingly autonomic – DevOps,
infrastructure as code, self-managing

!42

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2019

What are we missing?

!43

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2019

Assessment

!44

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Colin Perkins | https://csperkins.org/ | Copyright © 2019

Assessment

• This is a level M course, worth 10 credits

• Coursework (20%)
• Essay (10%) and programming exercise (10%)

• Exercise 1 marks available from teaching office

• Exercise 2 marks will be returned by 22 March 2019

• Examination (80%):
• Material from the lectures, labs, and cited papers is examinable

• Aim is to test your understanding of the material, not to test your memory of all
the details; explain why – don’t just recite what

• Two hours duration; answer three out of four questions

• Sample paper will be provided by 22 March 2019

!45

https://csperkins.org/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/

Colin Perkins | https://csperkins.org/ | Copyright © 2019

The End

!46

! |!NOVEMBER 2013! |!WWW.USENIX.ORG PAGE 5

The Night Watch
J A M E S M I C K E N S

A s a highly trained academic researcher, I spend a lot of time trying
to advance the frontiers of human knowledge. However, as someone
who was born in the South, I secretly believe that true progress is

a fantasy, and that I need to prepare for the end times, and for the chickens
coming home to roost, and fast zombies, and slow zombies, and the polite
zombies who say “sir” and “ma’am” but then try to eat your brain to acquire
your skills. When the revolution comes, I need to be prepared; thus, in the
quiet moments, when I’m not producing incredible scientific breakthroughs,
I think about what I’ll do when the weather forecast inevitably becomes
RIVERS OF BLOOD ALL DAY EVERY DAY. The main thing that I ponder is
who will be in my gang, because the likelihood of post-apocalyptic survival
is directly related to the size and quality of your rag-tag group of associates.
There are some obvious people who I’ll need to recruit: a locksmith (to open
doors); a demolitions expert (for when the locksmith has run out of ideas);
and a person who can procure, train, and then throw snakes at my enemies
(because, in a world without hope, snake throwing is a reasonable way to
resolve disputes). All of these people will play a role in my ultimate success
as a dystopian warlord philosopher. However, the most important person in
my gang will be a systems programmer. A person who can debug a device
driver or a distributed system is a person who can be trusted in a Hobbesian
nightmare of breathtaking scope; a systems programmer has seen the terrors
of the world and understood the intrinsic horror of existence. The systems
programmer has written drivers for buggy devices whose firmware was
implemented by a drunken child or a sober goldfish. The systems program-
mer has traced a network problem across eight machines, three time zones,
and a brief diversion into Amish country, where the problem was transmitted
in the front left hoof of a mule named Deliverance. The systems program-
mer has read the kernel source, to better understand the deep ways of the
universe, and the systems programmer has seen the comment in the sched-
uler that says “DOES THIS WORK LOL,” and the systems programmer has
wept instead of LOLed, and the systems programmer has submitted a kernel
patch to restore balance to The Force and fix the priority inversion that was
causing MySQL to hang. A systems programmer will know what to do when
society breaks down, because the systems programmer already lives in a
world without law.

James Mickens is a researcher
in the Distributed Systems
group at Microsoft’s Redmond
lab. His current research
focuses on web applications,

with an emphasis on the design of JavaScript
frameworks that allow developers to
diagnose and fix bugs in widely deployed
web applications. James also works on fast,
scalable storage systems for datacenters.
James received his PhD in computer science
from the University of Michigan, and a
bachelor’s degree in computer science from
Georgia Tech. mickens@microsoft.com

J. Mickens. The night watch. ;login: logout, pages 5–8, November 2013.
https://www.usenix.org/system/files/1311_05-08_mickens.pdf

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/
https://www.usenix.org/system/files/1311_05-08_mickens.pdf
https://www.usenix.org/system/files/1311_05-08_mickens.pdf

