
Reliability Modelling and

Analysis of Real�Time Systems

Colin Stanley Perkins

Submission in partial ful�llment of the requirements

for the degree of

Doctor of Philosophy

University of York

Department of Electronics

September ����

Abstract

The reliability modelling and analysis of real�time� fault�tolerant� embedded systems is

considered� It is shown that many existing reliability modelling techniques are inade�

quate for this task� since they model only the overall system reliability� whilst the timing

properties of the system are either neglected� or reduced to simple metrics� A new re�

liability model is derived� which permits the modelling of both overall system reliability�

and the probability distribution of system completion and failure times� This model is

based on a set of high level system attributes� which it is expected may be estimated

from experimental data� The model is applied to the study of recovery block systems�

and it is shown that the results obtained are compatible with� and extend� a number of

other system reliability models� The thesis concludes with a discussion of the application

of more detailed timing information to the scheduling of safety�critical real�time systems�

It is shown that the additional timing information available with models such as that

developed herein� allows designers to make more informed choices regarding the tradeo�

between safety and performance�

CONTENTS i

Contents

Acknowledgements xi

Declaration xii

� Introduction �

� Fault�Tolerant Embedded Systems �

��� Implementation of fault�tolerance �

����� Hardware based fault�tolerance � � � � � � � � � � � � � � � � � � �

����� Software based fault�tolerance � � � � � � � � � � � � � � � � � � �

��� Basic Techniques For Software Fault�Tolerance � � � � � � � � � � � � � �

����� N�Version Programming � 	

����� N�Self Checking Programming � � � � � � � � � � � � � � � � � � 	

����
 Atomic Actions ��

��
 Advanced Techniques for Software Fault Tolerance � � � � � � � � � � � ��

��
�� Atomic Transactions ��

��
�� Recovery Blocks ��

��
�
 Distributed recovery block �

��
�� Conversation �

��
�� Distributed conversation ��

CONTENTS ii

��� Summary �

� Reliability Modelling ��

�� Markov chain models ��

���� Formal de�nition of a Markov chain � � � � � � � � � � � � � � � ��

���� Application of Markov models � � � � � � � � � � � � � � � � � � �	

������ Arlat et al� and Pucci � � � � � � � � � � � � � � � � � � ��

������ Ledoux � Rubino ��

�����
 Csenki and Balakrishnan � Ragavendra � � � � � � � � ��

�� Petri Net Models ��

���� Coloured Petri Nets ��

���� Timed Petri Nets ��

���
 Stochastic Petri Nets ��

���� Discrete Time Stochastic Petri Nets � � � � � � � � � � � � � � � �

���� Generalised Stochastic Petri Nets � � � � � � � � � � � � � � � � � �

���
 Petri Nets� Summary and Examples � � � � � � � � � � � � � � � ��

���
�� Geist et al� ��

���
�� Shieh et al� �	

���
�
 Hein � Goswami �	

�
 Discussion �
�

� A New System Reliability Model ��

��� Background �
�

��� Underlying Mathematical Model �
�

��
 Formal de�nition of the model �
�

��
�� Basic Network Model �
�

��
�� Single�step execution rules �
	

CONTENTS iii

��
�
 n�step execution rules ��

��
�� Markings and system state ��

��� Discussion ��

� Generic Real Time System Model ��

��� A Generic Real Time System Model ��

��� Parameter Estimation ��

��
 Standard Completion Pro�les �

��
�� Exponential Completion Pro�le � � � � � � � � � � � � � � � � � � �

��
�� Uniform Completion Pro�le ��

��
�
 Binomial Completion Pro�le �

��� Analysis of the Generic Model ��

��� Summary �	

� Application to Systems Modelling ��

�� Derivation of System Models �
�

�� Recovery Block Model� Infallible Acceptance Test � � � � � � � � � � � �
�

���� Sample Analysis �
�

���� Recovery Block Timing Properties � � � � � � � � � � � � � � � �
�

������ Mean Completion Time � � � � � � � � � � � � � � � � � ��

������ Mean Time to Failure � � � � � � � � � � � � � � � � � ��

�����
 Recovery Block Timing Properties� Summary � � � � � ��

���
 The E�ects of Dependent Alternate Failure Rates � � � � � � � � ��

���
�� The E�ects of Dependent Alternates� pd � � � � � � � ��

���
�� The E�ects of Dependent Alternates� pf � � � � � � � ��

���
�
 The E�ects of Dependent Alternates� Summary � � � � ��

���� Discussion ��

CONTENTS iv

�
 Recovery Block Model� Fallible Acceptance Test � � � � � � � � � � � � � ��

�� Comparison with other Recovery Block Models � � � � � � � � � � � � � ��

���� Eckhardt � Lee and Nicola � Goyal � � � � � � � � � � � � � � � ��

���� Pucci ��

���
 Csenki � 	�

���� Laprie � Kanoun � 	�

���� Arlat et al� 	�

�� Other System Models � 	�

���� N�version programming Model � � � � � � � � � � � � � � � � � � 	

�
 Summary � 	�

� Application to Scheduling ��

��� Problems in Real�Time Scheduling � 	�

��� Application of Detailed Timing Data ���

��
 Summary ���

	 Conclusions �
�

��� Suggestions for Further Work ��

��� Summary ���

A Simulation Software �
�

A�� Additional Tcl Commands ���

A�� User Reference ���

B Generic Real Time System Model� Analysis ���

C Timing Properties of the Recovery Block ���

C�� Recovery Block System ��

C�� Recovery Block System �
�

CONTENTS v

C�
 Summary �
�

D Coincident Faults in Recovery Block Systems ��	

D�� E�ects of pd �
	

D�� E�ects of pf ���

Bibliography ���

LIST OF TABLES vi

List of Tables

��� Arc weights for the exponential system � � � � � � � � � � � � � � � � � � ��

��� Actual and required area for standard binomial completion pro�les � � � ��

�� Alternate Parameters �
�

�� Possible Orderings for a Three Alternate Recovery Block � � � � � � � �
�

�
 Estimated acceptance test parameters � � � � � � � � � � � � � � � � � � ��

�� Alternate Failure Probabilities �

C�� Alternate Parameters ��

LIST OF FIGURES vii

List of Figures

��� Triple�Modular Redundancy with Voter � � � � � � � � � � � � � � � � � �

�� The model of Geist et al� ��

��� The structure of a typical embedded control system � � � � � � � � � � �

��� Random walk through a system�s input space � � � � � � � � � � � � � �
�

��
 Basic modes of execution �

��� Basic State Chain ��

��� System model with detectable faults �

��
 System model with hidden faults ��

��� System model with hidden faults �example� � � � � � � � � � � � � � � � ��

��� Derivation of arc weights from completion pro�le � � � � � � � � � � � � �	

��
 Exponential completion pro�le ��

��� Overall completion probability� Exponential system � � � � � � � � � � � ��

��� Standard exponential completion pro�les � � � � � � � � � � � � � � � � � �

��	 Standard uniform completion pro�les� and corresponding arc weights � � �

���� Binomial distribution� E�ects of changing p � � � � � � � � � � � � � � � ��

���� Standard binomial completion pro�les� and corresponding arc weights � ��

�� Alternate Model With Infallible Acceptance Test � � � � � � � � � � � � �

LIST OF FIGURES viii

�� Recovery Block Model �
�

�
 Basic Alternate Completion Pro�les � � � � � � � � � � � � � � � � � � �
�

�� Recovery Block Completion�Failure Probability vs� Time� as pd is varied

�� Recovery Block Instantaneous Completion Probability for di�erent pd �
	

�
 Recovery Block Cumulative Completion Probability for di�erent pd � � ��

�� E�ects of pd on cumulative completion probability � � � � � � � � � � � ��

�� Recovery Block Failure Probability ��

�	 Mean Completion Time �

��� Mean Time To Failure ��

��� Alternate Model With Fallible Acceptance Test � � � � � � � � � � � � � ��

��� E�ects of fallible acceptance tests� Instantaneous Completion Pro�le � � �

��
 E�ects of fallible acceptance tests� Cumulative Completion Pro�le � � � ��

��� E�ects of fallible acceptance tests� Failure Pro�les � � � � � � � � � � � ��

��� Recovery Block Failure Probability� based on Nicola � Goyal � � � � � � �

��
 Comparison with Nicola � Goyal�s model � � � � � � � � � � � � � � � � � ��

��� Pucci�s Recovery Block Model ��

��� Arlat�s Recovery Block Model � 	�

��	 Initial N�version programming model � � � � � � � � � � � � � � � � � � � 	�

��� The scheduling taxonomy of Casavant � Kuhl � � � � � � � � � � � � � � 	�

B�� Binomial �������� Completed ���

B�� Binomial �������� Detectable Fault ���

B�
 Binomial �������� Failed ��

B�� Binomial �������� Hidden Fault ���

B�� Exponential �������� Completed ���

B�
 Exponential �������� Detectable Fault � � � � � � � � � � � � � � � � � � ��	

LIST OF FIGURES ix

B�� Exponential �������� Failed ���

B�� Exponential �������� Hidden Fault ���

B�	 Uniform �������� Completed ���

B��� Uniform �������� Detectable Fault ��

B��� Uniform �������� Failed ���

B��� Uniform �������� Hidden Fault ���

C�� Mean Completion�Failure Time ���

C�� Recovery Block Instantaneous Completion Probability for di�erent pd � ���

C�
 Recovery Block Instantaneous Failure Probability for di�erent pd � � � � ��	

C�� Recovery Block Cumulative Completion Probability for di�erent pd � � �
�

C�� Recovery Block Cumulative Failure Probability for di�erent pd � � � � � �
�

C�
 Recovery Block Alternates �
�

C�� Recovery Block Instantaneous Completion Probability for di�erent pd � �

C�� Recovery Block Cumulative Completion Probability for di�erent pd � � �
�

C�	 Recovery Block Instantaneous Failure Probability for di�erent pd � � � � �
�

C��� Recovery Block Cumulative Failure Probability for di�erent pd � � � � � �

C��� Mean Completion�Failure Time �
�

D�� Instantaneous Completion Probability� pd � ������� � � � � � � � � � � ���

D�� Instantaneous Failure Probability� pd � ������� � � � � � � � � � � � � � ���

D�
 Cumulative Completion Probability� pd � ������� � � � � � � � � � � � � ���

D�� Cumulative Failure Probability� pd � ������� � � � � � � � � � � � � � � ��

D�� Instantaneous Completion Probability� pd � ������� � � � � � � � � � � ���

D�
 Instantaneous Failure Probability� pd � ������� � � � � � � � � � � � � � ���

D�� Cumulative Completion Probability� pd � ������� � � � � � � � � � � � � ��

D�� Cumulative Failure Probability� pd � ������� � � � � � � � � � � � � � � ���

LIST OF FIGURES x

D�	 Instantaneous Completion Probability � � � � � � � � � � � � � � � � � � ��	

D��� Instantaneous Failure Probability ���

D��� Cumulative Completion Probability ���

D��� Cumulative Failure Probability ���

ACKNOWLEDGEMENTS xi

Acknowledgements

This work was supported by the UK Engineering and Physical Sciences Research Council�

and by the University of York� For this latter support� I am grateful to Prof� Peter Watson�

of the Department of Electronics�

I wish to acknowledge the contribution made by the members of the Adaptive Systems

Engineering Group� both past and present� Joxe Artola� Tim Brookes� Vincent Dubois�

Ignacio Espert� Mike Freeman� Pete French� Neil Garner� Don Goodeve� Neil Howard�

Roger Pepp�e� Vicky Rodriguez� Barry Scowen� Ian Stevenson� Catherine Thomas� Euge�

nio Zabala and Joanna Zelechowska� Working in the group has been an enjoyable and

enlightening experience� and I wish you all every success in the future�

Thanks are due to my supervisor� Dr� Andy Tyrrell� whose advice has been invaluable

in the completion of this work� In addition� I wish to thank my colleagues at University

College London� for their patience during the completion of this thesis�

On a more personnel note� I wish to thank the following people� without whose support�

advice and friendship� these last four years would have been a much less pleasant ex�

perience� Claire Faulkner� for starting it all� Jill Paterson� for being there when things

went wrong� Stewart Cambridge� for meaningless coincidences� Carrie Vaughn� for patri�

otism� Peter Phillips� Chris Paulson�Ellis� Zo�e Wood and Satty Mann for the loan of a

basement� and� �nally� to Sonja Krugmann� with love�

DECLARATION xii

Declaration

This thesis is submitted in partial ful�lment of the requirements for the degree of Doctor

of Philosophy at the University of York� I con�rm that this thesis is entirely my own work�

and that all contributions from other agencies through publication or direct contact are

explicitly attributed�

Extracts from this work have been presented at the �nd Conference on the Mathematics

of Dependable Systems� University of York� ��
 September �		� ����� and at the �th

European Simulation Symposium� Friedrich�Alexander�Universit�at Erlangen�N�urnburg�

�
��� October �		� ��
��

CHAPTER �� INTRODUCTION �

Chapter �

Introduction

In recent years� the use of embedded computers to provide control functionality as a

part of a complete system has become commonplace� In many cases� these embedded

computers are fundamental to the operation of a system� and it is not possible to con�

trol that system should the computers fail� Examples of such systems may be found

in all areas� from simple embedded micro�controllers operating washing machines and

toasters� to aircraft �ight control systems� medical instrumentation and chemical plant

control systems� Indeed� there is a growing realisation that computers can contribute

substantially to accidents when they operate as a subsystem within a potentially dan�

gerous system� and the growing reliance of society on such computer�based control is

becoming a matter for serious concern�

There are two methods by which that concern may be allayed� fault prevention and

fault�tolerance� If extreme care is taken in the design and implementation of a system

it is possible that that system may be fault�free� and will always operate correctly� This

is the approach of fault prevention� This is� of course� a di�cult and expensive process�

and the validation of systems to such high levels of dependability is the subject of

some controversy ���� �
�� Indeed� many systems are of su�cient complexity that fault

prevention can never be completely successful� and it must be assumed that some faults

are present in the completed system� This process is highlighted by the many reliability

growth models which have been developed ��
� �
����
�� ���� those wishing to produce

systems which contain no faults are clearly �ghting against the law of diminishing returns�

Alternatively� if it is accepted that a system will contain faults� e�ort may be expended to

predict the likelihood of the occurrence of those faults� and to limit the e�ects of those

faults which do cause errors� This is an engineering solution to the problem of designing

reliable systems� produce a system which is fault free� to the extent that is reasonably

CHAPTER �� INTRODUCTION �

practicable ����� Once this is complete� an assessment must be made of the tolerability

of risk from that system �for example� see �

��� and for this purpose some means of

modelling the system�s reliability must be employed� Following these considerations� a

novel system reliability model is proposed� which provides greater expressive power in

terms of derivation of the reliability and timing properties of a system� when compared

with previously proposed models�

A growing awareness of the increasing reliance of society on such unproven technology�

together with a number of widely publicised failures �for numerous examples� see the

discussion in ����� has lead to much e�ort being expended in both areas� It is� however� the

second method which forms the basis of this thesis� the modelling and reliability analysis

of real�time embedded systems is considered� together with techniques for achieving

reliability in the presence of faults�

Following this introduction� the main body of this thesis is composed of the following

chapters�

� Chapter � Fault Tolerant Systems� The problem of achieving reliability in em�

bedded real�time systems and techniques for providing fault tolerance are discussed�

together with their relative advantages and disadvantages�

� Chapter � Reliability Modelling � The need for reliability modelling to determine

the e�ectiveness of fault tolerant systems is discussed� This is followed by a critical

overview of the applicable techniques� leading to a discussion of the limitations of

these techniques when applied to real�time systems� and the need for a new system

reliability model�

� Chapter � A New System Reliability Model � A new reliability model is devel�

oped� This model is based on the notion of random fault occurrence and provides

a stochastic view of the execution of a system� allowing the state of the system to

be derived for a particular point in its operation �����

� Chapter � Generic Real Time System Model � The model developed in chapter

�� is used to derive a generic model for the behaviour of real time systems� This

model uses a generic high�level formalism based upon a Markov chain with a lattice

structure which represents the progress of a computation� allowing both functional

and time correctness of the system to be modelled� This is an improvement on

traditional system reliability models� such as those discussed in chapter
� which

typically focus on functional correctness� and do not adequately model the temporal

properties of such systems�

� Chapter � Application to Systems Modelling � A number of the techniques for

software fault tolerance which were discussed in chapter � are revisited� and their

CHAPTER �� INTRODUCTION �

reliability characteristics are evaluated using the model derived in chapter � ��
��

This leads to the possibility of generating more accurate failure time information

than has been available previously� and hence for improved reliability modelling�

� Chapter � Application to Scheduling � A discussion of the application of such

accurate failure time information to the problem of scheduling real�time systems

is made�

Finally� chapter � concludes the thesis and provides suggestions for further work� A num�

ber of appendices follow� providing further data to reinforce a number of the conclusions

drawn in the main text�

CHAPTER �� FAULT�TOLERANT EMBEDDED SYSTEMS �

Chapter �

Fault�Tolerant Embedded

Systems

It has been noted that� unless extreme care is taken in the design� implementation and

validation of a system� then that system will contain faults� In addition� that system

will be fault intolerant unless specially designed to tolerate faults� In this chapter�

the techniques required to achieve fault tolerance are discussed� together with their

applicability to di�erent classes of system�

There are many classes of system which must be considered when designing techniques

for achieving fault tolerance� the requirements of a real�time embedded control system

are clearly di�erent to those of an electronic mail delivery system� for example� yet both

systems must be designed to tolerate a range of possible faults� Since it is desired

to compare the properties of di�erent techniques� the range of applicability of those

techniques must �rst be de�ned� it is pointless to compare techniques designed for

entirely di�erent application areas� For this reason the discussion in this thesis will be

restricted to real�time embedded systems�

There are two classes of real�time system� soft real�time systems which may tolerate

occasional missed deadlines� provided that on average� deadlines are met� and hard real�

time systems in which the response must occur within a speci�c time period or else

system failure will occur� any missed deadline is fatal� As an example of this� consider

a long running database system� where there is some potential for transient hardware

failure� A system such as this may be designed using transaction based techniques�

with a potentially unlimited retry to ensure an eventual consistent state� Whilst faults

in a system such as this will degrade performance� there is no speci�c penalty for late

results� In contrast� a �ight control system must produce results which are not only

CHAPTER �� FAULT�TOLERANT EMBEDDED SYSTEMS �

correct� but also timely� In practice� there is a continuum between these two extremes

of behaviour� but the distinction is useful to retain when considering the behaviour of

di�ering techniques for achieving fault tolerance�

The remainder of this chapter will discuss di�ering mechanisms for building fault tolerant

real�time systems�

��� Implementation of fault�tolerance

The basis for implementing fault tolerance is redundancy� A system is designed with

excess capacity� and that excess is used to provide for the operation of the system in the

presence of faults� This principle was aptly detailed by Lardner who� in ��
�� described

a means by which the results generated by Babbage�s mechanical calculating engines

could be checked�

�The most certain and e�ectual check upon errors which arise in the process

of calculation� is to cause the same computation to be made by separate

and independent computers� and this check is rendered still more decisive if

they make their computations by di�erent methods�� �
��

The same technique is employed today� with the redundancy being implemented using

some combination of hardware and software techniques� It is possible to create a system

which only uses hardware fault�tolerant techniques� and of course a system which only

employs software fault�tolerance is also feasible� Most real systems� however� employ

some combination of the two� Each method has its advantages and disadvantages� and

each will be discussed in turn�

����� Hardware based fault�tolerance

Fault�tolerant hardware has been employed in control systems for many years� and the

techniques can be considered to be relatively mature� The basic concept is that of

replication� if there are multiple systems performing the same task� the probability of

them all failing at once should be less than the probability of a single system failing�

Most hardware fault�tolerance schemes employ a form of static redundancy� Multiple

functional units are used� each receiving the same inputs and hopefully producing the

same output� The outputs are compared by a voter and any incorrect results are masked

out� In this context� the de�nition of �the same output�� and of an incorrect result�

must be made with care� in order to avoid common�mode failures� it is not atypical for

CHAPTER �� FAULT�TOLERANT EMBEDDED SYSTEMS �

1

2

3

Voter

Input Output

Figure ���� Triple�Modular Redundancy with Voter

the multiple functional units to be dissimilar� and to operate using di�ering algorithms�

resulting in outputs which must all be considered correct� but which may not be identical�

In cases such as these� some form of inexact voting must be employed�

The key to obtaining reliability in such systems is to ensure that the reduction in reliability

caused by the additional hardware added� is less than the increase in reliability gained

due to the ability to mask faults occurring in a minority of versions�

A common version of this scheme� known as triple�modular redundancy� is illustrated in

�gure ���� From this it should be obvious that this technique has a number of problems�

� The system has two failure points in the voter and distributor which cannot be

replicated�

� Vote comparison problems can occur if di�erent systems produce results which are

similar but not identical� Consider� for example� rounding errors in a �oating point

calculation�

� There may be problems involving the granularity of comparisons� The potential for

divergence in the results increases with the size of the replicated block� especially if

the replicated blocks have di�ering designs in order to avoid common�mode failure�

Despite these problems this technique� or variations on it� is widely used in many com�

mercial systems ���� ��� �	� ��� ��� ��� ��� �	� 	���

This then is the basis of static hardware fault tolerance� Systems are replicated a number

of times with voters used to detect failure and recon�gure the system so as to maintain

correct operation� This technique has been modi�ed and enhanced in many ways and

under many names� but the basic concept remains as described�

CHAPTER �� FAULT�TOLERANT EMBEDDED SYSTEMS �

This thesis will not consider hardware fault tolerance in any greater detail since it is felt

that these techniques are su�ciently well known and well developed that further study

would not be appropriate�

����� Software based fault�tolerance

When compared with the hardware based techniques mentioned above� software based

fault�tolerance is a relatively underdeveloped �eld of research� Hardware fault�tolerance

requires expensive custom hardware to achieve its fault�tolerant properties� the aim of

software fault�tolerance is to use standard hardware and to move the fault�tolerant prop�

erties of the system to software control� the greater software complexity is o�set by

simpler and cheaper hardware systems�

The next section of this thesis will discuss some of the techniques used to achieve

software fault�tolerance in more detail� The remainder of this section will be devoted to

an overview of the concepts involved in designing such systems�

The �rst point to note about software fault�tolerance is that it is not necessary to have

any fault tolerance built into the system hardware to employ software fault�tolerant

techniques� In many cases system failures are caused not by the hardware breaking down�

but by faults in the software� and in such cases software fault tolerance can prevent many

problems� There are many techniques which can be used to provide recovery in the event

of software failure� and it is important to distinguish the applicability of each to the many

di�ering failure modes of a system� As an example of this� it is useful to discuss the

di�erences between forward and backward error recovery techniques�

Forward error recovery schemes must manipulate the current system state in order to

perform error recovery �
�� This is typically implemented using exception handling tech�

niques ��
� and other application speci�c procedures� A forward error recovery scheme

has the advantage of working from the current system state� and so it can be made very

e�cient in many cases� However� it also has the problem that any recovery mechanism

must necessarily be very application speci�c� and so forward error recovery cannot be

used to recover from unanticipated errors�

In contrast� backward error recovery schemes �
� rely on restoring a prior system state

which will� hopefully� be free from error� Backward error recovery is typically imple�

mented as some form of recovery block or atomic transaction scheme �See� for example�

��
� ��� for a discussion of recovery blocks� and �	�� for a discussion of transaction based

techniques�� The advantage of backward error recovery is that it is a generalised ap�

proach� and can recover from any software fault� anticipated or not� provided that the

CHAPTER �� FAULT�TOLERANT EMBEDDED SYSTEMS 	

software does not access unrecoverable external objects�� The disadvantage is that a

large overhead may be incurred when saving the system state�

These two mechanisms for implementing software fault�tolerance indicate the importance

of selecting the correct recovery scheme for the application� If the system designer is

aware of all possible system failure modes and e�ciency is important then a forward error

recovery scheme is appropriate� but in other cases this may not be so� The designer�s

task is further complicated if multiple software failures can occur simultaneously or if it

is necessary to include the possibility of hardware failure in the system�

Whilst software faults can be countered using software based fault�tolerance� it should

be obvious that a system which relies solely on fault�tolerant software is forever at the

mercy of hardware failure� Fortunately the provision of software fault�tolerance can

greatly reduce the complexity of the hardware required to achieve full fault tolerance�

Instead of employing special purpose hardware it is possible to use general purpose o�

the shelf hardware and use software to perform the functions of distribution and voting

on the results� It is therefore seen that an unreliable� but replicated� hardware system

�comprising o��the�shelf components� can be made reliable by using a layered software

protocol ���� that is� a protocol to make a reliable system at level n from an unreliable

system at level �n���� Hardware failures are masked using software techniques� resulting

in a reliable system without the special purpose hardware� There are several methods for

achieving such reliability� examples include atomic transactions �section ��
���� N�self

checking programs �section ������ and distributed conversation �section ��
��� schemes�

These are discussed in more detail in the remainder of this chapter�

��� Basic Techniques For Software Fault�Tolerance

The basic types of fault�tolerance available at the application level are N�version pro�

gramming� N�self checking programming and atomic actions� These three methods are

widely used� and can be extended to provide virtually all software fault�tolerant schemes

in use today� Each will be discussed in turn�

� An unrecoverable external object� otherwise known as a non�program object� is some object or

device controlled by a software system� yet not part of that system� Changes to such an object are

generally irreversible� hence recovery once such an object has been modi�ed is generally not possible�

or extremely di�cult� Examples include� aborting the �ring of a missile� reversing a chemical reaction

in a control plant� etc� There has been some work conducted which uses postponed execution schemes

to reduce the e�ects of non�recoverable objects� and to allow limited rollback recovery in such cases

��	�
��
 the problem is� however� a fundamental one for systems interacting with external devices� and

there are no real solutions�

CHAPTER �� FAULT�TOLERANT EMBEDDED SYSTEMS

����� N�Version Programming

N�Version programming is the software equivalent of N�Modular redundancy in hardware

design ��
� �	�� It requires the generation of N versions of a program block� each created

independently of the others� The blocks are executed concurrently� with the same inputs�

and a voter process compares results and passes the consensus result to the rest of the

system� N�Version programming is based on the assumption that the program can be

speci�ed in such a way that each version performs the same task� and that independent

designs will not have common mode failures� this is known as design diversity� To further

avoid the possibility of common failure in one� or more� versions it is common for the

di�erent versions to be run on di�erent processors of a multi�processor system� Such

a scheme will also� of course� reduce the probability of a hardware failure causing a

complete system failure�

N�version programming has the advantage that it provides fast result switching �because

of the parallel execution of the di�erent versions�� but it also su�ers from the same

problems as the N�modular redundancy techniques used in hardware fault�tolerance �see

section ������� In addition� it is often di�cult to design multiple software systems which

have the same speci�cation� but use di�ering algorithms� As a consequence of this�

common�mode failures can be frequent in N�version programming systems ��� ��� ����

����� N�Self Checking Programming

N�Self Checking Programming� NSCP� is de�ned by Laprie ��	� as follows�

����a self�checking program results from adding redundancy to a program

so that it can check its own dynamic behaviour during execution� A self�

checking software component consists of either a variant and an acceptance

test or two variants and a comparison algorithm��

The NSCP scheme consists of multiple variants of a program block executing in parallel�

During normal execution� only the primary block provides output and the alternates

remain as �hot� spares� If a failure occurs in the primary� one of the alternates begins

providing output� Unlike the N�version programming scheme� where all variants provide

output and a voter determines the result� the NSCP scheme relies on the detection of

the error in the primary and subsequent result switching� Each variant in the NSCP

scheme has its own acceptance test� which determines if its result is acceptable� in the

N�version programming scheme the decision is cooperative�

CHAPTER �� FAULT�TOLERANT EMBEDDED SYSTEMS ��

The advantages of NSCP are that it provides relatively fast result switching when an error

occurs� and it is possible to distribute the variants among multiple processors in order

to provide resilience to hardware failure� A possible disadvantage of NSCP is that each

alternate decides the acceptability of its own result� there is no independent checking of

a module�s output�

����� Atomic Actions

An atomic action is an operation which� as far as other processes in the system are

concerned� appears indivisible and instantaneous� The processes performing the action

can detect no state change except that performed by themselves� and they do not reveal

their state changes until the action is complete� There are a number of requirements for

an action to be classed as atomic ��
��

� The action must have well de�ned boundaries�

� An atomic action must not allow the exchange of information between processes

active in the action and those outside�

� Only strict nesting of atomic actions should be allowed�

� It should be possible to execute di�erent atomic actions concurrently�

� Atomic actions should allow recovery to be programmed�

It should be noted that atomic actions do not� in themselves� implement fault�tolerance�

They simply restrict communication patterns� allowing other constructs to build recov�

ery procedures on top of them� Atomic actions are the basis for a number of useful

techniques� such as atomic transactions� recovery blocks and conversations� These are

discussed in more detail in section ��
�

For a further discussion of atomic actions the reader is referred to �
��

��� Advanced Techniques for Software Fault Tolerance

The discussion in section ��� has focused on the basic building blocks for software

fault tolerance� In many cases� these simple techniques are not su�cient� and must

be extended to provide the required properties� A number of common extensions to

these basic techniques will now be discussed� and their advantages and disadvantages

highlighted�

CHAPTER �� FAULT�TOLERANT EMBEDDED SYSTEMS ��

����� Atomic Transactions

An atomic transaction �
��

� is an extension to the atomic action �section ����
� which

supports failure atomicity� An atomic transaction will either complete successfully or it

will have no e�ect� it cannot partially complete and leave the system in an inconsistent

state� As has been noted� the atomic action by itself does not provide fault�tolerance�

rather it restricts communication patterns so that recovery procedures can be built above

it� The atomic transaction is the �rst such recovery procedure which can be built� and

as such it provides an important stepping stone between the low�level atomic action and

higher�level techniques� This is an example of the layering protocols described in section

������

The atomic transaction technique can be implemented for program objects with a

minimum of run�time support� This is typically done by application level calls to a

BeginTransaction primitive which saves the system state� and an EndTransaction

primitive which discards the saved state� If a failure occurs between these calls the sys�

tem state can be restored� and the transaction can either be aborted or retried easily�

The BeginTransaction and EndTransaction primitives can either be inserted by the

application level programmer� or can be generated automatically by the compiler�

For non�program objects of an information nature� for example �les or databases� the

transaction scheme can be implemented in a similar manner� so long as all processes

involved can be determined� and the objects themselves are able to save previous values

of their state to enable rollback on failure� Many such systems have been implemented�

for example� ����� most involving database management or network �le systems�

The �nal class of object for which transactions could be required is the non�program

object of a physical nature� that is� an external hardware device� As discussed previously

�footnote on page ��� the recovery of such objects is often di�cult� since many actions

performed by these objects are irreversible� The atomic transaction may sometimes be

employed in these cases� when combined with a postponed execution scheme� failure

atomicity is achieved by delaying certain actions until the remainder of the transaction

is guaranteed to succeed� This is discussed further in �
	�
�� ��� 	���

����� Recovery Blocks

The recovery block ���� is a technique which uses multiple versions of a program block to

attempt to ensure success in the presence of system failures� The syntax of the recovery

block is typically given as follows�

CHAPTER �� FAULT�TOLERANT EMBEDDED SYSTEMS ��

ensure �acceptance test�

by

�primary module�

else by

�alternative module�

else by

���

else

error

end

Each alternate module is constructed from an atomic transaction which provides a com�

plete and simple capability to undo the e�ects of any alternate module� The program

proceeds by executing the primary module followed by the acceptance test� If the ac�

ceptance test succeeds then the recovery block is exited� If the test fails� the e�ects of

the primary module are undone� and the �rst alternate module is executed� This repeats

until one of the alternates passes the acceptance test� or until the �nal alternate fails�

at which point the entire recovery block fails and its e�ects are undone�

It can therefore be seen that the recovery block as a whole performs as an atomic

transaction� with the advantage of having design diversity as part of its structure�

As described in ��
� there are a number of features of recovery blocks which should be

noted� these include

� Overheads� In many cases it has been found that checkpointing can be expensive

in both time and storage required� This may be a problem in certain time�critical

applications� although it is not felt that the problem is necessarily more severe

than with other recovery mechanisms� When compared with N�Self checking

programming �NSCP�� for example� the overhead due to checkpointing is countered

because NSCP requires multiple alternates to execute concurrently�

� Atomicity � As with the atomic transaction� it is di�cult to include processes

which interact with the non�program environment in the recovery block due to

the di�culties involved in restoring the state of non�program objects of a physical

nature�

� Dynamic redundancy � One problem with the recovery block structure is that the

alternates are executed sequentially� and because of this there can be considerable

delay and non�determinism incurred during error processing� This property is in�

herited from atomic actions and atomic transactions� When compared with N�Self

checking programming and N�Version programming this can seem a considerable

CHAPTER �� FAULT�TOLERANT EMBEDDED SYSTEMS ��

disadvantage for real�time systems� and for this reason the distributed recovery

block� section ��
�
� has been developed�

The recovery block concept is �rmly rooted in uniprocessor systems and� as such� it

cannot easily be used to recover from processor �or other hardware� failure� since the

possibility of executing the alternates on multiple processors is not present� For this

reason� and because of the problem of slow recovery mentioned above� the basic recovery

block scheme is being superseded by the distributed recovery block� For systems where

the probability of hardware failure is low� however� the recovery block is still an attractive

concept� to catch software faults�

����� Distributed recovery block

The distributed recovery block is an extension to the recovery block scheme in which

the alternate modules execute in parallel� The acceptance test is replicated on multiple

processor nodes� and the alternates are similarly distributed� All alternate modules ex�

ecute concurrently and evaluate their acceptance tests� If the primary node passes its

acceptance test it passes the result out and informs the alternates� which do not perform

output� If the primary fails its acceptance test it informs the �rst alternate� which passes

its result out� provided that it has passed its acceptance test� This process is further

described in ���� ����

The distributed recovery block can be seen to provide a faster response to errors than

the standard recovery block scheme� although this is bought at the expense of reduced

performance in the absence of errors �since it requires multiple alternates to execute

in parallel�� It is noted that each component in the system makes the decision on the

acceptability of its result independently and informs the other alternates� the decision

making is not cooperative� In addition� the distributed recovery block scheme will cope

with processor failure provided that some sort of time�out mechanism is employed�

����� Conversation

The conversation is a recovery scheme based upon both the recovery block and the

atomic action� The recovery block enables recovery to be programmed for a single

process� and the atomic action is a means of controlling inter�process communication�

When combined they provide a means of programming recovery for a group of interacting

processes� The conversation is seen to be an atomic action involving multiple processes

with one� or more� of the processes involved in the action having recovery blocks built

in to their structure�

CHAPTER �� FAULT�TOLERANT EMBEDDED SYSTEMS ��

The semantics of the conversation can be summarised as follows�

� On entry to the conversation all processes must save their state� This provides for

recovery should the entire conversation fail�

� Whilst in the conversation� inter�process communication is restricted in the same

way as for an atomic action�

� In order for any process to leave the conversation� all processes must have passed

their acceptance test�

� If any process fails its acceptance test all processes involved in the conversation

have their state restored and execute their alternate module�

� If all alternates fail the entire conversation is abandoned and recovery must be

performed at a higher level� The conversation as a whole exhibits failure atomicity�

� Only strict nesting of conversations is allowed�

The syntax for a single process taking part in a conversation is typically presented as

follows ��
��

action A with �P�� P�� do

ensure �acceptance test�

by

�primary module�

else by

�alternative module�

else by

�alternative module�

else by

���

else

error

end

end A�

The other processes involved in the conversation are declared similarly� It can be seen

that this is similar in structure to the syntax of the recovery block�

It is noted that since conversations are implemented using atomic transactions it must be

possible to completely undo the e�ects of any operation performed during the conversa�

tion� As has previously been noted this is problematic in cases where the program must

CHAPTER �� FAULT�TOLERANT EMBEDDED SYSTEMS ��

interact with the non�program environment� In particular� the following points should

be noted

� Since all e�ects of the conversation must be undone in the event of a failure� it

is not possible for a process active in a conversation to a�ect the non�program

environment in an unrecoverable manner unless it is known that all processes in

the conversation have successfully passed their acceptance tests�

� It is di�cult to build nested conversations easily� since the inner conversation must

be restored if an outer conversation fails� Hence any interactions with the non�

program environment performed by a nested conversation must be recoverable� or

else they must be delayed until all outer conversations have completed�

It is seen that a conversation should only be permitted to change the non�program

environment in an unrecoverable way when it has successfully completed� and because of

this nested transactions which a�ect the non�program environment must be programmed

with care� For a further discussion of this the reader is referred to section ��� of �	���

A further problem is inherent in the multi�process nature of the conversation technique�

the domino e�ect� This problem arises when multiple processes� which may be subject

to rollback recovery� exchange information� Consider two processes� A and B� each

comprising a recovery block structure� and further assume that process A communicates

some information to B during its execution� If process A fails its acceptance test� and

has to rollback its execution� and retry� it is clear that process B must do so too� since

process B has based its results on faulty data passed from A� In the general case there

may be multiple processes interacting� and this e�ect may ripple back through the entire

process set� It is possible to avoid this problem� by ensuring consistent recovery points

are set up� to ensure process synchronisation� This leads to additional overhead� however�

The conversation scheme� or some similar technique� is of great importance in the de�

sign of fault tolerance for parallel and distributed systems� The problems noted are

not insurmountable� and the advantages of concurrent execution typically outweigh the

disadvantages caused by the extra synchronisation work needed to prevent the domino

e�ect�

����� Distributed conversation

In a similar manner to the distributed recovery block it is possible to extend the conver�

sation scheme to allow for di�erent processes to reside on multiple processors� This is

known as the distributed conversation scheme and can be considered to be a uni�cation

of the concepts of the conversation and the distributed recovery block�The distributed

CHAPTER �� FAULT�TOLERANT EMBEDDED SYSTEMS ��

conversation has an advantage over the normal conversation because it is able to re�

cover from processor �or other hardware� failure in a transparent manner� provided the

acceptance tests include a timeout provision�

The distributed conversation is discussed further in ���� ���
���

��� Summary

This chapter has discussed the basics of fault�tolerance for real�time embedded systems�

The necessity of introducing redundancy into the implementation of a system� as the basis

for fault�tolerance� was discussed in section ���� and it was shown that both redundant

hardware and software may be employed in the production of fault tolerant systems� and

that� typically� some combination of techniques is employed�

Hardware based schemes were discussed in some further detail in section ������ where

the wide application of these techniques was noted� Since such techniques are well

understood� it was decided that further study in this area would not be appropriate�

Section ����� discusses the basics of software based fault tolerance� This is extended by

sections ��� and ��
 where speci�c design techniques for implementation of software�

based fault tolerance are discussed�

These techniques will� if applied correctly� allow for systems to be constructed which

can tolerate the e�ects of a wide class of faults and operate within strict performance

criteria� Before this can be achieved� however� it is necessary to de�ne those performance

criteria� and to employ an accurate predictive model of the system�s behaviour to allow

e�ective design� This is discussed further in chapter
�

CHAPTER �� RELIABILITY MODELLING ��

Chapter �

Reliability Modelling

Before fault�tolerant features can sensibly be applied to a system� there is a need to

determine the e�ects they have on the reliability and failure modes of the system as a

whole� In particular� it is important that an accurate failure�reliability model is available

during the design of fault�tolerant and safety critical systems� whether those systems

comprise hardware� software or some combination of the two�

The reliability models which have been developed in the literature may be split into two

broad groups� functional models which describe the system from a time�independent

viewpoint� and dynamic models which describe the run�time behaviour of a system�

Time�independent� functional� models �
�
�� ��� ��� are typically based around a Markov�

chain or other stochastic process which is used to describe the behaviour of the system�

either neglecting information about execution time or providing a partial ordering of

events only� Such models enable the probability of failure for a particular structure to be

calculated� but do not provide for the calculation of the timing properties of the system�

Whilst this is undoubtably of value� its usefulness in the analysis of real�time systems

must be questioned� since these systems require not only functionally correct behaviour�

but also temporally correct behaviour� The timing properties of a real�time system are

as important as its functional properties in ensuring correct operation and� unfortunately�

this class of model is not able to describe this with su�cient rigour�

In contrast� time�dependent models are much less well developed ��
�

�� Although some

work has been conducted into �nding algorithms to derive the mean execution time of

a set of processes in the presence of failure ��	�� there has been little work undertaken

to determine the probability distribution of the system�s execution time� Much of the

research conducted with real�time systems has focused on scheduling problems �	�
��

��� ��� 	
�� and typically requires knowledge of the execution time bounds of a process

CHAPTER �� RELIABILITY MODELLING �	

to enable e�cient schedules to be calculated� With the introduction of fault�tolerant

procedures� the execution time bounds of the system will change� It is therefore important

that a means of deriving an expression for the execution time of a system with fault�

tolerant processes is found�

The remainder of this chapter discusses a number of techniques by which system relia�

bility models may be derived� In particular� techniques based around Markovian models�

and Petri nets are discussed� since it is these models which have been most widely ap�

plied in the literature� The relative strengths and weaknesses of these techniques are

discussed� and it will be shown that� whilst these techniques have wide applicability� they

must be further developed in order to model certain classes of system�

��� Markov chain models

A Markov chain consists of a set of places with probabilistic transitions between them�

The state of the system is represented by the probability distribution of a random variable

among those places at a time t� which may be either discrete or continuous valued� Given

the initial probability distribution of the random variable among the system places� and

the transition probabilities between the places� it is possible to determine the probability

distribution of the system at any future time� A brief formal de�nition of the theory of

Markov chains is provided below� for a more thorough description the reader is referred

to the works of Chung ���� and Tak�acs ����� for example�

����� Formal de�nition of a Markov chain

The de�nition of a Markov chain builds from probability theory via a set of mutually

exclusive and exhaustive events� E�� E�� � � � � EN� These events are known as the states

of the Markov chain�

A number of trials are performed� each of which will result in the occurrence of one of

the events Ej� The set of random variables xn is de�ned such that xn � j if Ej is the

outcome of the n�th trial�

If the outcome of each new trial depends on the outcome of the directly preceeding trial�

but is independent of the outcomes of all former trials� the set of trials form a Markov

chain� This is denoted by equation
��� representing the Markov property�

Pfxn � j j x� � i�� x� � i�� � � � � xn�� � in��g � Pfxn � j j xn�� � in��g

�
���

CHAPTER �� RELIABILITY MODELLING �

Based on the outcome of the trials� a system represented by a Markov chain may be

viewed as a state machine� with probabilistic transition between the states� In particular

if xn�� � i and xn � j we say that the system made a transition from state Ei to state

Ej at the n�th �time� step� The conditional probabilities Pfxn � j j xn�� � ig are known

as the transition probabilities of the Markov chain�

A Markov chain is homogeneous if the transition probabilities are independent of n� In

this case it is usual to denote the transition probability� Pfxn � j j xn�� � ig� by the more

compact notation� pi�j� Since all commonly applied Markov models are homogeneous�

discussion of inhomogeneous Markov chains will be omitted�

A simple extension to the transition probabilities is to determine the probability that a

transition taking n�steps occurs� An expression for this is given in equation
��� it may

be seen that this de�nition is recursively derived from a number of single step transitions�

p
�n�

i�k � Pfxm�n � kjxm � ig �

NX
j��

pi�jp
�n���

j�k �
���

where

p
���

j�k �

��
�� if j �� k

� if j � k
�
�
�

and

p
���

j�k � pj�k �
���

It may be seen that� in a homogeneous Markov chain� these n�step transition probabilities

do not depend upon m�

The probability distribution Pfx� � jg � Pj��� of the random variable x� is called

the initial distribution� Given the initial distribution and the transition probabilities it is

possible to determine the probability distribution for each random variable� xn� this is

the probability that the system is in the state Ej at time n� and is given by equation
���

Pj�n� �

NX
j��

Pi���p
�n�

i�j �
���

This probability distribution represents the state of the system�

����� Application of Markov models

Many systems can be modelled using state�based techniques� and a Markov chain is a

suitable method of analysis for a subset of such systems� There are a number of reasons

why a pure Markov model is insu�cient to model all such state�based systems�

CHAPTER �� RELIABILITY MODELLING ��

� As speci�ed by equation
��� a Markov chain is a memory�less system� The past

state of the model does not in�uence its future behaviour� except that the current

state dictates the next state� This restricts the class of system to which Markov

models may be applied�

� There is no explicit concept of concurrency in a Markov chain� Although this

may be simulated by partitioning the chain into separate segments� the approach

is clumsy� and di�cult to work with� The modelling of synchronisation issues is

di�cult�

Models based around Markov chains are limited by this lack of descriptive power� Whilst

it is possible to implicitly model the features mentioned above� the resulting systems are

typically di�cult to analyse� both from a computational point of view� and because of

the large amount of information which is not explicitly stated in the model�

This does not� of course� prevent the application of the techniques of Markov chain theory

being applied to a wide class of problem� for many models these techniques are ideal�

Furthermore� it has been shown that Markov chain models form the underlying basis for

many more advanced classes of model� That is� many such models may be transformed

into an equivalent Markov chain system� The theory of Markov chains must� therefore�

be viewed as a basis upon which further work is built� Many systems exist which may

be modelled using the theory of Markov chains� Although such Markov models may be

extremely ine�cient in many cases� leading to the application of higher order modelling

techniques�

The remainder of this section discusses a number of Markovian reliability models� in

order to provide some measure of the scope of applicability of these techniques�

������� Arlat et al� and Pucci

The work of Arlat et al� ��� provides a good example of a Markovian model for a recovery

block system� A set of failure events is derived� and a Markov chain built to consider the

execution of the system� in terms of those events� with states of the chain representing

each stage of the system�s execution and operational mode� The number of states in the

Markov chain is small� and the model derived is high�level� considering only the possible

failure modes� and not their timing properties� The work of Arlat et al� is discussed

further in section
�����

The model of Pucci ���� is similar in scope� although the precise failure events chosen

and the structure of the derived Markov chain di�er� It is discussed further in section

�����

CHAPTER �� RELIABILITY MODELLING ��

Together� these models illustrate an important class of Markovian system reliability

model� The high�level properties of a fault�tolerant system are modelled as a �small�

set of states in a Markov chain� Such models are able to provide an estimation of the

reliability of a system� provided system failures can be classi�ed in a manner consistent

with the model� Timing properties of the system are typically not modelled� except in

the case of the mean number of executions of the system before failure�

A similar class of model may be used to predict the behaviour of concurrent N�version

programming systems� as is also discussed by Arlat et al� ���� The lack of explicit support

for concurrency in Markov chain models is not a limiting factor for this class of model�

since the concurrency of the underlying system is not represented directly in the model�

but subsumed into the set of high�level failure events�

������� Ledoux
 Rubino

The work of Ledoux � Rubino ���� discusses the limitations of Markov models as applied

to the structural modelling of software systems� A software system is typically composed

of a number of modules� with control passing between the modules according to a number

of variables� including the data�set applied to the system� and the occurrence of faults

within that system� It is therefore possible to derive a stochastic process representing

the transfer of control between the di�erent modules of the system� and this process is

typically assumed Markovian�

Unfortunately� the memory�less Markovian assumption is found to be unrealistic in many

cases� for example �����

����suppose that module Mi receives the execution control sometimes from

moduleMj� sometimes from moduleMk� In many situations� the conditions

under which the control is transferred and the characteristics of the tasks

that must be performed byMi may be completely di�erent in the two cases�

IfMi is a state of a Markov process� then the random variable �nth sojourn

time in Mi� is independent of the other sojourn times �in Mi and in the

other states�� does not depend on n and does not depend on the identity

of the module from which the control is got� Hence� such a Markovian

assumption may be too strong to be acceptable��

Ledoux � Rubino circumvent this problem by providing additional states in their model�

such that a single state is replaced by several states� one for each possible path by which

that single state may have been reached� The disadvantage with an approach such as

this is the large increase in the size of the state�space caused�

CHAPTER �� RELIABILITY MODELLING ��

������� Csenki and Balakrishnan
 Ragavendra

The work of Csenki ���� provides a further example of the problem of state�space ex�

plosion inherent in the use of Markov models� Once again� a model for the reliability

of a recovery block system is derived� In this case� however� the author attempts to

model the in�uence of nested clusters of failure points� resulting in the derivation of a

Markov model with a unbounded and discrete state space� In this case� the structure of

the model allows for approximate solutions to be derived� other Markov models� such as

that discussed by Balakrishnan � Ragavendra ���� have similar problems of state�space

explosion� and various special techniques are employed to derive computationally feasible

solutions�

It is clear� from models such as these� that basic Markov techniques are limited by the

problems of state space explosion� and that unless care is taken in the de�nition of the

model� solution may become computationally infeasible for all apart from small systems�

��� Petri Net Models

A Petri net model ���� �
� consists of a set of places� together with a set of transitions�

These are interconnected by a series of directed arcs� which enable tokens to move from

place�to�place by means of the transitions� Movement of the tokens is de�ned by the

�ring rules of the network� In a simple Petri net it has been noted that�

�The use of the tokens rather resembles a board game� These are the rules�

Tokens are moved by the 	ring of the transitions in the net� A transition

must be enabled in order to �re� �A transition is enabled when all of its

input places have a token in them�� The transition �res by removing the

enabling tokens from their input places and generating new tokens which are

deposited in the output places of the transition�� ����

The placement of tokens in the network de�nes a marking which represents the state of

the system modelled�

A Petri net model� Q� may be de�ned formally as a set of places� P� a set of transitions�

T� input and output arcs� A� and an initial marking�M� �
���

Q � �P� T�A�M�� �
�
�

where

P � fp�� p�� � � � � png �
���

CHAPTER �� RELIABILITY MODELLING ��

T � ft�� t�� � � � � tmg �
���

A � fP� Tg� fT� Pg �
�	�

M� � f���� �
�
�� � � � � �

�
ng �
����

At a particular instant� the marking may be viewed as a mapping from the set of places�

P� to the natural numbers� N�

M � P� N where M�pi� � �i for i � �� �� � � � � n �
����

A marking�M�� is reachable from a marking�M�� if there exists a sequence of transitions�

t�� such thatM�
t�

��M�� The reachability set� S� is the set of all markings� fMig� which

are reachable from some initial marking� M�� This reachability set de�nes the possible

states which the system modelled may enter� calculation of this is therefore a major

activity in the Petri net modelling of systems�

Petri nets are of use in the modelling of concurrent� discrete event� systems� In particular�

they allow the modelling of events and conditions� and the relationships between them�

The occurrence of events is modelled by the �ring of transitions� Since a transition

will not �re until enabled� and cannot be enabled until all its input places have a token

in them� synchronisation is easily modelled� Concurrency may be modelled� since a

transition may have multiple outputs� and hence generate tokens in several places when

it �res�

It can be seen that a basic marked Petri net system is able to model both the static

and dynamic properties of a system� The basic Petri net model does� however� have a

number of limitations� In particular� it is both asynchronous and non�deterministic� This

has two important consequences�

�� Because of the asynchronous nature of Petri net systems� it is noted that�

�There is no inherent measure of time or the �ow of time in a Petri net�

This re�ects a philosophy of time which states that the only important

property of time� from a logical point of view� is in de�ning a partial

ordering of events�� ����

That is� a Petri net system will allow the logical properties of a system to be

described� but it cannot provide a model of the temporal properties of a system�

except that it can de�ne a partial ordering of events�

�� A Petri net model of a system consists of a sequence of discrete events whose order

of occurrence is de�ned by the movement of tokens around the system by means

CHAPTER �� RELIABILITY MODELLING ��

of a set of transitions� If� at any time� there are multiple enabled transitions� then

any one transition may �re� The choice of transition is made in a non�deterministic

manner� and it is noted that the �ring of a transition is considered instantaneous�

and hence multiple transitions cannot �re simultaneously�

These features combine to make the basic Petri net model suitable for use in modelling

the qualitative properties of systems� but restrict its usefulness in modelling the quan�

titative behaviour of systems� It is� for example� possible to determine reachability of a

particular system state using a basic Petri net system� but it is not possible to determine

the probability that that state is reached at a particular time� In order to fully model

the quantitative properties of a system it is necessary to add some form of temporal

speci�cation to the basic� untimed� Petri net model� such extensions are discussed in

sections
���� to
�����

����� Coloured Petri Nets

A coloured Petri net model results from a desire to reduce the size� and hence the

complexity� of Petri net models� This is done by folding similar places and transitions

into single entities and having tokens in the net represent di�erent values� or colours�

Transitions in the net are labelled by the colour set which will trigger their �ring� leading

to a system where the behaviour of the net is di�erent� depending on the colour of

the tokens present� This enables a signi�cant optimisation of a number of classes of

model� resulting in a much reduced state space� It is noted that coloured Petri nets

are isomorphic to standard Petri net models� they are an optimisation only� and do not

enable analysis of additional classes of system� For this reason� coloured Petri nets are

not studied further here�

����� Timed Petri Nets

Timed Petri nets ��	� are an extension to the basic Petri net model in which a �ring

delay� which is assumed to take one of a set of discrete values �
��� is associated with

each transition� In such a system� transitions can be viewed as �ring in three phases�

�� A start 	ring phase when tokens are removed from the input places�

�� A 	ring in progress phase associated with the �ring delay� where tokens are assumed

to be processing in the transition�

� An end 	ring phase when tokens are deposited in the output places�

CHAPTER �� RELIABILITY MODELLING ��

A system such as this will allow the temporal properties of a system to be modelled�

and indeed the use of such systems is noted a number of times in the literature �see�

for example� ��� ����� It is� however� noted in ���� that the timed Petri net model is

e�ectively a sub�class of the stochastic Petri net model� and therefore� it will not be

discussed further here�

����� Stochastic Petri Nets

Stochastic Petri nets ����
�� ���
�� are an extension to the basic Petri net model where

a �ring delay is associated with each transition� Firing delays are random variables

with negative exponential probability density function� When a marking is entered� each

enabled transition samples this probability function� and the transition with the lowest

�ring delay will �re to determine the new system marking�

The basic Petri net model� de�ned in section
��� is� therefore� extended to give a

stochastic Petri net by the addition of the set of transition rates� � � f��� ��� � � � � �ng

for the exponentially distributed �ring times� The probability� pi � �� is de�ned as the

probability that the enabled transition� ti� �res at a particular time step� given that no

other transition �res� These values may be determined from the average �ring delay�

�	i � �
�i�

It is noted in ����
�� that a stochastic Petri net model with this �ring delay is equivalent

to a continuous time Markov chain model� This opens up a new area of analysis� allowing

performance measures to be calculated� based on an analysis of the underlying Markov

model� The use of stochastic Petri nets can be seen to allow the modelling of the

temporal properties of certain classes of system� There are two reasons� however� why

they are not a general solution to this problem�

� There are certain classes of system which can be modelled simply using stochastic

Petri nets� but which have an in�nite number of states when converted into their

corresponding Markovian form ����� Analysis of systems such as these is di�cult�

using standard Markovian techniques� Further� the underlying Markov chain is

typically much larger than the Petri net system� For some systems� analysis may

be computationally infeasible�

� Markovian analysis requires the �memoryless� property� That is� if a transition

�res to change the marking of the net� the distribution of the time remaining on

the other enabled transitions is not a�ected �
��� For some systems this restriction

is not acceptable�

CHAPTER �� RELIABILITY MODELLING ��

These restrictions are removed by the discrete time stochastic Petri nets� section
�����

and by the so called generalised stochastic Petri net� as discussed in section
�����

����� Discrete Time Stochastic Petri Nets

The discrete time stochastic Petri net �
��� bridges the gap between timed Petri nets

and stochastic Petri nets� Unlike a continuous time stochastic Petri net� the discrete

time stochastic Petri net only allows transitions to �re at certain times� hence opening

the possibility of several transitions �ring at once� As Molloy �
�� notes�

�Since multiple �rings may occur at any time step� the probabilities for each

possible combination need to be determined� Requiring a designer to actu�

ally assign those probabilities is too di�cult� The de�nition of discrete time

stochastic Petri nets ����� takes a di�erent approach� Taking an approach

similar to circuit analysis tools� we ����� specify the probability that a tran�

sition would �re� once enabled� at the next time step given the fact that

nothing else would happen �ie� no other transition would �re�� This idea of

assigning the conditional probability takes the burden o� the designer and

places the deconditioning calculation into the analysis �usually automated���

The downside of this is that the analysis is more complex than that required for con�

tinuous time stochastic Petri nets� Molloy further notes that this does not increase the

size of the underlying Markov chain� but it does make the transition matrix more dense�

limiting the usefulness of sparse matrix techniques as a shortcut method of analysis�

The de�nition of a discrete time stochastic Petri net follows from the de�nition of a

basic Petri net� section
��� in a similar manner to the de�nition of a continuous time

stochastic Petri net� A set of geometrically distributed �ring times� � � f��� ��� � � � � �mg�

are added to the model� The probability� pi � �� is de�ned as the probability that an

enabled transition �res at the next time step� given that no other transition �res� These

values are obtained by determining the average �ring delay� �	i � �	
pi� It is noted that

the limiting case of the discrete time stochastic Petri net� as �	 � � is a continuous

time stochastic Petri net�

����� Generalised Stochastic Petri Nets

The generalised stochastic Petri net� GSPN� ���� ��� is a further extension of the basic

Petri net model� Like the stochastic Petri nets discussed in section
���
 the GSPN

includes transitions with exponentially distributed �ring delays� In addition� a GSPN

CHAPTER �� RELIABILITY MODELLING ��

allows immediate transition� which �re immediately when enabled� These immediate

transitions will �re in preference to timed transitions if both are enabled for a speci�c

marking� If multiple immediate transitions are enabled� a switching distribution speci�es

the probability that each particular transition �res� It is noted that this switching distri�

bution may result in a transition which is enabled but has zero probability of �ring� this

transition must behave as if it is not enabled�

A useful optimisation� in such a case� is to de�ne inhibitor transitions� These function

in the opposite manner to normal� preventing �ring if tokens are in their input places� It

is noted that such inhibitor transitions do not increase the modelling power of a GSPN�

they are an optimisation only� based on adjustment of the switching distribution for

certain immediate transitions�

It has been shown that GSPNs are still equivalent to Markov models� When transformed

into the equivalent Markov model� standard analysis may be performed� allowing for

performance evaluation of GSPN models� In addition� the structure inherent in a GSPN

model maps down to the underlying Markov model� and may enable optimisation in the

analysis techniques�

����� Petri Nets	 Summary and Examples

The techniques discussed in sections
�� to
���� allow for the modelling of concurrent�

discrete event simulations� In particular� they allow the modelling of events and con�

ditions� and the relationships between them� The occurrence of events is modelled by

the �ring of transitions� Since a transition will not �re until enabled� and cannot be en�

abled until all its input places have a token in them� synchronisation is easily modelled�

Concurrency may be modelled� since a transition may have multiple outputs� and hence

generate tokens in several places when it �res�

The various extensions to the basic Petri net allow for modelling the timing properties

of a system� with varying degrees of descriptive power� The essential basis for these

extensions is an underlying Markov model� hence it is clear that the di�erent techniques

are essentially equivalent in the range of systems which may be modelled� Where the

di�erent extensions to the basic Petri net model di�er is in the ease with which certain

behaviour may be modelled�

The remainder of this section will present a number of examples� to illustrate the means

by which these techniques have typically been employed for reliability modelling� This

can clearly not be an exhaustive survey� the range of Petri net models studied in the

literature is huge� Rather� a sample of the Petri net techniques applied to reliability

modelling is presented�

CHAPTER �� RELIABILITY MODELLING �	

Timeout

SuccessFailure
Timer

1 correct 2 correct 3 correct 4 correct 5 correct

Count

Module Execution

Start

Figure
��� The model of Geist et al�

������� Geist et al�

The work of Geist et al� �
�� uses a stochastic Petri net to model the synchronisation

structure of N�version software� This model is illustrated in �gure
��� In this �gure�

the thin bars represent instantaneous transitions� whilst the fat bars represent timed

transitions� The �rst portion of the model� between start and count represents the

execution of a ��version system� When one of the versions successfully completes its

execution� a token is deposited in count� causing the next in the set of transitions labelled

correct to �re� When the timeout completes� a vote is taken� and a token deposited into

one of the failure or success places�

Although timed transitions are used� the model of Geist et al� does not provide detailed

timing information� The success�failure times of the individual alternates are hidden

within the voting mechanism� and only the reliability distribution is provided as output�

In their paper� Geist et al� derive mean time to failure information based on the average

number of executions of the entire N�version programming system before the failure

state is entered� The model of Geist et al� is� therefore� seen to capture some of the

timing properties of an N�version programming system� but in the �nal analysis this

detailed timing information is discarded� and coarse�grained metrics provided instead�

CHAPTER �� RELIABILITY MODELLING �

������� Shieh et al�

The work of Shieh et al� ��
� models the process of rollback recovery and checkpointing

using a stochastic Petri net� In this model� two basic primitives are derived� the fault

transition unit� FTU� which manages the rollback of a process� and communicates this

information to other communicating processes� causing them to stop executing� The

synchronisation transition unit� STU� enables a non�local stopped process to rollback its

execution to its most recent checkpoint� Both the FTU and STU are derived in terms

of stochastic Petri net fragments�

A number of additional places and transitions are generated algorithmically� to represent

the operation of a system� and these are linked with FTU and STU blocks� The �nal

result is a somewhat complex system� which has been generated semi�automatically�

Metrics derived from the model of Shieh et al� include the average cycle time for a set of

interacting processes� that is� the average time taken to perform a certain operation� in

the presence of failure and rollback recovery� In addition� the average number of rollback

attempts made may also be derived�

Like the work of Geist et al� discussed previously� the model of Shieh et al� does not pro�

vide detailed timing information� regarding the operation of a system� Timed transitions

are used within the model to illustrate various aspects of a system�s behaviour� but only

high�level metrics are derived from this�

������� Hein
 Goswami

The work of Hein � Goswami �
�� provides an interesting example of the application

of Petri net modelling combined with an event driven simulation� Named Conjoint

Simulation� this technique splits a system model into two portions� a failure�repair model

and an architecture workload model�

The failure�repair model is a timed Petri net model which controls and triggers the

injection of errors into the components of the architecture workload model� and the fault�

tolerant mechanisms built into that model� The marking of the Petri net representing the

failure�repair model represents the state of failure� recovery and repair processes within

the architecture workload model�

The architecture workload model depicts the structure of the system� such as the proces�

sors� communication links� I�O components� memory� etc� together with an event driven

process model to simulate the workload on that hardware architecture�

The two models interact� events in the architecture workload model a�ect the �ring

CHAPTER �� RELIABILITY MODELLING ��

time of transitions in the failure�repair model� the marking of the failure�repair model

may cause processes in the architecture workload model to start�stop� or may roll�back

operation of the architecture workload model to a prede�ned checkpoint� for example�

These models combine with the failure�repair model� based on a timed Petri net� provid�

ing synchronisation� timing� and precedence constraints� and the architecture workload

model representing high�level system operation�

It is seen that whilst the timing properties of the Petri net model are used in this system�

its main application is in providing control of concurrency and synchronisation e�ects�

The majority of system timing functions are provided in the event driven architecture

workload model� with the Petri net simply simulating �xed error rates�

��� Discussion

The discussion in section
�� focused on Markov models for the behaviour of a real�time

system� A number of examples were presented� illustrating several important classes of

Markov model�

� High�level functional models which classify the behaviour of a system into a small

number of states� and model the transitions between those states� Such mod�

els allow for some estimation of system failure probabilities� but neglect timing

properties entirely�

� It has been noted that such high�level models may not be su�cient� in themselves�

for modelling the transitions between di�ering program blocks� since the memo�

ryless assumption of the Markov model is too restrictive� This restriction may be

removed in certain cases� but this typically leads to state�space explosion� and may

result in models for which solution is computationally infeasible�

These results do not dismiss Markovian modelling techniques� they do� however� restrict

their use to certain classes of system� and indicate that care must be taken if a Markov

model of a system is not to become too complex to solve�

The discussion in section
�� focused on Petri net models� The basic Petri net system

has di�erent emphasis when compared with a Markovian model� it enables structural

and reachability analysis� but is poor when probabilistic and timing models are required�

A number of extended classes of Petri net model are discussed� which overcome these

limitations in a number of di�erent ways� but the underlying solution method for the

performability of these systems is still Markovian� It is� however� clear that the added

CHAPTER �� RELIABILITY MODELLING ��

structure imposed on the underlying Markov chain by the higher level Petri net model

is bene�cial� the state space may be large� but it is typically regular� and numerical

evaluation is often subject to certain optimisation techniques which permit e�cient

solution of these models�

It is of great importance to be able to derive the probability distribution of process

completion times� in order to have some means of developing an execution schedule to

meet all required deadlines� even in the presence of failures and error recovery� Further�

it is clear that� despite the power of the underlying modelling techniques� the models

developed to date are insu�cient for modelling certain important properties of real�time

systems� In particular� there has been little work which attempts to derive realistic

measures of the timing properties of such systems� the models surveyed either ignore

timing completely� or discuss only coarse measures such as mean completion time�

This illustrates a problem with current approaches to modelling real�time systems� It is

usual for the timing properties of the system to be abstracted away so as to give each

process a maximum execution time� Provided such a maximum time can be assigned�

it is then possible to devise scheduling algorithms which� given su�cient resources� will

ensure that all deadlines are met� These algorithms are pessimistic since they rely on

the upper bound of a process� execution time� whereas in real systems� the probability

of errors occurring is low and the execution time of most processes is typically much

less than the maximum� The system therefore operates with much slack�time� implying

low e�ciency but high reliability� If the probability distribution of the process� execution

times is known� it should be possible to design a system which relies on this to attain

much improved e�ciency� whilst still managing to operate within a tolerable level of risk�

The remainder of this thesis will introduce a technique which enables the probability

distribution of process execution times to be determined� leading to improved scheduling

techniques�

CHAPTER �� A NEW SYSTEM RELIABILITY MODEL ��

Chapter �

A New System Reliability

Model

As was discussed in chapter
� there exist many techniques for modelling the reliability

and performance of real�time systems� It was noted that� despite the power of these

techniques� there has been little work conducted to determine the timing properties of

real�time fault�tolerant systems� In this chapter� a new reliability model is developed

which provides a framework for the development such techniques�

This chapter is divided as follows� Firstly� section ��� discusses the underlying assump�

tions upon which this model is based� This is followed� in sections ��� and ��
� by a

formal de�nition of this model� Finally� section ��� summarises the chapter�

��� Background

A number of experimental studies have been conducted into the failure characteristics

of software systems ��
�
��� These studies� together with theoretical results such as

those presented in �

� ��� ��� �
�
�� indicate that it is possible to achieve an accurate

prediction of the failure characteristics of a software system using very simple models�

and indeed� it has often been proposed that a random�fault model will su�ce� Such a

model is of use because of its ease of application and similarity to hardware reliability

models� allowing similar techniques to be applied to the modelling of both hardware and

software�

The notion of software faults occurring randomly is not intuitively obvious� In particular�

CHAPTER �� A NEW SYSTEM RELIABILITY MODEL ��

a software system may unwisely be thought of as being purely deterministic � given a

speci�c set of inputs a certain output will arise� and that same output will arise whenever

that set of inputs is presented to the system� How can such a system conform to a

random�fault model�

The simple answer is� of course� that it cannot� However� it can be seen that although

the underlying faults do not occur randomly� their manifestation can appear to follow

the random�fault model� A typical embedded control system will comprise a set of

interacting software processes� together with a number of hardware devices� Interactions

occur not only between software processes� but also between software processes and

hardware devices and between hardware devices� In addition� interactions may occur

between di�erent parts of the system due to the �ow of information through the external

environment� This is illustrated in �gure ����

Hardware Subsystem

Software Subsystem

Information flow through environment External Environment

Figure ���� The structure of a typical embedded control system

The software comprising an embedded system such as this will have a large input space�

It is directly a�ected by software�software interactions and software�hardware interactions

and also indirectly a�ected by hardware�hardware interactions and the in�uence of the

external environment� As the number of inputs to the system increases� and more

and more external devices are included� it becomes increasingly di�cult to determine the

system boundary and the number of possible interactions increases rapidly� Furthermore�

it is typical that embedded systems have a temporal dimension to their input space�

Identical inputs may well produce di�erent outputs at di�erent times�

It can readily be seen that� for all but the simplest of systems� the input space is so

large� and the interactions which occur are so subtle and complex� that it is e�ectively

impossible to predict the path a system will take through its input space�

This conclusion is supported both by theoretical work� such as that of Littlewood ��
��

CHAPTER �� A NEW SYSTEM RELIABILITY MODEL ��

and by experimental data �
��

�� In addition� Laprie � Kanoun ���� note that�

�In the case of software� the randomness comes at least from the trajectory

in the input space which will activate the faults� In addition� it is now known

that most of the software faults which are still present in operation� after

validation� are �soft� faults� in the sense that their activation conditions

are extremely di�cult to reproduce� hence the di�culty of diagnosing and

removing them� which adds to the randomness��

As an example of this� a study of the error logs from a number of Tandem systems �
��

concluded that only one fault out of �
� was not a soft fault�

From the above arguments� it seems reasonable to model a system�s path through its

inputs as a random�walk in a multi�dimensional space� This is transformed by the system

to provide a path through the output space which is necessarily also modelled as a random

walk� This is illustrated in �gure ����

Embedded SystemInput Space Output Space

Fault Space

Figure ���� Random walk through a system�s input space

There are typically a number of points in the input space which will give rise to faults

in the system� and those faults may� eventually� cause errors to manifest themselves�

Such errors� if untreated� may cause system failures� Due to the semi�random nature

of a system�s progress through its input space� and the complex mapping from input to

output� it is noted that faults which are close in the input space will not necessarily give

rise to faults which are close in the output space�

This then is the basis for the system model to be developed here� It is assumed that

the system�s input space is su�ciently large� and the tasks to be undertaken su�ciently

complex� that a random�fault model such as this is applicable� It is considered that such

an assumption is not unrealistic� indeed it is the basis for a number of other models

���� �
�
��� and certain experimental data �
��
�� have been collected which appear to

CHAPTER �� A NEW SYSTEM RELIABILITY MODEL ��

con�rm the validity of this approach� The work conducted by Laprie ���� also lends

support to this� when it is noted that

����the constancy of the hazard rates� although it is an a priori unrealistic

hypothesis� turns out to be satisfactory��

It is further noted that a study made of the reliability logs of Tandem systems �
��

provides evidence for this claim� as indeed does the work of Musa at Bell Labs �
��
���

and that of the European Space Agency ��	�� where it is noted that

�Software failure is a process that appears to the observer to be random�

therefore the term reliability is meaningful when applied to a system which

includes software and the process can be modelled as stochastic��

It can therefore be seen that the random�fault model as applied to software and com�

bined hardware�software systems provides a reasonable �t with experimental data with

a relatively simple theoretical background�

��� Underlying Mathematical Model

The techniques discussed in chapter
 provide a number of ways by which the reliability

and performance of real�time fault�tolerant systems may be modelled� Despite the power

of these techniques� little work has been undertaken to determine the timing properties

of such systems� There are a number of reasons for this� pure Markovian and Petri

net models lack the descriptive power necessary to conveniently describe the problem

domain� whilst the extended Petri net models provide� perhaps� excessive power and

some simpli�cation is desirable�

In this section a new mathematical model is described� This is a stochastic model�

derived primarily from Markov chain theory� with modi�cations to allow for simple process

interactions� The underlying network model borrows a number of concepts from Petri

net theory� not least the notation used� Despite the notational similarities� however� this

is primarily a Markov model� not a Petri net system�

The basis of this new model is a multi�graph consisting of a set of places and a set of

transitions connected by directed arcs� The system state is de�ned by the probabilistic

distribution of a set of tokens amongst these places� Changes in the system state are

indicated by movement of tokens along the arcs� from place to place by means of the

intermediate transitions� All tokens move at once� in step�time� A transition cannot �re

CHAPTER �� A NEW SYSTEM RELIABILITY MODEL ��

until it has a token in each of its input places� and when it does �re it sends a single token

to one of its output places� determined probabilistically by the transition probabilities

labelled on the arcs leading away from the transitions� A place may have multiple input

arcs and hence� may receive multiple tokens� A place will output a token down each of

its output arcs� A place will therefore create or destroy tokens as required�

The precise details of the transition probabilities will be described in section ��
� At

present� it is su�cient to describe the basic modes of operation of the model ��gure

��
�� The notation borrows heavily from Petri net models� circles represent places� bars

represent transitions� and arrows represent connecting arcs�

Simple Transition Probabilistic Transition Synchronisation Parallel Execution

Figure ��
� Basic modes of execution

The simple transition and probabilistic transition modes correspond to a standard Markov

chain model� Tokens are neither created or destroyed� In these modes the system shows

multiple possible paths of execution it can perform one action from a choice of many

possibilities this is modelled as a transition with multiple output arcs�

A system which permits concurrent execution of multiple paths is also possible� and is

modelled by a place with multiple output arcs� This is the parallel execution mode� and

shows token creation� a single token is received as input� and a token emitted down each

output arc� Further� it is possible to model synchronisation among these concurrent

processes by means of transitions with multiple input arcs� Such transitions cannot �re

until all their input places contain tokens� and so they introduce synchronisation into the

execution of the system� and destroy excess tokens�

Further� more advanced modes of operation� allow for multi�step transitions� which take

several time steps to execute� This is a simpli�cation to reduce the run�time of the

model� the size of the state�space is reduced� resulting in faster numeric solution of the

model�

This model is� therefore� seen to include a number of desirable features taken from

extended Petri net techniques� timed transitions� synchronisation� and easy expression

of concurrency� The underlying basis is Markovian analysis� allowing performance analysis

to be undertaken� A formal de�nition of this model is now necessary� and is provided in

section ��
�

CHAPTER �� A NEW SYSTEM RELIABILITY MODEL ��

��� Formal de�nition of the model

����� Basic Network Model

The basis of the model is a set of places with probabilistic movement of tokens between

them� This is de�ned by a four�tuple

C � �
��� I�O� �����

where

�
 � f��� ��� � � � � �Ng is a �nite set of places with N � � representing the system

state�

� � � f��� ��� � � � � �Mg is a �nite set of transitions with M � �� representing the

possible movements between states�

� The input function� I� and the output function� O� de�ne the following mappings

between
 and ��

� Transition to place�

I � � ��
 �����

O � � ��
 ���
�

� Place to transition�

I �
 �� � �����

O �
 �� � �����

� Transition to transition�

I � � �� � ���
�

O � � �� � �����

It is noted that no mapping is de�ned for
 ��
� that would imply an instan�

taneous jump in the system state and is meaningless� such a combined place is

always equivalent to a single place�

The input and output functions� I and O� de�ne arcs connecting the places and

transitions of the network� These arcs are weighted� All arcs have weight w � ����

CHAPTER �� A NEW SYSTEM RELIABILITY MODEL �	

with the exception of the arcs de�ned by O � � ��
 and O � � �� � which

together de�ne the transition probabilities T
�n�

i�j �see below�� and have weight w �

� 	 w 	 �� It is noted that the sum of the arc�weights for arcs leaving any

transition must be unity� Multiple arcs may leave each place� resulting in token

creation� since the sum of these probabilities will be greater than unity� This

permits the simple modelling of concurrency�

The following restrictions are made

� The set of places�
� and the set of transitions� �� are disjoint�

� � � �����

� Two places �i and �j may be connected by at most one single�step transition�

jO��i�
 I��j�j 	 � ���	�

Multiple connecting transitions can always be combined into a single transition

with the combined probabilities� and hence are unnecessary�

� A transition may take input from a set of places or a set of transitions� but not

both�

I��i�

 �� � �� I��i�
� � � ������

I��i�
� �� � �� I��i�

 � � ������

This allows for n�step� timed� transitions� but prohibits a transition which is in the

process of �ring from being delayed by the state of other portions of the system�

Timed transitions are simply an optimisation� to eliminate unnecessary places� they

have a �xed �ring time� For the problems to which this model is to be applied�

transitions with probabilistic �ring delays are not useful�

� A transition can take input from at most one other transition�

jI��i�
�j 	 � ������

� A transition which has output to one or more other transitions can have at most

one input�

��k � O��k�
� �� �� jI��k�j 	 � ����
�

CHAPTER �� A NEW SYSTEM RELIABILITY MODEL �

� A transition with input arcs from multiple places represents a synchronisation

primitive� the set of such transitions is �sync � �� A transition in this set�

�sync
 �sync� is described by�

I��sync�
� � � ������

jI��sync�

j � � ������

A place� �s� which has output to such a transition is restricted to having only that

single output�

�s
 I��sync� �� O��s� � �sync ����
�

If multiple outputs were allowed from such a place� synchronisation would not be

possible� a �concurrent�fork�and�join� primitive is not useful�

These de�nitions provide the basic system structure�

����� Single�step execution rules

The time�independent single�step transition probability between places �i and �j is

denoted by T
���

i�j � This is the probability that a movement can occur from place �i to

place �j provided that there is a single�transition� �k� linking these two places� It can

be seen that T
���

i�j is the product of the weights of the arcs linking places
i and
j� via

the intermediate transition� �k�

In order for a single transition� �k� to link two places� that transition must be an element

of the set of output transitions of one of the places� and an element of the set of input

transitions of the other place�

�k � O��i�
 I��j� ������

If �k � � then no single�step transition is possible between states �i and �j� However�

if �k �� � then a single�step transition is possible� and the set �k holds the transition by

which that movement is made�

It is now necessary to de�ne the time�dependent single�step transition probability be�

tween places �i and �j at time t� This is the probability that a single�step transition

will occur� based around the system state at a speci�ed time� It is not possible for a

transition to �re until all its input places are enabled� and a place is said to be enabled

if there is a non�zero marking for that place� Hence� the time�dependent single�step

transition probability is de�ned as

�
�t�

i�j � T
���

i�j

Y
I��k���i

Pk�t� ������

CHAPTER �� A NEW SYSTEM RELIABILITY MODEL ��

where �k is de�ned in equation ���� and Pk�t� is the marking for place �k at time t�

de�ned by equation ����� The time�independent single�step transition probability� T
���

i�j �

is multiplied by the product of the probabilities that each of the input places to that

transition are enabled� with the exception of the input place from which the transition

is made� This exception is made for two reasons� Firstly� if the place �i is not included�

then a system with only single input arcs becomes equivalent to a simple Markov chain

model� Second� if the input from place �i is included then the de�nitions required by

the model become mutually recursive and are impossible to evaluate�

It is noted� once again� that arcs leading from place to transition have unity weight� The

transition probability is determined by arcs leading from transition to place�

����� n�step execution rules

In section ��
�� it was speci�ed that movement can occur between two transitions� �i

and �j� subject to certain restrictions on topology� This allows time�independent n�step

transitions between places to be described� These transition probabilities are denoted

by T
�n�

i�j and indicate a movement from place �i to place �j which passes through n

transitions� where n � �� and which does not pass through any intermediate places� As

for the single�step transition probabilities� T
���

i�j � these n�step transition probabilities are

formed by the product of the weights of the arcs traversed� Given this de�nition� and the

de�nitions of section ��
��� it is possible to derive an expression for the time�dependent

n�step transition probability� p
�n�t�

i�j � between places �i and �j at time t�

It is noted that the n�step transition probabilities for a Markov chain are given by

equations
�� and
�
 on page �	� It is noted that this probability is time�independent�

and allows only n�step movements which pass through other intermediate places� since

Markov chains do not allow for mappings � �� ��

This de�nition can be extended by allowing n�step movements which use only transitions�

T
�n�

i�j � although it is not possible to simply add T
�n�

i�j to the above equation� since there

may be other indirect paths by which a movement may occur� consisting of an m step

transition�only movement� and an �n �m� step movement using intermediate places�

This� therefore� leads to the following expression for the n�step transition probabilities�

p
�n�

i�k �

NX
j��

pi�jp
�n���

j�k �

nX
m��

NX
j��

T
�m�

i�j p
�n�m�

j�k ����	�

where p
���

j�k is de�ned as in equation
�
� and N is the number of places� This consists of

the transition probability as if the direct multi�step transitions were not present� speci�ed

by the �rst summation term� with the addition of the probability of making the transition

by any combination of direct� T
�m�

i�j � and indirect� p
�n�m�

j�k � routes�

CHAPTER �� A NEW SYSTEM RELIABILITY MODEL ��

It is then a simple matter to add timing information to this� The time independent

single step transition probability� pi�j� is replaced by the time�dependent probability� �
�t�

i�j

�see equation ������ and a timing parameter is added into the de�nition of the n�step

transition probability� p
�n�

i�k � This provides an expression for the time�dependent n�step

transition probability as follows�

p
�n�t�

i�k �

NX
j��

�
�t�n�

i�j p
�n���t�

j�k �

nX
m��

NX
j��

T
�m�

i�j p
�n�m�t�

j�k ������

where

p
���t�

j�k �

�
� if j �� k

� if j � k
������

����� Markings and system state

The system marking function is de�ned by the absolute probability distribution� Pi�t��

representing the probability that there is at least one token in place �i at time t� This

de�nition is based around the equivalent de�nition for a Markov chain system� de�ned

by equation
��� A number of modi�cations must� however� be made to this de�nition�

� Time�dependent transition probabilities� as described in section ��
��� must be

allowed�

� Additions must be made to allow a place to maintain it�s marking to allow syn�

chronisation�

The �rst modi�cation may be made by simply substituting the time dependent n�step

transition probability into equation
��� The second modi�cation is made by the addition

of a constant� �� to represent held�over marking� This leads to a de�nition for the

absolute probability as in equation �����

Pi�t� � � �

NX
j��

Pj���p
�t�t�

j�i ������

where

� �

�����
����
Pi�t � �� if � �sync
 �sync � �i
 I��sync�

and � �s
 I��sync� � �i � Ps�t� �� � �

� otherwise

����
�

where Pi��� denotes the initial probability distribution for the system�

CHAPTER �� A NEW SYSTEM RELIABILITY MODEL ��

The constant� �� in equation ���� is interesting� If a place has output to a synchronisation

transition� �sync� then that place will retain its marking until all places leading into that

transition have non�zero marking� Since the de�nition for single step execution rules�

equation ����� is such that such synchronisation transitions will not �re until all their

input places are enabled� this conspires to introduce synchronisation into the model�

The marking is hence a vector which changes with time� based upon the execution rules

of the system� and is therefore a representation of the system state at a particular time�

By sampling the marking at various states� the execution of a system may be modelled�

��� Discussion

The model developed in this chapter has a number of similarities to the techniques

discussed in chapter
� but also a number of important di�erences� The basis of the model

described here is a Markov model� which allows for simple performance evaluation� This is

extended with two concepts� concurrent execution� and synchronisation� Together� these

additions allow a greater expressiveness than is possible in simple Markovian models� The

notation used by Petri net models is borrowed� since this allows these concepts to be

explicitly indicated� Indeed� it can be seen that this model is similar in many ways to

some classes of extended Petri net model� it does not� however� require the full generality

of these extended models�

It is felt� therefore� that the model developed here has a number of practical advantages

over both Markov chain models and extended Petri net systems� namely�

� It permits easy modelling of concurrency and synchronisation�

� Performance evaluation is possible� since the underlying Markov model allows mark�

ing probabilities to be calculated�

� Since the model is more restricted than� say� stochastic Petri nets� it permits

simpler solution� The uses envisaged for this model� as will be discussed in chapters

� and
� result in relatively small� regular� Markov chains� and e�cient solution is

possible�

These features make this model easy to use for the purposes of modelling the failure

time distribution of real�time systems subject to faults�

It is noted that both simple Markov chain models and some classes of extended Petri net

model are capable of modelling systems in this manner� but it is felt that this model is

more suited to this particular task� That is� this new model provides for simpler modelling

CHAPTER �� A NEW SYSTEM RELIABILITY MODEL ��

of this class of fault�tolerant systems under investigation� when compared with the Petri

net and Markov chain models� This will be discussed further in later chapters of this

thesis�

This concludes the discussion of the basic modelling technique which� in chapters � and

� will be applied to the problem of modelling the timing properties of real�time systems

subject to failures�

CHAPTER �� GENERIC REAL TIME SYSTEM MODEL ��

Chapter �

Generic Real Time System

Model

The mathematical framework described in chapter � provides the basis upon which

system reliability models may be developed� In this chapter� that framework is used

to derive a new model for the behaviour of real�time systems� This is a discrete time

model with a lattice structure which models the progress of a computation from its

initial state to one of several �nal states� completed� detectable fault� hidden fault and

failed� This model allows for both the functional and temporal behaviour of a system

to be represented in a single high�level model� It is derived from generic properties

of real�time systems� hence being independent of any speci�c design�implementation

technique for such systems� This is an improvement on traditional system reliability

models which typically focus on functional correctness and do not adequately model the

temporal properties of such systems�

This chapter is structured as follows� section ��� provides a de�nition of this model build�

ing from the generic� high�level� properties of real�time systems and the mathematical

framework described in chapter �� Section ��� discusses the various system parameters

needed by this model� and how they may be estimated� Section ��
 describes a num�

ber of testbed systems� the behaviour of which is studied in section ��� leading to an

understanding of the basic properties of this model� Finally� section ��� summarises the

chapter�

CHAPTER �� GENERIC REAL TIME SYSTEM MODEL ��

��� A Generic Real Time System Model

In order to model the behaviour of a real�time system� certain properties of that system

must be known� In particular� the execution time bounds of the system should be

known� together with the probability that the system may exceed those bounds� Given

this information� and in the absence of faults� such a system may be modelled as a simple

state chain with probabilistic transition to a completed state which can only occur during

a speci�ed time period ��gure ����� The transition probabilities to the completed state

must match the completion pro�le� that is� the plot of completion probability against

time� for the system in the absence of failures�

Completed

Figure ���� Basic State Chain

The model illustrated in �gure ��� is� of course� overly simplistic and must be extended

in order to account for the presence of faults within the system� For example� Pucci ����

notes that

�An important distinction is between errors whose manifestation is identi�

�ed in the system �detected errors� and errors whose manifestations is not

�undetected errors���

In particular� the e�ects of hidden faults are noted�

�Undetected errors are the most insidious ones because of their e�ect on

the future behaviour of the software� The delivered incorrect results can

spread ����� to the entire software system and create state inconsistencies� In

contrast� the system will be aware of the occurrence of a detected error and

can attempt recovery actions��

It is therefore of great importance that the model developed here allows for the e�ects

of both detectable and hidden faults�

The �rst class of fault may be modelled by the addition of a detectable fault state to

the model describing the system� A transition is made from each state in the basic state

chain to this state� with probability determined using a random fault model ��gure �����

Since the system obeys a random�fault model� as discussed in chapter �� the transition

probability for each of these paths is uniform� It is noted that faults which would cause a

CHAPTER �� GENERIC REAL TIME SYSTEM MODEL ��

time over�run fall into the detectable category� and so there is no need to further model

a process which can exceed its time bounds�

The second class of fault leads to a more complex model� requiring a parallel state chain

to represent a system which is still functioning� but with a hidden fault ����� These states

mimic the function of the original state chain� and lead to the hidden fault and failed

states ��gure ��
�� The system is therefore partitioned into two state chains� progress

of the system through its computation is indicated by transitions along a state chain�

and changes in the operational mode of the system �whether the occurrence of failure�

or recovery from that failure� are indicated by transitions between the two state chains�

The transition probabilities for this parallel set of states mirror those of the original�

fault�free� states� that is� the transition probabilities into the hidden fault state equal

those for transitions into the completed state� and the transition probabilities into the

failed state equal those for the detectable fault state� An example of this is shown in

�gure ���� from which it is noted that�

T
���

x��� � T
���

x������ for x
 f�� ��� ��� ��� ��� ��g �����

T
���

x��� � T
���

x������ for x
 f�� �� �� �� ��� ��� ��� ��� ��g �����

The transitions between the two parallel state chains have uniform probability� according

to the random�fault model� The two state chains represent the system executing the

same algorithm� di�erences in the behaviour between the two state chains are due entirely

to the di�erences in the state space upon which they act� Since the behaviour of the

algorithm for all possible input sets is approximated in the arc weights for transitions to

the completed and hidden fault states� it is assumed that the behaviour caused by this

class of fault is implicitly included in these probabilities�

Completed

Detectable Fault

Figure ���� System model with detectable faults

This then leads to the �nal de�nition of the model� comprising two parallel state chains

representing normal execution and execution with a hidden fault� These are intercon�

nected with a lattice structure which models hidden fault occurrence and recovery� This

model may then be subjected to analysis as described in section ��
� leading to the

determination of the marking function �Equation ����� for the four �nal states of this

model� It is this marking function which represents the system behaviour with time�

CHAPTER �� GENERIC REAL TIME SYSTEM MODEL ��

Completed

Failed

Hidden
Fault

Fault
Detectable

Figure ��
� System model with hidden faults

Fault
Hidden

Failed

Completed

Fault
Detectable

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

22

23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

41

42

21

Figure ���� System model with hidden faults �example�

CHAPTER �� GENERIC REAL TIME SYSTEM MODEL �	

This model can then be used to determine both the functional and the temporal correct�

ness of a system� The functional correctness is indicated by the probability distribution

of the system between the four �nal states of the model� completed� detectable fault�

hidden fault� and failed� The temporal correctness is indicated by plotting the timing

pro�le to show the distribution of these probabilities with respect to time�

��� Parameter Estimation

Implicit in the discussion so far has been the precise nature of the transition probabilities�

T
���

i�j � of the lattice model� These are divided these into four categories�

� Probability of completion
 pc� This is the probability that the system completes

execution at any given time step� independent of the occurrence of faults� This

value must be derived from knowledge of the algorithm used by the process and�or

test data� This is the transition probability for the arcs leading to the completed

and hidden fault states� In �gure ��� these are the transitions to states �� and ��

respectively� It is noted that the arc weights cannot be directly observed� rather

the probability that the system completes at a particular time may be estimated�

and from this the arc weights derived� as discussed below�

� Probability of detectable fault
 pd� This is the probability that the system fails

in such a manner that the failure can be detected before the normal completion

time of the system� The probability may be estimated from test data� or from

experience with similar systems� This is the transition probability for arcs leading

to the detectable fault and failed states� In �gure ���� these are the transitions to

states �� and �� respectively�

� Probability of hidden fault
 pf� This is the probability that a fault occurs which

does not give rise to an error detectable at run�time� Such a fault may be detected

after completion of the process� and hence may be estimated based on the results

of a system acceptability test� This probability� together with the probability of

hidden recovery� de�nes the transition probabilities on the arcs interconnecting the

two main state chains of the model�

� Probability of hidden recovery
 pr� This is the probability that the system recov�

ers silently from a hidden �unobservable� fault� It may be estimated in a similar

manner to the probability of a hidden fault�

With the exception of the completion probability� pc� these transition probabilities are

expected to be uniform� and to follow a random�fault model� as discussed in chapter ��

CHAPTER �� GENERIC REAL TIME SYSTEM MODEL �

w1 w2 w3 w4 w5 w6 w7

Failed

1-w7

Completed

Figure ���� Derivation of arc weights from completion pro�le

It has been noted that it is not possible to directly observe the pc arc weights� However�

the completion probability of the system with respect to time may be measured� and

given this information it is possible to deduce the arc weights which will produce those

completion probabilities�

If it is assumed that faults do not occur� that is pd � pf � pr � �� the generic system

model may be reduced to the simple form of �gure ���� Taking a speci�c system� �gure

���� as an example� it is possible to derive the completion pro�le of the system in terms

of the arc weights� wn� as shown in equation ��
�

P�Completed� t � �� � �

P�Completed� t � �� � w�

P�Completed� t � �� � �� �w��w�

P�Completed� t � �� � �� �w���� �w��w�

P�Completed� t � �� � �� �w���� �w���� �w��w�

P�Completed� t � �� � �� �w���� �w���� �w���� �w��w�

P�Completed� t � �� � �� �w���� �w���� �w���� �w���� �w��w	

P�Completed� t � �� � �� �w���� �w���� �w���� �w���� �w���� �w	�w

���
�

These expressions may be inverted to express the arc weights in terms of the completion

pro�le� as shown in equation ����

CHAPTER �� GENERIC REAL TIME SYSTEM MODEL ��

w� � P�Completed� t � ��

w� �
P�Completed�t���

���w��

w� �
P�Completed�t���

���w�����w��

w� �
P�Completed�t���

���w�����w�����w��

w� �
P�Completed�t�	�

���w�����w�����w�����w��

w	 �
P�Completed�t�
�

���w�����w�����w�����w�����w��

w
 �
P�Completed�t���

���w�����w�����w�����w�����w�����w��

�����

From this� it is clear that a general expression for the arc weights must take the form

shown in equation ����

wn �
P�Completed� t � n � ��Qn��

i�� �� �wi�
�����

This enables the derivation of arc weights from completion pro�les in the absence of

faults� and equally the derivation of arc weights to match a desired completion pro�le�

for the purposes of studying the behaviour of the model�

Of course� a real system will exhibit failures� and the parameters pd� pf and pr will

have non�zero value� In order to derive the pc arc weights from the observed completion

probabilities it is� therefore� necessary to factor out the e�ects of the other failure modes�

Study of the generic model illustrated in �gure ��
� together with the application of the

mathematical framework described in section ��
� allows a number of statements to be

made linking the observable probability distribution of the four �nal states of the generic

model with the model parameters�

Taking the example system illustrated in �gure ���� it is clear that for any state� s� in

the set s � f�� �� �� �� �� ��� ��� ��� ��� ��g the following expressions hold�

P�Completed� t� �� � p�s� t� pnc ���
�

P�Detectable�Fault� t� �� � p�s� t� pd �����

Combining equations ��
 and ��� leads to equation ��� which shows a link between the

system completion probabilities� pnc � and the probability of detectable fault� pd�

CHAPTER �� GENERIC REAL TIME SYSTEM MODEL ��

P�Completed� t� ��

P�Detectable�Fault� t� ��
�
pnc
pd

�����

Given a formulation such as that in �gure ��� it is possible to estimate pd if it is assumed

that the completion and detectable fault probabilities are observable at the �nal states

of the model� If it is further assumed that pnc � that is the n�th completion probability�

may take any value in the range � � � � �� then the value of pd may be bounded as shown

in equation ��	�

� 	 pd 	
P�Detectable�Fault� t� ��

P�Completed� t� ��
���	�

Back substitution of this bounded value for pd into equation ��� allows for estimation

of the completion probabilities� pnc �

The value of pd and the completion probabilities� p
n
c � may be further bounded by

application of similar techniques to the ratio of the observed probability distribution of

the hidden fault and failed states of the model� as per equation �����

P�Hidden�Fault� t� ��

P�Failed� t� ��
�
pnc
pd

������

Once again� taking the example of �gure ���� it is clear that for any state� n� in the set

n � f�� �� �� �� �� ��� ��� ��� ��� ��g

and any state� m� in the set

m � f��� ��� ��� ��� ��� ��� ��� ��� ��g

the following expressions hold�

P�n� t� � �� � pd � pf � pnc �P�n� �� t� �� � prP�m� �� t � ��

������

P�m� t� � �� � pd � pr � pnc �P�m� �� t� �� � pfP�n� �� t� ��

������

Hence� it follows that

CHAPTER �� GENERIC REAL TIME SYSTEM MODEL ��

P�m� t� � pfP�n� �� t� ��

P�m� �� t � ��
� pr � � � pd � pnc ����
�

P�n� t� � prP�m� �� t� ��

P�n� �� t � ��
� pf � � � pd � pnc ������

and therefore

P�m� t� � pfP�n� �� t� ��

P�m� �� t � ��
� pr �

P�n� t� � prP�m� �� t� ��

P�n� �� t� ��
� pf

������

Further� �gure ���� shows that

P�n� t�pd � P�Detectable�Fault� t� �� ����
�

P�m� t�pd � P�Failed� t� �� ������

Substituting these results into equation ���� leads to equation �����

P�Failed� t� �� � pfP�Detectable�Fault� t�

P�Failed� t�
� pr

�
P�Detectable�Fault� t� �� � prP�Failed� t�

P�Detectable�Fault� t�
� pf ������

Since the failure and detectable fault probabilities are observable parameters of the

systems� equation ���� allows for estimation of pf and pr� the probabilities of hidden

fault occurrence and recovery�

For safety critical work� the upper bound on the values of the model parameters should

typically be chosen� giving worst�case performance�

It is therefore seen that the parameters required by the model may be estimated based

on test data from a real system� This model is therefore of use in a predictive role� given

preliminary test data for a component it is possible to derive a reliability and timing

prediction� A number of these may then be combined to predict the behaviour of an

entire system�

CHAPTER �� GENERIC REAL TIME SYSTEM MODEL ��

��� Standard Completion Pro�les

The generic system model developed in this chapter is the basis upon which a number

of more advanced models may be built� In particular� reliability models for various fault

tolerant system con�gurations will be derived from this base in chapter
 of this thesis�

It is therefore important that the behaviour of this generic model is well understood�

and for this reason the behaviour of the model has been simulated under a number of

di�erent conditions�

The model requires a number of parameters to be speci�ed before numeric simulation

of the behaviour of a system can be performed� As discussed in section ���� three of

these parameters �pd� pf and pr� are simple uniform probabilities� and these values are

determined based on reliability estimates for the system under consideration� The fourth

parameter� pc� represents the expected completion probability with respect to time for

the system in the absence of faults� and consists of the arc weights for transitions to

the completed state� To evaluate the e�ects of changes in these parameters� a standard

system must be de�ned� with known parameters� and any comparison must be made

relative to this standard system�

For the purpose of evaluating the behaviour of the model� three standard systems have

been chosen� exponential� uniform and binomial� These three systems o�er very di�erent

performance characteristics� and hence may be expected to provide a good comparison

of the behaviour of the model�

To ease comparison� the three standard systems were chosen such that the overall com�

pletion probability� that is� the integral of the probability observed at the completed state

of the model with respect to time� was in the range �������� � � � ��������� These values

were chosen to show the behaviour of the model under a broad spread of completion

probabilities� they are not necessarily representative of any real application�

Further� all three systems were speci�ed to execute for �� time steps� with completion

possible between time steps
� and �� inclusive� Once again� these values were chosen

for the purpose of illustrating the behaviour of the model� Parameter estimation for the

purposes of evaluating the behaviour of a real system is discussed in chapter
�

These three standard systems are now discussed in turn�

����� Exponential Completion Pro�le

The exponential completion pro�le is the easiest to implement in the model� since it is

the result of a system where all the pc arc weights are uniform� By application of the

CHAPTER �� GENERIC REAL TIME SYSTEM MODEL ��

techniques discussed in section ��� it can be seen that the completion pro�le for such

a system may be de�ned as in equation ���	 and illustrated by �gure ��
 �left� for a

system with arc weight� w � ����

P�Completed� t� � w�� �w�t ����	�

For a system where completion can only occur after an initial time� tci� it is necessary

to modify equation ���	� leading trivially to equation ����� and� for example� �gure ��

�right� where tci � ���

P�Completed� t� �

��
�w�� �w�t�tci for tci 	 t 	 tmax

� otherwise
������

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0 5 10 15 20 25 30 35 40 45 50

C
om

pl
et

io
n

P
ro

ba
bi

lit
y

Time

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0 5 10 15 20 25 30 35 40 45 50

C
om

pl
et

io
n

P
ro

ba
bi

lit
y

Time

Figure ��
� Exponential completion pro�le

Since this is a discreet time model� the area under these curves may be calculated by

summing the data points� as shown in equation ����� This area is the overall completion

probability for the system�

P�Completed� �

tmaxX
t�tci

w�� �w�t�tci ������

A plot of the overall completion probability for di�ering arc weights is shown in �gure

���� This �gure was generated with tci � �� and tmax � ���

It is a simple matter to solve equation ���� to �nd the arc weights� w� which give

a speci�c value for the overall completion probability� these arc weights are shown in

table ��� �left�� For simplicity� these weights have been rounded to the values shown in

table ��� �right�� and it is these which were used to generate the standard exponential

completion pro�les ��gure ����� and hence these are the values used for the parameter

pc in the exponential system
��

�For compatibility with the other standard systems� the exponential system has been chosen with a

CHAPTER �� GENERIC REAL TIME SYSTEM MODEL ��

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

O
ve

ra
ll

C
om

pl
et

io
n

P
ro

ba
bi

lit
y

Arc Weight

Figure ���� Overall completion probability� Exponential system

Overall Completion Prob� Arc Weight

������� ��������������

������� ��������������

������� ��������������

������� ����������	���

������� ������������
�

Overall Completion Prob� Arc Weight

���

�	���� ���������

������������ ���������

�������
���� ���������

��������

�� ���������

���������

 ���������

Table ���� Arc weights for the exponential system

����� Uniform Completion Pro�le

For the uniform� or rectangular� distribution the area under the completion probability

vs� time curve must take one of a �xed set of values� Since the width of the completion

region is also �xed� the height of the curve is simply de�ned� These desired completion

probabilities are illustrated in �gure ��	� left�

By application of the techniques described in section ���� it is possible to derive the

arc weights� pc� for the uniform completion pro�le systems� these are illustrated in

�gure ��	� right� which shows the variation in arc weight through the system for arcs

leading to the completed state� It can be seen that the curve for area ������� shows

increasing arc weight� this is in fact common to all �ve curves� although di�cult to see

in this �gure� Such an increasing arc weight is expected in order to retain a constant

completion probability as the proportion of systems executing decreases with respect to

time� due to earlier completions�

small completion probability� Unfortunately� this leads to systems with a slow rate of decay� and the

exponential nature of the system is not readily apparent� the decay becomes more visible for systems

where is arc weight is of the order of ��� or above�

CHAPTER �� GENERIC REAL TIME SYSTEM MODEL ��

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

0.0035

0.004

0.0045

0.005

0 5 10 15 20 25 30 35 40 45 50

C
om

pl
et

io
n

P
ro

ba
bi

lit
y

Time

0.00001
0.00010
0.00100
0.01000
0.10000

Figure ���� Standard exponential completion pro�les

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

0.0035

0.004

0.0045

0.005

0 5 10 15 20 25 30 35 40 45 50

C
om

pl
et

io
n

P
ro

ba
bi

lit
y

Time

0.00001
0.00010
0.00100
0.01000
0.10000

0

0.001

0.002

0.003

0.004

0.005

0.006

0 5 10 15 20

A
rc

 W
ei

gh
t

0.00001
0.00010
0.00100
0.01000
0.10000

Figure ��	� Standard uniform completion pro�les� and corresponding arc weights

����� Binomial Completion Pro�le

A random variable� r� which has a binomial distribution will represent the total number

of successes obtained in n repetitions of an experiment with probability� p� of success�

this is de�ned by equation ���� ���� ����

P�r� �

�
n

r

�
pr�� � p�n�r ������

For the purposes of this work� n and p will be regarded simply as parameters to be

adjusted to produce a curve of the required shape� and their interpretation in terms of

probability theory will be neglected�

A binomial distribution produces a �bell shaped� curve where the parameter n denotes

the width of the curve and p locates the mean� For p � ��� the mean will be midway

between the upper and lower bounds of the curve� if p � ��� the curve will be skewed

towards the lower bound� and for p � ��� the curve is skewed towards the upper bound�

This is illustrated in �gure �����

In order to match the other standard distributions� curves with a width of ��� and with

CHAPTER �� GENERIC REAL TIME SYSTEM MODEL ��

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0 5 10 15 20

P
(r

)

r

n=30, p=0.25
n=30, p=0.50
n=30, p=0.75

Figure ����� Binomial distribution� E�ects of changing p

area in the range f�������� �������� �������� �������� �������g are required� These are

formed by taking the central �� points of a binomial distribution with p � ���� and n

selected to produce the required area� The values of n chosen are shown in table ���

together with the required and actual area under the curves� These truncated binomial

distributions were then shifted from the range � � � � �� to the range �� � � � ��� to produce

the �nal completion pro�les shown in �gure ���� �left�� The arc weights required to

produce such distributions are shown in �gure ���� �right�� these were calculated as

described in section ����

n Required area Actual area

�
� ������� ���	�

�

� ������� �����

�

�� ������� �����	��

� ������� �������

�
 ������� ��������

Table ���� Actual and required area for standard binomial completion pro�les

��� Analysis of the Generic Model

A detailed analysis of the behaviour of the generic model is presented in appendix B� This

comprises simulation of the standard systems� described in section ��
� with a range of

parameter settings� This provides a representative sample of the behaviour of the model�

three di�erent systems are studied� each with a range of values for the probability of

occurrence of detectable faults� and the occurrence of� and recovery from� hidden faults�

The e�ects of parameter changes on the behaviour of the generic model are summarised

CHAPTER �� GENERIC REAL TIME SYSTEM MODEL �	

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0 5 10 15 20 25 30 35 40 45 50

C
om

pl
et

io
n

P
ro

ba
bi

lit
y

Time

0.00001
0.00010
0.00100
0.01000
0.10000

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 5 10 15 20

A
rc

 W
ei

gh
t

0.00001
0.00010
0.00100
0.01000
0.10000

Figure ����� Standard binomial completion pro�les� and corresponding arc weights

below� more detailed analysis is presented in appendix B�

� The completed state shows the following characteristics�

� Increased pd leads to a reduced probability density in the completed state�

� Increased pf leads to a reduced probability density in the completed state�

� Increased pr leads to a greater probability density in the completed state�

These results are logical� and expected�

� The behaviour of the hidden fault is the inverse of that of the completed state�

This is logical� since the two states model similar external events� di�erentiated

only by the hidden internal state of the system�

� The behaviour of the detectable fault state shows the following characteristics�

� Increased pd leads to a reduced probability density in the detectable fault

state�

� Increased pf leads to a reduced probability density in the detectable fault

state�

� Increased pr leads to a greater probability density in the detectable fault

state�

The peak in the probability density plot towards the end of the execution of the

system is noted� this is due to time overrun� with the systems which have not

completed by this point being classi�ed at failures� These results are logical� and

expected�

� In a similar manner to the hidden fault and completed states� the failed state has

behaviour which is the inverse of the detectable fault state�

CHAPTER �� GENERIC REAL TIME SYSTEM MODEL �

Increasing the probability of detectable fault� pd� causes an increase in the probability

distribution of the system into the detectable fault and failed states� This follows an

exponential decay shape� due to the uniform failure probability� although this may be

modi�ed by the e�ects of the other transition probabilities�

Increasing the probability of hidden fault occurrence� pf� causes a switch from the com�

pleted and detectable fault states to the hidden fault and failed states� Once again� the

exponential curve characteristic of a uniform probability is visible� although somewhat

modulated by the completion pro�le of the system�

Increasing the probability of recovery from hidden faults� pr� reverses the e�ects of

increasing pf�

The generic real�time system model is therefore seem to behave in a predictable manner�

with combinations of parameters giving rise to logical changes in the system probability

distributions�

��� Summary

In section ��� a novel model for the behaviour of real�time systems has been derived�

based upon a number of observations of the behaviour of such systems� namely�

� Faults in a system may be classi�ed as detectable or hidden� detectable faults lead

to an observed system error� hidden faults transition the system to an alternate

mode of operation� but cannot be immediately observed� Hidden faults must be

detected by examination of the �nal output of the system� by means of some form

of acceptance test� These properties lead to the derivation of a system model with

two parallel sets of states� representing the two operational modes of the system�

� There is a limit to the accuracy of timing information which can be gathered

about a real�time system� the resolution of typical clock devices is such that

measurements of the execution�time of a system are discretised leaving a relatively

small range of values� Hence� a discrete state model may be applied� with the

progress of a computation being modelled as a series of probabilistic transitions

along a state chain�

� Real�time systems have �xed execution time bounds� and exceeding those time

bounds is an error� These time bounds limit the size of the model�

� Failures may occur at any time� Hence� transitions to the detectable fault states�

and transitions between operational modes of the system� may occur at any time�

CHAPTER �� GENERIC REAL TIME SYSTEM MODEL ��

� Similarly� the system may complete its execution at a range of times� This is

modelled by a set of probabilistic transitions to the completion states of the model�

The model resulting from these observations� �gure ��
� is both simple� and generic�

The operation of a system is modelled as a series of transitions between the states of

the model� from a single initial state to one of four �nal states� representing di�ering

combinations of successful completion� completion with a hidden fault� and detectable

failure of the system� The observed distribution between these �nal states illustrates the

functional correctness of the system�s operation� The temporal properties of the system

are illustrated by the variation in this distribution with respect to time�

Estimation of the parameters of the model has been discussed in section ���� and it has

been shown that these parameters are observable from system test data� allowing the

behaviour of real systems to be modelled�

A number of testbed systems have been de�ned and their behaviour simulated� It has

been shown that the behaviour of the model is both consistent and logical� as the model

parameters are varied�

It is therefore seen that the model developed in this chapter allows for both the functional

and temporal behaviour of a real�time system to be represented in a single high�level

model� This has been derived from generic properties of real�time systems� and is hence

independent of any speci�c design�implementation technique for such systems� This

model is an improvement on traditional system reliability models which focus on func�

tional correctness of a system and do not adequately model the temporal properties of

that system�

The scope of application of this technique has deliberately been left ambiguous so far�

this is discussed in chapter
� where the application of this technique to systems modelling

is discussed�

CHAPTER �� APPLICATION TO SYSTEMS MODELLING ��

Chapter �

Application to Systems

Modelling

The work presented in chapter � develops a high level model of the properties of a generic

real�time system� For such a model to be useful� it must be shown to be applicable in

a predictive role� in addition to describing the behaviour of existing systems� the model

must be able to predict the behaviour of new systems� Only a predictive model will be

useful in the design and implementation of a fault tolerant embedded system� In this

chapter the application of the generic model to predict the properties of two common

fault tolerant techniques will be discussed� These techniques are the recovery block� and

N�version programming� It is intended that the general applicability of this technique

will be illustrated through these speci�c examples�

This chapter is divided as follows� section
�� discusses the derivation of a system model

by means of combination of sub�system models� In sections
�� and
�
 this technique

is applied to the modelling of recovery block systems� and section
�� compares this

to a number of other published recovery block models� Section
�� brie�y discusses

N�version programming systems� to show the scope of applicability of this technique�

Finally� section
�
 summarises and discusses the results presented in this chapter�

An analysis of a number of fault tolerant systems� such as that presented in this chapter�

necessarily depends upon a number of studies of the reliability and failure probability

information for such systems� Because of the volume of this material� comprising many

system completion and failure probability graphs� it is felt that its inclusion in this chapter

would be disruptive� For this reason� therefore� details of a number of the analyses

undertaken in this chapter are provided in the appendices�

CHAPTER �� APPLICATION TO SYSTEMS MODELLING ��

��� Derivation of System Models

The model described in chapter � provides an abstract description of a generic real�time

system� and is derived from the fundamental properties of such systems� This model may

be applied to predict the properties of actual systems� provided those systems behave in

a manner compatible with the underlying assumptions of the model�

Most embedded control systems are complex entities� and this generic system model

is not suitable for modelling such systems directly� application of the model to these

systems would be a signi�cant oversimpli�cation� That does not mean� however� that

the generic system model is of no use for predicting the behaviour of such systems�

instead it must be employed as part of the modelling process�

As was discussed in chapter �� techniques for achieving fault tolerance typically employ

a number of diverse alternates� The results produced by these alternates are combined

using some form of voting or acceptance test to produce a �nal output� The combination

of multiple results leads to resilience in the presence of faults� It is these alternates to

which the generic system model may be applied� They are relatively simple processes�

typically developed and tested independently and later combined to form a fault tolerant

system� Due to the independent testing process� and small scale of the alternates� it is

a relatively simple matter to derive the parameters of the generic model for them�

It is then possible to model the complete fault tolerant system as a combination of

these alternates� Each alternate is viewed as an instance of the generic system model�

and these are combined to produce a model for the complete system� The remainder

of this chapter illustrates this process for a number of di�erent fault tolerant system

architectures�

��� Recovery Block Model	 Infallible Acceptance Test

The recovery block was described in section ��
��� It is a technique which uses multiple

versions of a program block to attempt to ensure success in the presence of system

failures� The �rst version is known as the primary and the second and subsequent

versions are known as alternates� The primary is executed� and an acceptance test

evaluated� If this fails� the alternates are executed in series until one succeeds� In order

for the entire system to operate successfully under real�time constraints� it is necessary

for each alternate to operate under such constraints� Each alternate in the recovery

block may� therefore� be viewed as a generic real�time system� and the model developed

in chapter � is applicable for modelling the behaviour of the primary and alternates�

CHAPTER �� APPLICATION TO SYSTEMS MODELLING ��

In order to model the full recovery block� an acceptance test model is required in addition

to the alternate model� This must map from the four output states of the generic model

representing each alternate to the �nal pass�fail states of that alternate� A generic

acceptance test will be fallible� that is� it will not correctly classify all systems� and will

take a �nite amount of time� Systems with such fallible acceptance tests are discussed

in section
�
� For reasons of simplicity and tractability of the analysis� however� the test

modelled here will� initially� be assumed to be infallible and to take unit time�

The purpose of an acceptance test is to determine the correctness� or otherwise� of the

result produced by an alternate in the recovery block� The generic system model has

four �nal states� indicating varying degrees of correctness of the system output� An

acceptance test model must map from these four states� to either an alternate pass

state or an alternate fail state� If the acceptance test is assumed infallible� it will simply

map from the completed state of the generic model to the alternate pass state� The

three other �nal states of the generic model will be mapped onto the alternate fail state�

If it is further assumed that the acceptance test will take unit time� only two additional

states must be added to the generic model� together with single transitions from the

�nal states of the generic system model to these new states� This combined alternate

and acceptance test model is illustrated in �gure
���

PASS
Completed

Failed

Hidden
Fault

Fault
Detectable

FAIL

Figure
��� Alternate Model With Infallible Acceptance Test

It is clear that the behaviour of an alternate and acceptance test model such as this will

be similar to that of the generic system model described in chapter �� The probability

pro�le observed at the pass state of this model will match that of observed at the

completed state of the generic model� �gure ��
� In addition� the probability pro�le at

the failure state of this model will be the sum of the three failure states of the generic

system model�

By combining several such alternate�acceptance test models� a complete model of the

recovery block may be derived� an example of this is shown in �gure
�� for a recovery

block consisting of a primary module� and two alternates� The combination of several

alternate models into a model for the complete recovery block proceeds as follows�

CHAPTER �� APPLICATION TO SYSTEMS MODELLING ��

Pass

Fail

Figure
��� Recovery Block Model

each alternate has an acceptance test� and if any one of these tests succeeds the entire

recovery block succeeds� Therefore� entry into any one of the alternate pass states is

equivalent� and hence these states are merged into a single recovery block pass state�

labelled pass in �gure
��� Entry into an alternate fail state leads to the execution of

the next alternate in series� hence the fail state of alternate n is merged with the initial

state of alternate n� �� The fail state of the �nal alternate becomes the failure state of

the entire recovery block� The result of this process is a simple� hierarchical� model for a

recovery block system� which directly models the hierarchical structure of the software�

����� Sample Analysis

In order to show the possibilities inherent in this recovery block model� a sample system

has been de�ned� and this system is subjected to analysis� This sample recovery block

system comprises a primary module� and two alternates�� and therefore corresponds to

the model illustrated in �gure
���

This sample system is not based around any speci�c system� Rather� it comprises three

alternates� each of which has properties such as those which could be found in actual

real�time systems� These alternates are as follows�

� Primary � A slow but reliable system� where the completion probability increases

with time� For example� some form of iterative solution or stepwise re�nement

technique�

� �st Alternate� A fast but unreliable system� For example a naive linear interpo�

lation algorithm applied to a nonlinear system�

� �nd Alternate� A reliable� medium speed system� The completion pro�le of this

system follows a �bell�shaped� curve� For example an algebraic solution to a set

of equations� where the completion time is somewhat data dependent�

�It is noted that these techniques are not limited to recovery blocks with three alternates� this is

merely a convenient size system for the purposes of example�

CHAPTER �� APPLICATION TO SYSTEMS MODELLING ��

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0 10 20 30 40 50

C
om

pl
et

io
n

P
ro

ba
bi

lit
y

Time

Primary
1st Alternate

2nd Alternate

Figure
�
� Basic Alternate Completion Pro�les

pf pr

Primary ����� �����

�st Alternate ����� �����

�nd Alternate ����� �����

Table
��� Alternate Parameters

It is noted� once again� that these alternates have been chosen for their illustrative value

only� and are intended to illustrate the potential of a generic technique� rather than

model the speci�cs of a single system�

The completion pro�les chosen for these alternates are illustrated in �gure
�
� By

application of the techniques discussed in section ���� in particular equation ���� these

completion pro�les may be converted to the necessary� pc� arc weights for the alternate

models�

In addition to these arc weights� the alternate model requires three other parameters to

be de�ned� the probability of detectable fault� pd� the probability of hidden fault� pf� and

the probability of hidden recovery� pr� For the purpose of these tests the parameters pf

and pr were �xed for each alternate� and pd was varied� This corresponds� for example�

to a system subject to variable rate transient hardware failure� where such failures cause

detectable faults� and also subject to constant rate software failure�recovery processes�

The values chosen for for parameters pf and pr are shown in table
��� These values are

chosen to allow numeric results to be obtained� they are not necessarily representative��

�As was discussed in section ���� the generic real�time system model� upon which this recovery block

model is based� shows linear changes in its behaviour as parameter values are modi�ed� This implies

that although the precise values obtained from these sample systems may not be representative due to

the arbitrary choice of parameters� these values will scale to match real parameter values with no major

behaviour changes�

CHAPTER �� APPLICATION TO SYSTEMS MODELLING ��

0 20 40 60
Time

Instantaneous Completion Probability

pd = 0.00001

pd = 0.00005

pd = 0.00010

pd = 0.00010

pd = 0.00100

pd = 0.00500

pd = 0.01000

pd = 0.05000

pd = 0.10000

0 20 40 60
Time

Instantaneous Failure Probability

pd = 0.00001

pd = 0.00005

pd = 0.00010

pd = 0.00010

pd = 0.00100

pd = 0.00500

pd = 0.01000

pd = 0.05000

pd = 0.10000

Figure
��� Recovery Block Completion�Failure Probability vs� Time� as pd is varied

The results of this analysis comprise the instantaneous completion and failure probability�

with respect to time� for the recovery block system� These are shown graphically in �gure

�� for di�erent values of the forward failure rate� pd� The format of these �gures is as

follows� each row of the �gure comprises the instantaneous probability for a particular

value of pd� Within the row� a darker shade of grey indicates greater probability� Values

are comparable between rows� even though the precise numeric value of each point is

not noted on the �gure� The essential point of these �gures is to show points during the

execution of a system at which it is most likely to complete�fail�

The e�ects of an increased forward failure rate� pd� are clearly shown in the comple�

tion probability curve� �gure
�� left� when the forward failure rate� pd� is small� the

alternates are executing almost sequentially� with only the time overrun causing failures�

Three regions of high completion probability are visible in the �gure� corresponding to

the peaks in the completion pro�le of the individual alternates in the system� As the

failure rate increases� the shape of the recovery block�s completion pro�le also changes�

those systems which complete successfully do so sooner� but the completion probability

decreases also� Further� the three alternates become less distinguishable�

The graph of recovery block failure probability with respect to time� �gure
�� right�

shows a related trend� At low failure rates� most failures occur towards the end of the

system�s life� due to exhaustion of alternates in the recovery block� As the failure rate

increases� it is seen that the overall completion probability decreases� as is expected� In

addition� the instantaneous failure pro�le no longer follows the pattern of sequential exe�

cution of the alternates� it is clear that alternates are failing early� and that the following

alternates are being executed with various start times� The result is a completion pro�le

which observes a more continuous distribution� rather than the three discrete peaks due

CHAPTER �� APPLICATION TO SYSTEMS MODELLING ��

to the individual alternates� and a failure pro�le which shows a broad spread of times

when system failure is likely�

Comparing the completion and failure probability curves� it may be seen that the recovery

block system exhibits two operational modes� At low forward failure rate� the system�s

behaviour is determined almost exclusively by time�overrun of alternates� and eventual

exhaustion of alternates towards the end of the system�s life� As the failure rate increases�

there is a transition to a mode where alternates rarely complete their execution� and the

system failure rate increases dramatically� It is clear that the designer of a fault�tolerant

system comprising a number of recovery blocks must be aware of this phenomenon� and

must take steps to ensure that the operational mode of such a system is well understood�

since the scheduling of such a system will be a�ected to a large degree by this�

����� Recovery Block Timing Properties

A recovery block should be designed to maximise the probability that a system completes

its operation successfully and before its deadline� In addition� it should ensure that system

failures are noticeable as early as possible� to ensure that there is time for higher level

recovery to take place� These two goals are not necessarily compatible� for a speci�c

set of alternates� the order in which those alternates are combined to form a recovery

block will a�ect the completion�failure time distribution� The e�ect of changing the

order of execution of the alternates within the recovery block may be modelled using the

technique described herein� and hence the most appropriate ordering of alternates may

be chosen for a particular application�

It is noted that this is currently feasible for small numbers of alternates only� since

the number of possible orderings for n alternates increases with n� making simulations

computationally infeasible for all apart from small n� In practice this is not a major lim�

itation� since the majority of n�version systems deployed have a relatively small number

of versions� In addition� it is unclear that large numbers of alternates increase a system�s

reliability in the general case� For example� the work of Eckhardt � Lee ���� illustrates

a number of possible systems where increased numbers of alternates actually leads to

reduced system reliability� Further� in many cases there exists an asymptotic limit to

system reliability which is approached as the number of alternates is increased� this is

illustrated in the work of Tomek et al� �	���

In order to illustrate this technique� the sample recovery block system used in section

���� has� once again� been used as a testbed� Since this comprises three alternates�

there are a total of six possible orderings in which these alternates can be executed� as is

illustrated in table
��� In this table� the primary is numbered �� and the two alternates

CHAPTER �� APPLICATION TO SYSTEMS MODELLING �	

�st �nd
rd

RB� � �

RB� �
 �

RB
 � �

RB� �
 �

RB�
 � �

RB

 � �

Table
��� Possible Orderings for a Three Alternate Recovery Block

are numbered � and
 respectively� The resulting six orderings provide six recovery block

systems� RB� to RB
�

For each of these systems� the behaviour of the recovery block system has been simulated

for several values of pd� The completion pro�les of these systems are shown in �gure

��� As can be seen� there is a large variation in the behaviour of the system dependent

on the order in which the alternates are executed� and the forward failure probability�

pd� Since each alternate has a unique completion pro�le� the recovery block completion

pro�le changes� depending on the order of execution of the alternates�

If the cumulative completion pro�les for di�erent recovery block systems are compared�

the e�ects of di�erent alternate orderings become clearer� Whilst the overall completion

probability of the system is una�ected� it is clear that the likely completion time of the

system will vary signi�cantly depending on the chosen order of execution of the alternates�

This is illustrated in �gure
�
� where it is seen that the cumulative completion probability

increases at di�erent rates for the di�erent alternate orderings�

The e�ects of increasing the forward failure rate� pd� are twofold� and may be observed

in �gure
��� Firstly� it is clear the increasing pd leads to a reduced overall system

completion probability� Secondly� it is seen that increased pd leads to a greater divergence

between the di�erent alternate orderings� That is� a greater failure rate makes the

ordering of the alternates more important for determining the system�s completion time�

The failure probability information for the recovery block systems is shown in �gure
���

with the instantaneous failure probability on the left� and cumulative on the right� The

most interesting feature of this is that for a given failure rate the system failure pro�le

is �xed� independent of the order of execution of the alternates �and hence only the

RB� system is shown� to conserve space�� At �rst� this appears surprising� since the

completion pro�le of the system changes with the di�ering orderings of alternates� the

failure pro�le might reasonably be expected to do so too�

In practice this is not so� due to a fundamental assumption of the recovery block model�

CHAPTER �� APPLICATION TO SYSTEMS MODELLING �

0 20 40 60
Time

RB1

pd = 0.00001

pd = 0.00005

pd = 0.00010

pd = 0.00010

pd = 0.00100

pd = 0.00500

pd = 0.01000

pd = 0.05000

pd = 0.10000

0 20 40 60
Time

RB2

pd = 0.00001

pd = 0.00005

pd = 0.00010

pd = 0.00010

pd = 0.00100

pd = 0.00500

pd = 0.01000

pd = 0.05000

pd = 0.10000

0 20 40 60
Time

RB3

pd = 0.00001

pd = 0.00005

pd = 0.00010

pd = 0.00010

pd = 0.00100

pd = 0.00500

pd = 0.01000

pd = 0.05000

pd = 0.10000

0 20 40 60
Time

RB4

pd = 0.00001

pd = 0.00005

pd = 0.00010

pd = 0.00010

pd = 0.00100

pd = 0.00500

pd = 0.01000

pd = 0.05000

pd = 0.10000

0 20 40 60
Time

RB5

pd = 0.00001

pd = 0.00005

pd = 0.00010

pd = 0.00010

pd = 0.00100

pd = 0.00500

pd = 0.01000

pd = 0.05000

pd = 0.10000

0 20 40 60
Time

RB6

pd = 0.00001

pd = 0.00005

pd = 0.00010

pd = 0.00010

pd = 0.00100

pd = 0.00500

pd = 0.01000

pd = 0.05000

pd = 0.10000

Figure
��� Recovery Block Instantaneous Completion Probability for di�erent pd

CHAPTER �� APPLICATION TO SYSTEMS MODELLING ��

0 20 40 60
Time

RB1

pd = 0.00001

pd = 0.00005

pd = 0.00010

pd = 0.00010

pd = 0.00100

pd = 0.00500

pd = 0.01000

pd = 0.05000

pd = 0.10000

0 20 40 60
Time

RB2

pd = 0.00001

pd = 0.00005

pd = 0.00010

pd = 0.00010

pd = 0.00100

pd = 0.00500

pd = 0.01000

pd = 0.05000

pd = 0.10000

0 20 40 60
Time

RB3

pd = 0.00001

pd = 0.00005

pd = 0.00010

pd = 0.00010

pd = 0.00100

pd = 0.00500

pd = 0.01000

pd = 0.05000

pd = 0.10000

0 20 40 60
Time

RB4

pd = 0.00001

pd = 0.00005

pd = 0.00010

pd = 0.00010

pd = 0.00100

pd = 0.00500

pd = 0.01000

pd = 0.05000

pd = 0.10000

0 20 40 60
Time

RB5

pd = 0.00001

pd = 0.00005

pd = 0.00010

pd = 0.00010

pd = 0.00100

pd = 0.00500

pd = 0.01000

pd = 0.05000

pd = 0.10000

0 20 40 60
Time

RB6

pd = 0.00001

pd = 0.00005

pd = 0.00010

pd = 0.00010

pd = 0.00100

pd = 0.00500

pd = 0.01000

pd = 0.05000

pd = 0.10000

Figure
�
� Recovery Block Cumulative Completion Probability for di�erent pd

CHAPTER �� APPLICATION TO SYSTEMS MODELLING ��

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100

C
um

ul
at

iv
e

C
om

pl
et

io
n

P
ro

ba
bi

lit
y

Time

0.00001

RB1
RB2
RB3
RB4
RB5
RB6

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100
C

um
ul

at
iv

e
C

om
pl

et
io

n
P

ro
ba

bi
lit

y
Time

0.05000

RB1
RB2
RB3
RB4
RB5
RB6

Figure
��� E�ects of pd on cumulative completion probability

0 20 40 60
Time

RB1

pd = 0.00001

pd = 0.00005

pd = 0.00010

pd = 0.00010

pd = 0.00100

pd = 0.00500

pd = 0.01000

pd = 0.05000

pd = 0.10000

0 20 40 60
Time

RB1

pd = 0.00001

pd = 0.00005

pd = 0.00010

pd = 0.00010

pd = 0.00100

pd = 0.00500

pd = 0.01000

pd = 0.05000

pd = 0.10000

Figure
��� Recovery Block Failure Probability

CHAPTER �� APPLICATION TO SYSTEMS MODELLING ��

independence of the alternates� The recovery block model is comprised of a number

of alternates� each of which is modelled using a technique based on the generic system

model described in chapter �� As was discussed in section
��� the parameters for these

alternates are derived in isolation� and then combined to form the complete recovery block

model� These parameters hence do not include any e�ects due to interaction between

the alternates when they are combined into the recovery block� it is assumed that is the

performance of an alternate measured in isolation is the same as its performance when

used in the recovery block�

Each alternate may be viewed as a function transforming an input stream� This input

stream comprises the set of data points input to the system� and the alternate transforms

this to produce two probability distributions at its output states� The alternates perform

this function� irrespective of the source of their input data� Execution of the alternates

is commutative� hence the probability distribution observed at the failure state of the

recovery block� which has been processed by all alternates� is independent of the order

of those alternates� On the other hand� the distribution at the completed state of the

recovery block is only processes by a subset of the alternates� and hence varies with the

order of execution of the alternates�

Given this assumption of independence� these results seem justi�ed� It is� however� an

open question whether this assumption holds� this is discussed in section
���
�

������� Mean Completion Time

It is possible to derive a number of metrics from completion�failure pro�les such as

those illustrated in �gures
�� to
��� The most obvious of these is the overall system

completion probability� de�ned as the �nal value of the cumulative completion probability�

The overall system failure probability is similarly de�ned� It is also possible to derive the

mean completion�failure time� this is now discussed in some detail�

The mean completion time is here de�ned as the time at which the cumulative completion

probability equals ���� Since the recovery block model used is a discrete time model�

linear interpolation is used if the mean completion time falls between two time steps�

This metric has been derived for the recovery block systems studied in section
�����

these results are shown in �gure
�	�

As can be seen� for systems where the forward failure probability� pd � ����� the mean

completion time is e�ectively constant� However� as the forward failure probability in�

creases above this threshold the mean completion time begins to decrease noticeably�

The six recovery block systems comprise three pairs� RB� and RB� with alternate �

executing �rst� RB
 and RB� with alternate � executing �rst� and RB� and RB
 with

CHAPTER �� APPLICATION TO SYSTEMS MODELLING ��

5

10

15

20

25

30

35

0.00001 0.00010 0.00100 0.01000 0.10000 1.00000

M
ea

n
C

om
pl

et
io

n
T

im
e

Forward Failure Probability

RB1
RB2
RB3
RB4
RB5
RB6

9.5

10

10.5

11

11.5

12

0.00001 0.00010 0.00100 0.01000 0.10000 1.00000

M
ea

n
C

om
pl

et
io

n
T

im
e

Forward Failure Probability

RB5
RB6

Figure
�	� Mean Completion Time

alternate
 executing �rst� It is noted that the RB
 and RB� systems show a propor�

tionally greater rate of decline than the others� These are the systems where alternate �

is executed �rst� this being the least reliable of the three alternates� In the RB
 system

the least reliable alternate is executed �rst� and the others follow in order of increasing

reliability� This results in a system which has initially the largest mean completion time�

but which exhibits the greatest rate of decline� The RB� system has� once again� the

least reliable alternate executing �rst� but the order of the other two alternates is re�

versed� This results in a system which has an initially lower mean completion time� and

which exhibits a smaller rate of decline as the forward failure probability is increased�

This is logical� with an initially unreliable alternate� increased failure probability results

in a system which fails sooner�

The behaviour of the RB� and RB
 systems is unusual� the mean completion time

increases as the failure rate is increased� This is the counterpoint to the RB
 and

RB� systems� here the most reliable alternate is executed �rst� In the RB
 system� the

alternates are executing in decreasing order of reliability� and this results in a system which

shows not only the smallest rate of decline of the mean completion time but� in fact�

a noticeable peak with increased mean completion time� The initial mean completion

time is due mainly to time overrun of the �rst alternate� as the failure rate is increased

a combination of the execution time of all of the alternates results in an increase over

that of the �rst alternate only�

It is desired that a recovery block system either produce a correct result� or fail as soon

as possible� in order that there is su�cient time for a higher level recovery procedure to

operate before the system�s deadline is exceeded� In order to achieve this for the systems

studied� the alternates should be executed with a reliable alternate �rst� followed by the

least reliable� and the others in increasing order of reliability� In this case the RB� and

RB� systems exhibit this behaviour�

CHAPTER �� APPLICATION TO SYSTEMS MODELLING ��

������� Mean Time to Failure

In a similar manner� it is possible to plot the mean time to failure for the recovery block

systems studied in section
����� this is illustrated in �gure
���� These results are

unsurprising� as the forward failure probability is increased the system fails sooner� With

reference to the failure pro�les of these systems� �gure
��� it is clear that the decline

in the mean time to failure occurs at the point where the system changes its mode of

operation away from being limited by time overrun�

15

20

25

30

35

40

45

50

55

60

0.00001 0.00010 0.00100 0.01000 0.10000 1.00000

M
ea

n
T

im
e

T
o

F
ai

lu
re

Forward Failure Probability

Figure
���� Mean Time To Failure

������� Recovery Block Timing Properties� Summary

A further discussion of the timing properties of the recovery block model may be found in

appendix C� This provides further data to validate the conclusions drawn in this section�

by means of a study of the behaviour of two additional recovery block systems�

It is clear that the order of execution of the alternates has a profound e�ect on the timing

properties of a recovery block system� In cases where the probability of detectable faults

occurring is low� it is seen that the alternates execute in an essentially sequential fashion�

virtually all failures are due to the time overrun of the alternates� and the instantaneous

completion probability plots show that the completion pro�le for the complete recovery

block system is comprised of those of each alternate concatenated in a sequential fashion�

As the probability of detectable faults occurring increases� the alternates no longer ex�

ecute in such a clearly de�ned fashion� more failures occur� and the �xed time bounds

between execution of the di�erent alternates are blurred� In this mode of operation both

completion and failure of the recovery block are likely to occur sooner� and the failure

probability increases greatly�

It is seen that the failure time is independent of the order of execution of the alternates

CHAPTER �� APPLICATION TO SYSTEMS MODELLING ��

of the recovery block system� but the completion time is not� Therefore� care should

be taken to ensure that the alternates are executed in an order which encourages early

completion� Clearly this order will depend on the precise nature of the alternates used�

and use of the techniques discussed herein can enable determination of the optimum

order based on test data for the individual alternates�

It is possible to determine a number of guidelines for the best ordering of the alternates

for a particular recovery block� In order to ensure that the sample system is likely to

complete early� the most reliable alternate should be executed �rst� followed by the least

reliable� and then the others� Similar results can be derived for other recovery block

systems� and further examples are presented in appendix C�

����� The E
ects of Dependent Alternate Failure Rates

So far� it has been assumed that the alternates in a recovery block are independent� that

is� the failure rate of an alternate measured in isolation is the same as its failure rate when

employed in the recovery block� It has� however� been shown that this assumption is

likely to be invalid� For example� the work of Eckhardt � Lee on N�version programming

systems ���� states that

����recent experiments have demonstrated that programmers given the same

task are prone to make mistakes that potentially reduce the e�ectiveness of a

fault�tolerant approach� These mistakes� although perhaps totally unrelated�

appear in the application environment as coincident failures� that is� two or

more versions fail when operating on the same input��

Further� it is shown that the failure intensities required of the components in a system�

for the assumption of independence to hold� are unlikely to be found in practice� An

extension of Eckhardt � Lee�s work by Tomek �	�� has concluded that

����even independently developed modules are prone to exhibit the same

types of errors when operating on the same input��

In addition the oft�cited work of Knight and Leveson ��
� indicates that the alternates

in an N�version programming system �section ������ are likely to fail in a coincident

manner�

The recovery block has a number of features in common with N�version programming

systems� and it is expected that the concerns expressed in the papers cited above are

CHAPTER �� APPLICATION TO SYSTEMS MODELLING ��

equally valid for recovery block systems� since both utilise redundant multiversion soft�

ware� There is� however� an important di�erence� in an N�version programming system�

all versions of the software receive the same set of inputs� and execute in parallel� In a

recovery block system� the primary receives the full set of inputs� whilst the secondary

only processes those points for which the primary failed� Similarly� the third alternate

receives only those inputs for which the primary and secondary have failed� etc� This

e�ect has been studied theoretically by Csenki ����� who derives a model for the expected

number of input points processed by a recovery block before failure� the failure prob�

abilities for each alternate are parameters to this model� but the likely values of these

parameters are� unfortunately� not discussed� The e�ects of these interactions between

the alternates in a recovery block are further studied by Laprie and Kanoun ���� who

state that

�a distinction has to be made between the interface failures �characterising

the failures occurring during interactions with other components� and the

internal component failure rates��

This work further suggests that the interface failure probabilities are at least as important

as the internal component failures rates in determining the failure rate for a component�

It is clear� therefore� that the e�ects of coincident� correlated� failures between the

alternates in a recovery block must be studied�

The recovery block model developed in section
�� has four parameters which may be

in�uenced by the e�ects of dependent alternates� These parameters are� the completion

pro�le for each alternate� pc� the probability of detectable fault� pd� and the probabilities

of hidden fault and recovery� pf and pr�

As was discussed in section ���� the completion pro�le of an alternate is de�ned indepen�

dent of the occurrence of faults� and must be derived from knowledge of the algorithm

used by the alternate and�or test data� This expresses the fundamental behaviour of the

alternate� and hence is not a�ected by the e�ects of coincident faults�

The other three parameters are� however� candidates for modi�cation due to these e�ects�

These parameters fall into two categories� those representing detectable faults� pd� and

those representing hidden faults� pf and pr� In section
���
��� the e�ects of changes

in pd are studied� whilst section
���
�� discusses the e�ects of modi�cations to pf and

pr�

CHAPTER �� APPLICATION TO SYSTEMS MODELLING ��

������� The E�ects of Dependent Alternates� pd

The behaviour recovery block described in section
���� has been studied with the ad�

dition of coincident faults� dependent on the probability of detectable fault� pd� Such

faults are modelled using a failure probability multiplier� pdm � by which the probability

of detectable fault� pd� is multiplied in subsequent alternates� That is� the probability

of detectable fault in alternate n� pnd � is de�ned as in equation
���

pnd � pdm � pn��d �
���

It is assumed that the e�ects of dependent faults are to increase the failure probability of

an alternate� hence it is expected that pdm will be greater than unity� For the purpose of

these tests the failure probability multiplier� pdm was varied such that ��� 	 pdm 	 ����

giving up to a ��! increased forward failure rate for each additional alternate� The

details of this analysis are presented in appendix D���

The e�ects of increasing pdm are clear and consistent� as pdm is increased� the com�

pletion probability is reduced� and the failure probability correspondingly increased� It

is noted that the basic shape of the completion and failure probability curves is not af�

fected� The amount by which the completion and failure probabilities vary is seen to be

dependent on the value of pd� For small pd there is little e�ect� but as pd is increased

the probability plots show greater dispersion�

Changing the value of pdm does not a�ect the similarity of the failure probability plots�

in each case the same failure probability pro�le is produced� regardless of the ordering

of alternate execution�

������� The E�ects of Dependent Alternates� pf

A further analysis of the recovery block model described in section
���� has been per�

formed� This analysis� described in appendix D��� includes a model of the e�ects of

dependent alternate failure� modelled as an increase in the probability of hidden fault

occurrence� pf� This increase in pf is represented as a failure probability multiplier� pfm �

which is a small factor by which pf is multiplied in each alternate� That is� the value of

pf in alternate n is de�ned by equation
���

pnf � pfm � pn��f �
���

As discussed in section
���
� it is assumed that the e�ects of dependent faults are

to increase the failure probability of an alternate� hence it is expected that pfm will

be greater than unity� For the purpose of these tests� pfm was varied such that ��� 	

CHAPTER �� APPLICATION TO SYSTEMS MODELLING �	

pfm 	 ���� giving up to a ��! increased hidden fault occurrence rate for each additional

alternate� The details of this analysis are presented in appendix D���

It is clear that the e�ect of dependent alternate failure� modelled by an increased hidden

fault rate� is to cause reduced system completion probability� The basic shape of the

plot of completion probability against time is not a�ected� the likelihood of completion

is reduced though�

Once again� it is seen that changing the value of pfm does not a�ect the similarity of

the failure probability plots� in each case the same failure probability pro�le is produced�

regardless of the ordering of alternate execution�

������� The E�ects of Dependent Alternates� Summary

In sections
���
�� and
���
�� results from the analysis of recovery block systems subject

to correlated alternate failure have been discussed� It has been seen that such correlated

failures cause simple increases in the failure rate of the complete recovery block� but do

not a�ect the basic timing properties of the system�

In addition� although not described above� it has been shown that combinations of

dependent failure� modelled as increases in both pd and pf� result in predictable� linear

combinations of the responses seen with single correlated failures�

It is� therefore� seen that whilst correlated failures are important when considering a

system�s reliability� they are less important when the timing properties of the system

must be studied� This is important� since it allows scheduling decisions to be made� with

some degree of reliability� before system integration and test are undertaken� and the full

degree of failure correlation is observed�

����� Discussion

It has been shown that a recovery block system has two modes of operation� when

the probability of detectable fault occurrence is small� alternates which fail before their

time limit are unusual� This results in the completion pro�le for the complete recovery

block being a concatenation of the completion pro�les for the individual alternates� The

failure pro�le of such a system shows very few failures occurring early in the execution

of the recovery block� but a peak where a number of failures occur toward the end of

the recovery blocks execution� due to the exhaustion of alternates�

As the probability of detectable faults increases� the system exhibits a transition to a

second mode of operation� the alternates no longer run to completion� but rather fail

CHAPTER �� APPLICATION TO SYSTEMS MODELLING �

earlier� This results in a system where the failure pro�le shows a much enlarged peak early

in the system�s execution� In addition� the completion pro�le no longer resembles the

concatenation of the completion pro�les for the individual alternates� since the alternates

fail at di�erent times� there are a range of start times� and hence completion times� for

the second and subsequent alternates� This results in a more continuous completion

pro�le for the recovery block� with the e�ects of the individual alternates being less

noticeable�

This separation of the behaviour of a recovery block into two modes is con�rmed by

the mean completion and failure time data� It is clear that recovery block systems

exhibit little change in their mean completion and failure time� until the probability that

a detectable fault occurs exceeds a certain threshold value� at which point these metrics

decrease rapidly� The point at which this occurs corresponds to the mode change in the

behaviour of the system�

The order in which the alternates of a recovery block are executed has a signi�cant

e�ect on the behaviour of that recovery block� The overall reliability of the recovery

block is not a�ected by these changes in alternate ordering� but the timing properties

of the system are a�ected signi�cantly� When designing a system with strict timing

constraints� the knowledge of these changes in the timing properties of a recovery block

dependent on the order of alternates execution will be useful�

It is desired that a recovery block system either produces a correct result� or fails as soon

as possible� in order that there is su�cient time for a higher level recovery procedure

to operate before the system�s deadline is exceeded� To achieve this for the systems

studied� it appears that the alternates should be executed with the most reliable �rst�

followed by the least reliable� and the others in increasing order of reliability� Application

of the techniques presented here will allow for similar recommendations to be produced

for other recovery block systems�

Given information such as this� and a knowledge of the expected use of a system� the

designer of that system is in a position to make an informed decision on whether the

absolute worst�case execution time must be used� or whether a reduced set of bounds

can be chosen� with a speci�c risk that the system will fail to perform within these

bounds� In many cases the absolute worst�case behaviour is su�ciently unlikely� and the

failure probabilities of other parts of the system are su�ciently large� that the increased

probability that the system will exceed its deadline is acceptable� It is� therefore� seen that

application of this model will provide greater con�dence that software can be designed

to a speci�c� tolerable� level of risk�

CHAPTER �� APPLICATION TO SYSTEMS MODELLING 	�

��� Recovery Block Model	 Fallible Acceptance Test

A recovery block system will utilise an acceptance test to determine the correctness� or

otherwise� of the results produced by each alternate� In the terms of the model developed

in this thesis� the acceptance test maps from the four �nal states of the generic system

model discussed in chapter � to the �nal pass�fail states of the alternate� Recovery block

systems utilising infallible acceptance tests were discussed in section
��� however the

possibility of an acceptance test which contains faults cannot be discounted� it is these

fallible acceptance tests which are studied in this section�

There are four possible outcomes of the execution of an acceptance test� each of which

have an associated occurrence probability �����

�� A correct result is accepted� probability pca�

�� A correct result is rejected� probability � � pca�

� An incorrect is result rejected� probability pir�

�� An incorrect is result accepted� probability �� pir�

The combined alternate and acceptance test model required is a simple extension to that

used previously� �gure
��� where a number of additional arcs are added to represent the

extra failure modes of the system� This new alternate and acceptance test model is

illustrated in �gure
���� the extra arcs have probabilities as follows�

� The arc from the completed state to the pass state has weight pca�

� The arc from the completed state to the fail state has weight � � pca�

� Other arcs leading to the fail state have weight pir�

� Other arcs leading to the pass state have weight � � pir�

The infallible acceptance tests studied in section
�� correspond to systems with param�

eters pca � pir � ����

Recent work into the e�ectiveness of acceptance tests in helicopter �ight control systems

����� classi�es the results of an acceptance test in a similar fashion� false alarms� unde�

tected faults� detected faults and stop faults� The results obtained in that work show that

false alarms� corresponding to an acceptance test which rejects correct results� comprise

less than �! of the total detected faults�

CHAPTER �� APPLICATION TO SYSTEMS MODELLING 	�

Completed

Failed

Undetectable

Detectable
Fault

Fault

PASS

FAIL

Figure
���� Alternate Model With Fallible Acceptance Test

The results vary somewhat� depending on the nature of the acceptance test used� but the

sum of stop faults and detected faults� which corresponds to pir in the model developed

in this thesis� is typically between ��� and ���� The undetected fault probability is around

��� to ���� corresponding to � � pir in this model� The false alarm rates are typically

less than ����� corresponding to ��pca� This leads to likely parameter values as shown

in table
�
�

Parameter Likely range

pca � ����

pir ��� � � � ���

Table
�
� Estimated acceptance test parameters

Simulation of the behaviour of the recovery block has been repeated� with pca � ����

and pir � ���� to match the values in table
�
� and the results of this are shown in

�gures
��� to
���� the failure results are identical for all alternate orderings� so only

the results for the RB� system are shown�

The instantaneous completion pro�le� �gure
���� shows predictable results� systems

with infallible acceptance tests are more likely to be diagnosed as successfully completing

their execution at any given time� The only exceptions to this are at the �nal time step

of the execution of each individual alternate� when the system with fallible acceptance

test shows greater completion probability� This is con�rmed by the plots of cumulative

completion probability� �gure
��
� which show greater cumulative completion probability

for the systems with fallible acceptance test� after the completion of the �rst alternate�

The failure probability results� �gure
���� also show this trend�

These results appear strange at �rst� a fallible acceptance test results in a system which

appears to be more reliable than that with a perfect acceptance test� A few moments

thought should su�ce to show that this result is� in fact� logical� with pca � ���� the

vast majority of correct results are accepted as correct� however since pir � ���� some

CHAPTER �� APPLICATION TO SYSTEMS MODELLING 	�

��! of the incorrect results are also accepted as correct� resulting in a system which

appears more reliable than that with a perfect acceptance test� due to misclassi�cation

of incorrect results as correct�

This is an important point� which should be noted by designers of safety critical systems�

Due to imperfections in the acceptance test of a recovery block� or similar structure� a

system may appear more reliable than is deserved� The possibility of misclassi�cation of

incorrect results as correct is very real� and it is clear that much work should be expended

to ensure the reliability of the acceptance test�

��� Comparison with other Recovery Block Models

In this section� the model developed in sections
�� and
�
 is compared with a number

of other recovery block reliability models which have been developed in the literature�

The aim is to show both the similarities between this model and other models� and also

the di�erences� In addition� a number of models which have in�uenced the development

of this model are discussed�

����� Eckhardt � Lee and Nicola � Goyal

The work of Eckhardt � Lee develops a theoretical basis for analysing the behaviour of

multiversion software under the in�uence of coincident faults� This work is based around

the de�nition on an intensity function which describes the probability that coincident

faults are introduced into the diverse versions in an N�version programming system� The

procedure developed in this paper for evaluating the failure probability for an N�version

programming system is reliant on the nature of this intensity distribution� unfortunately�

determining this distribution is a non�trivial problem�

There have been a number of attempts to �nd acceptable intensity distributions to enable

the application of this work� The most noteworthy of these is the work of Nicola � Goyal

�
	� who use a beta�binomial intensity distribution to �t the software reliability data of

Knight � Leveson ��
� ����

By application of a beta�binomial intensity distribution� Nicola and Goyal de�ne the

probability that i failures occur in an N version system as in equation
�
�

bN�i� �

�
N

i

�
��� �i� ������� ��� ���� � � ����� �N� i� ������� �N� i� ���� � � ��

��� �N� ������� �N� ���� � � � �
�����

The parameters to this model are as follows� � is the mean failure probability of a

program version on a random input� � � � � � is the mean completion probability of a

CHAPTER �� APPLICATION TO SYSTEMS MODELLING 	�

0

0.02

0.04

0.06

0.08

0.1

0 20 40 60 80 100

In
st

an
ta

ne
ou

s
C

om
pl

et
io

n
P

ro
ba

bi
lit

y

Time

RB1

Fallible AT
Infallible AT

0

0.02

0.04

0.06

0.08

0.1

0 20 40 60 80 100

In
st

an
ta

ne
ou

s
C

om
pl

et
io

n
P

ro
ba

bi
lit

y

Time

RB2

Fallible AT
Infallible AT

0

0.02

0.04

0.06

0.08

0.1

0 20 40 60 80 100

In
st

an
ta

ne
ou

s
C

om
pl

et
io

n
P

ro
ba

bi
lit

y

Time

RB3

Fallible AT
Infallible AT

0

0.02

0.04

0.06

0.08

0.1

0 20 40 60 80 100

In
st

an
ta

ne
ou

s
C

om
pl

et
io

n
P

ro
ba

bi
lit

y

Time

RB4

Fallible AT
Infallible AT

0

0.02

0.04

0.06

0.08

0.1

0 20 40 60 80 100

In
st

an
ta

ne
ou

s
C

om
pl

et
io

n
P

ro
ba

bi
lit

y

Time

RB5

Fallible AT
Infallible AT

0

0.02

0.04

0.06

0.08

0.1

0 20 40 60 80 100

In
st

an
ta

ne
ou

s
C

om
pl

et
io

n
P

ro
ba

bi
lit

y

Time

RB6

Fallible AT
Infallible AT

Figure
���� E�ects of fallible acceptance tests� Instantaneous Completion Pro�le

CHAPTER �� APPLICATION TO SYSTEMS MODELLING 	�

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 20 40 60 80 100

C
um

ul
at

iv
e

C
om

pl
et

io
n

P
ro

ba
bi

lit
y

Time

RB1

Fallible AT
Infallible AT

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 20 40 60 80 100

C
um

ul
at

iv
e

C
om

pl
et

io
n

P
ro

ba
bi

lit
y

Time

RB2

Fallible AT
Infallible AT

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 20 40 60 80 100

C
um

ul
at

iv
e

C
om

pl
et

io
n

P
ro

ba
bi

lit
y

Time

RB3

Fallible AT
Infallible AT

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 20 40 60 80 100

C
um

ul
at

iv
e

C
om

pl
et

io
n

P
ro

ba
bi

lit
y

Time

RB4

Fallible AT
Infallible AT

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 20 40 60 80 100

C
um

ul
at

iv
e

C
om

pl
et

io
n

P
ro

ba
bi

lit
y

Time

RB5

Fallible AT
Infallible AT

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 20 40 60 80 100

C
um

ul
at

iv
e

C
om

pl
et

io
n

P
ro

ba
bi

lit
y

Time

RB6

Fallible AT
Infallible AT

Figure
��
� E�ects of fallible acceptance tests� Cumulative Completion Pro�le

CHAPTER �� APPLICATION TO SYSTEMS MODELLING 	�

0

0.0005

0.001

0.0015

0.002

0.0025

0 20 40 60 80 100

In
st

an
ta

ne
ou

s
F

ai
lu

re
 P

ro
ba

bi
lit

y

Time

RB1

Fallible AT
Infallible AT

0

0.005

0.01

0.015

0.02

0.025

0.03

0 20 40 60 80 100

C
um

ul
at

iv
e

F
ai

lu
re

 P
ro

ba
bi

lit
y

Time

RB1

Fallible AT
Infallible AT

Figure
���� E�ects of fallible acceptance tests� Failure Pro�les

program version on random input� and � � � 	 � 	 � is the correlation among versions�

It is noted that these parameters may be directly estimated from experimental data�

indeed if the mean� �� and variance� ��� of the number of alternates failing on a random

input are known� then these parameters may be derived as in equations
�� and
�� �
	��

� � N� �
���

�� � N���� �N��
�� � �� �
���

In a recovery block system� failure of the recovery block only occurs when all of the

alternates fail for a single input� In the model of Nicola � Goyal� this corresponds to the

case when i � N� It is possible to model the behaviour of a recovery block comprised of

three alternates using the Nicola � Goyal model� This is done by substituting N � i � �

into equation
�
� which then reduces to the form of equation
�
�

brb �
�� � ����� � ���

�� � ����� � ��
�
�
�

This expression represents the failure probability for a three alternate recovery block

system� parameterised by the mean failure probability of the alternates� �� and the

degree of correlation between alternate failures� �� A plot of the recovery block failure

probability predicted by equation
�
 is shown in �gure
��� for all possible values of �

and �� The key at the top�right of this �gure indicates the height of the contour lines

plotted on the base� these indicate points of equal recovery block failure probability�

When applied to a three alternate recovery block system� the model of Nicola � Goyal

depends upon two parameters only� the mean failure probability of a program version on

random input� �� and the correlation amongst versions� �� The e�ects of the correlated

failure of alternates in a recovery block system have also been studied in this thesis�

section
���
� and the parameters of that model may easily be reduced to the form

CHAPTER �� APPLICATION TO SYSTEMS MODELLING 	�

 0.889
 0.778
 0.667
 0.556
 0.444
 0.333
 0.222
 0.111

0
0.5

1 0

0.5

1

0

0.5

1

Mean Alternate Failure Probability

Correlation

Recovery Block Failure Probability

Figure
���� Recovery Block Failure Probability� based on Nicola � Goyal

required by the Nicola � Goyal model� allowing a comparison of the two models to be

performed�

The alternates employed in section
���
 to study the e�ects of correlated alternate failure

in recovery blocks had failure probabilities as illustrated in table
��� These represent the

probability that these alternates will fail when presented with a random input� with no

correlated failures between the alternates� This information may be used to predict the

failure probability of the entire recovery block� using the Nicola � Goyal model� if the

mean value of the alternate reliability� the bottom row from table
��� is substituted for

the parameter � in equation
�
� This results in a prediction for the recovery block failure

probabilities as illustrated in �gure
��
 �left�� where the curves are labelled according

to the base pd value�

System pd

�������� ��������

Primary ����
��
 ������
�

�st Alternate ���

� ������

�nd Alternate ������		 �������

Mean Value �������� �����
�

Table
��� Alternate Failure Probabilities

By means of comparison� the failure probabilities for the systems studied in section

���
�� are illustrated in �gure
��
 �right� for two di�erent values of pd� The recovery

block failure probability is here the �nal value of the cumulative failure probability for

these systems� �gures D�� and D��� The failure probability multiplier is the value of the

parameter� pdm � and corresponds roughly to the correlation factor in the Nicola � Goyal

model�

It is noted that there is no precise mapping between the correlation factor of Nicola �

CHAPTER �� APPLICATION TO SYSTEMS MODELLING 	�

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

R
ec

ov
er

y
B

lo
ck

 F
ai

lu
re

 P
ro

ba
bi

lit
y

Correlation

0.00050
0.05000

0

0.2

0.4

0.6

0.8

1

1 1.1 1.2 1.3 1.4 1.5

R
ec

ov
er

y
B

lo
ck

 F
ai

lu
re

 P
ro

ba
bi

lit
y

Failure Probability Multiplier

0.00050
0.05000

Figure
��
� Comparison with Nicola � Goyal�s model

Goyal� and the failure probability multiplier� pdm � used in section
���
�� of this thesis�

In both cases� the initial value of the parameter indicates no correlation� and increased

values indicate a greater degree of correlation between alternate failures� The correlation

factor of Nicola � Goyal is expected to reside in the range � � � � �� where as the failure

probability multiplier� pdm � has a theoretically unlimited range� although in practice it

is expected to be small� The results presented in �gure
��
 should not� therefore� be

expected to show a precise match between the two models� similarities in the behaviour

of the two systems are expected� although the details will di�er due to the di�erence in

parameter interpretation�

Despite the di�erences caused by the interpretation of the correlation parameters� it is

clear that the systems where pd � ������� have similar behaviour predicted by both

models� The systems with pd � �������� however� show quite distinct behaviour� The

model of Nicola � Goyal uses the mean alternate failure probability� in contrast to the

model developed in this thesis which treats each alternate separately� The alternates

used in this test show a wide variation in their failure probability� this variation being

greatest when pd has small values� As is shown in table
��� the alternates failure

probabilities for the case where pd � ������� are scattered towards the two extremes

of reliability� this leads to a mean which is dissimilar to the failure probability of any

one alternate� The large variation in the behaviour of the two models for this system is

caused by this variation in the alternate failure probabilities� causing the Nicola � Goyal

model to overestimate the recovery block failure probability�

The model of Nicola � Goyal is therefore seen to be in agreement with the model

developed in this thesis� for systems where all alternates in the recovery block have similar

failure probabilities� For recovery block systems where the reliability of some alternates

is signi�cantly di�erent to the others� the two models disagree� This is due to the

approximation of a number of system parameters by a single metric in the Nicola � Goyal

model� and represents a deliberate simpli�cation� and limitation� of their model� The

CHAPTER �� APPLICATION TO SYSTEMS MODELLING 		

advantage gained by the Nicola � Goyal model as a result of this� is that the parameters

of the model are easier to estimate than those required by the model developed in this

thesis�

����� Pucci

The model of Pucci ���� has a number of similarities to the recovery block model devel�

oped in this thesis� but also a signi�cant set of di�erences� The essential similarities are

the nature of the fault model employed� and the classi�cation of faults� The di�erences

are due to the timing properties of the models�

The model developed by Pucci describes a recovery block using a Markov chain� with

the states of the chain corresponding to the execution of the alternates under di�erent

error conditions� This model has

� one state per alternate to represent the successful execution of that alternate

� one state for each alternate� except the �rst� to represent execution of that alter�

nate when the preceeding alternate has failed

� three additional states to represent undetected failure �UF�� acceptance test failure

�ATF�� and failure due to lack of alternates �AF�

An example of this model for a three alternate recovery block system is illustrated in

�gure
����

3

UF

AF

2’ 3’ ATF

21

Figure
���� Pucci�s Recovery Block Model

CHAPTER �� APPLICATION TO SYSTEMS MODELLING 	

The arc weights for Pucci�s model are assigned as follows�

� Transitions from state i to state � model the successful execution of the i�th

alternate� That is� the alternate delivers correct results which are accepted by the

acceptance test�

� Transitions from state i to state i � � represent the invocation of the �i � ���th

alternate after the i�th alternate has failed� The alternate delivers incorrect results

which are rejected by the acceptance test� If the last alternate fails in this manner�

the system moves to the AF state� representing a detectable failure of the recovery

block�

� A transition from state i to state UF represents a hidden fault in alternate i� The

alternate has produced an incorrect result� which is accepted by the acceptance

test� This is a hidden failure of the recovery block�

� A transition from state i to state �i � �� � models an acceptance test failure� a

correct result is rejected by the acceptance test� The system continues with the

execution of the next alternate� If there are no more alternates the system enters

state ATF� representing a correct system which the acceptance test has classi�ed

as having a detectable fault�

It is clear that this model is similar to the model developed in this thesis� In particular� the

concept of a parallel state chain representing the execution of a system in the presence of

hidden faults� section ���� was a particular source of inspiration for the model developed

here� The de�nition of the �nal states of Pucci�s model also mirrors that of the model

developed herein�

There are also a number of di�erences in the two models� in particular� the model of

Pucci does not include any discussion of the timing properties of the alternates� In his

paper Pucci derives an expression for the

����number of correct executions of the �recovery block� before any failure�

or undetected failure����

and for the mean time to failure for the recovery block� In each case� however� this

is modelled only as the number of alternates executed� and discussion of the timing

properties of the individual alternates are omitted� This is the major di�erence in scope of

the two models� the model developed in this thesis allows for more precise determination

of the timing properties of a recovery block system� the model of Pucci is simpler� but

provides signi�cantly less detailed information�

CHAPTER �� APPLICATION TO SYSTEMS MODELLING
�

����� Csenki

The work of Csenki ���� discusses the reliability of recovery block systems where failure

points in the input space are assumed to be clustered together� This work is notable

since it provides a theoretical model for the �ltering e�ect of the alternates in a recovery

block� where alternate n processes only those points on which the preceeding �n � ��

alternates have failed�

The model of Csenki is based around an in�nite two�dimensional Markov chain� stepwise

elimination is performed to reduce the state space of this chain� and expressions for a

number of model parameters are derived� these parameters are the mean and variance

of the number of successfully processed input points� It is noted that these expressions

are themselves in�nite sums� and an estimate of the truncation error is provided� The

parameters required by Csenki�s model are as follows�

�� The spontaneous failure probability of each alternate�

�� The number of consequential failures subsequent to a random failure of the primary�

The �rst set of parameters should be relatively simple to estimate� however estimation

of the other parameters is a di�cult problem� Indeed� Csenki states that

����no real data�set could be found matching the structure of �the model��

nor was it feasible to set up experiments��

It is therefore seen that Csenki�s model provides an important theoretical introduction

to the concept of failure clustering� and the �ltering e�ects of multiple alternates in

recovery block systems� It does not� however� provide predictions amenable to analysis�

����� Laprie � Kanoun

The work of Laprie � Kanoun ���� is based on the assumption that

����classical reliability theory can be extended in order to be interpreted from

both hardware and software viewpoints����

and that

����even though the action mechanisms of the various classes of faults may

be di�erent from a physical viewpoint according to their causes� a single for�

mulation can be used from the reliability modelling and statistical estimation

viewpoints��

CHAPTER �� APPLICATION TO SYSTEMS MODELLING
�

The essential thesis of ���� is that� so far as is required for reliability modelling� the cause

of a fault is unimportant� provided a statistical estimate of the failure distribution can

be obtained� The concept of a random fault model� as used in section ��� of this thesis�

is studied� and in particular the use of a random fault model of software is suggested�

�In the case of software� the randomness comes at least from the trajectory

in the input space which will activate the faults� In addition� it is now known

that most of the software faults which are still present in operation� after

validation� are �soft� faults� in the sense that their activation conditions

are extremely di�cult to reproduce� hence the di�culty of diagnosing and

removing them� which adds to the randomness��

A system comprising both hardware� subject to classical random failure modes� and

software� is here modelled using a simple random fault model�

From this simple basis� a hierarchical system reliability model is derived� with the limit of

the hierarchy being atomic actions� section ����
� This model does not include provisions

for modelling fault tolerant systems� rather it describes the reliability of a base system�

and requires extension to model fault tolerance�

This work concludes with a discussion of reliability growth phenomena�

There is� therefore� no direct correlation between the reliability model of Laprie � Ka�

noun� and the recovery block model presented in this thesis� Their model is� however�

a signi�cant source of inspiration for the model developed here� in particular for the

application of a random fault model to a software based system�

����� Arlat et al�

The model of Arlat et al� ��� is a basic Markov chain model� with three �nal states�

completed� detected �benign� failure� and hidden �catastrophic� failure� The process of

execution of the recovery block� from an initial state� I� is modelled in a purely functional

manner� with single states corresponding to the execution of the alternates� P and S����

and their acceptance tests� TP��� and TS���� together with benign� B� and catastrophic�

C� failures� This is illustrated in �gure
��� for a recovery block comprising a primary

together with a single alternate�

Transition probabilities between the states of this model are based around the likelihood

of independent and�or related faults occurring in the alternates� Timing of these faults

is not considered� It is noted that the fault rates used in the model may be derived

CHAPTER �� APPLICATION TO SYSTEMS MODELLING
�

TP1 TP2

S1 S2

TS1 TS2 TS3

B

TS4

S3

TP3 TP4

C

P

I

Figure
���� Arlat�s Recovery Block Model

experimentally� in a similar manner to that envisaged for the estimation of the parameters

of the model developed in this thesis�

Analysis of this model is based around the probability that the model enters one of the

�nal fault states� The timing of system completion and�or failure is not considered�

Further sections of the paper consider N�version programming systems� nested recovery

blocks� and the e�ects of unreliable acceptance tests�

This work is a good example of the use of a basic Markov chain model� which is applied

to modelling the functional correctness of a recovery block system� The model is small�

and easily analysed without the aid of tools� hence being simple to apply� The results

obtained are of some applicability� but are necessarily limited by the omission of timing

properties�

��� Other System Models

This work has been focused� primarily� on reliability modelling of recovery block systems�

This section provides a brief description of the process by which the modelling techniques

developed may be applied to other systems� A detailed analysis is not provided� since this

is expected to be similar to that used for recovery block systems� Rather� the structure

CHAPTER �� APPLICATION TO SYSTEMS MODELLING
�

of the models is presented� from this� analysis is a straight�forward manner�

����� N�version programming Model

N�version programming was discussed in section ������ it is the software equivalent of

N�modular redundancy in hardware design� In a similar manner to the recovery block�

N�versions of a software module are derived� unlike the recovery block� those modules

are then executed concurrently� with the same inputs� and a voter then compares the

results� The result produced by the majority of the versions is passed as the result of the

entire N�version programming system�

It is clear that the versions in an N�version programming system correspond to the

alternates in a recovery block� In both cases� diverse design is used to achieve reliability�

The di�erence between the two systems lies in the sequential execution of the recovery

block� compared to the parallel execution of versions inN�version programming � Because

of this similarity� it is possible to model the diverse versions in an N�version programming

system in a similar manner to that used for a recovery block� with the only di�erence

being due to the use of a single voter compared to multiple acceptance tests�

A model for an N�version programming system may therefore use the generic system

model described in chapter � as the basic model for the behaviour of the versions�

This leads to a model structure� for a
�version system� as illustrated in �gure
��	�

Despite the obvious similarity of this model to the recovery block model� there is a major

di�erence in the structure of the voter� as compared to the acceptance test model used

previously� Once again� the voter is assumed infallible� and maps from correct execution

of the versions to a �nal pass state� and from incorrect execution to a �nal fail state�

The di�erence here� is that a synchronisation point is introduced� ensuring that results

are not produced until all versions have completed their execution�

An N�version programming system with a fallible voter may be modelled by additions

similar to those used to model a recovery block system with fallible acceptance test�

Additional transitions are added from the faulty state of each version to the pass state

of the entire system� and also from the completed states of each version to the �nal

system fail state� Again� the resulting model is relatively simple� and may be analysed

in a similar manner to that used for recovery block systems�

CHAPTER �� APPLICATION TO SYSTEMS MODELLING
�

PASS

FAIL

Completed

Failed

Undetectable
Error

Error
Detectable

Completed

Failed

Undetectable
Error

Error
Detectable

Completed

Failed

Undetectable
Error

Error
Detectable

Figure
��	� Initial N�version programming model

CHAPTER �� APPLICATION TO SYSTEMS MODELLING
�

��� Summary

This chapter has discussed the application of the generic real�time system reliability

model� developed in chapter �� to the modelling of fault�tolerant systems� It has been

shown that the results obtainable o�er new insights into the behaviour of fault tolerant

systems� and will bene�t the designers of such systems�

Fault tolerant systems are built in a hierarchical manner� at the lowest level� these

systems comprise a large number of fault intolerant building blocks� These building

blocks are combined� using techniques such as those discussed in chapter �� to provide

fault tolerant modules� each of which performs a single aspect of the operation of the

entire system� A number of these modules combine to form the complete system�

The generic real�time system reliability model� developed in chapter �� cannot be used

to directly model the behaviour of most complete fault�tolerant systems� to do so would

be a signi�cant oversimpli�cation� It is� however� useful for modelling the behaviour of

small� clearly de�ned� pieces of a system� with de�nite start and �nish points� and clear

failure modes� As such� it maps cleanly onto the lower levels of a fault�tolerant system�

as a technique for modelling the behaviour of the basic building blocks from which the

entire system is built� This process was discussed in more detail in section
���

Once these building blocks have been modelled� it is necessary to model the combination

of several such blocks into a single fault�tolerant module� There are many ways in which

these blocks may be combined to achieve fault tolerance� of these the recovery block

and N�version programming schemes have been the most widely studied� The work

presented in sections
�� to
�� provides a further study of the recovery block technique�

using the models developed in this thesis�

In section
����� the basic properties of a recovery block were studied� It was shown that

the model developed in this thesis permits for modelling both the reliability and timing

properties of the recovery block� If was further shown that a recovery block system

has two modes of operation� with low failure rates� the individual alternates dominate�

and the system shows a number of likely completion times� based on the run time of

the alternates� As failure rates increase� the recovery block shows more homogeneous

behaviour� with a range of completion times� and the e�ects of the individual alternates

being much less visible� In addition the recovery block failure rate increases dramatically�

and failures occur earlier�

These e�ects are important� since they show that the timing properties of a recovery

block are greatly a�ected by the order of execution of the alternates within it� This

e�ect has not been considered in previous recovery block models� since the overall system

reliability is not a�ected by this process� It is clear� however� that if completion time�

CHAPTER �� APPLICATION TO SYSTEMS MODELLING
�

in addition to reliability� is important� the order of execution of the alternates within

the recovery block must be considered carefully� It has been shown that the reliability

modelling techniques developed in this thesis are capable of providing su�cient reliability

and timing information for this purpose� and a number of examples of this process have

been presented�

Results for recovery block systems with fallible acceptance tests have also been presented�

These fallible acceptance tests are shown to have the potential to produce systems which

appear more reliable than they should� Misclassi�cation of faulty results as correct will

result in systems which appear to have completed successfully� but in fact have hidden

faults contained within them� The model presented herein allows this to be modelled

using simple parameters� and in addition provides an estimate of a system�s reliability

with a perfect acceptance test� from which some idea of the reliability of the acceptance

test in use may be determined�

This chapter has concluded with a brief discussion of the means by which an N�version

programming system may be modelled� based again on a combination of building blocks

each modelled using the generic system model� It is clear that this technique is applicable

for such systems� and should be extensible to other techniques for building fault tolerant

systems�

It is clear that the model developed in this thesis performs better than other reliability

models developed in the literature� since it allows for both the reliability and timing

properties of a system to be modelled� Given this information about the timing properties

of a system� the designer is in a better position to determine the scheduling for that

system� The application of these this information to enhancing scheduling decisions is

discussed in chapter ��

CHAPTER �� APPLICATION TO SCHEDULING
�

Chapter �

Application to Scheduling

In chapter
� the modelling of fault�tolerant software systems� such as recovery blocks�

was discussed� It was shown that the techniques developed in chapter � are suitable for

the modelling of such systems� and that these techniques allow for both the reliability and

timing properties of such systems to be derived� The results of this analysis comprise

plots of the completion and failure probabilities of the system against time� together

with the values of a number of common metrics� such as� for example� mean completion

time� It is the provision of this detailed timing information� in addition to the reliability

data� and coarse grained timing metrics� which sets this model apart from other system

reliability models�

In this chapter� a number of techniques which may be applied to the scheduling of

real�time� fault�tolerant systems are discussed� It will be shown that� with the provision

of detailed timing information� it is possible to derive schedules for the execution of a

system� which are more e�cient than those which may be derived in the absence of this

information� This has been a further motivation for the design of the model developed

in this thesis� the belief that the coarse�grained timing metrics provided by many system

reliability models lead to ine�cient scheduling� and much waste of resources�

�� Problems in Real�Time Scheduling

In the taxonomy of Casavant � Kuhl ��
�� reproduced in �gure ���� the range of schedul�

ing possibilities for a distributed computer system is shown� From this� it is clear that

there are a number of choices which must be made when selecting a scheduling policy

for a real�time� fault�tolerant system� In particular� the choice of static versus dynamic

CHAPTER �� APPLICATION TO SCHEDULING
	

enumerative graph
theory

mathematical
programming

queuing
theory

global

optimal

dynamicstatic

optimal sub-optimal

approximate

local

heuristic

physically
distributed

cooperative non-cooperative

sub-optimal

heuristicapproximate

non-distributed
physically

Figure ���� The scheduling taxonomy of Casavant � Kuhl

scheduling� and between optimal and sub�optimal algorithms is of great importance�

In Casavant � Kuhl�s work� the choice of static versus dynamic� re�ects the assignment of

processes to processors� The term is used here in a broader sense� not only are processes

assigned to particular processors� when static scheduling is used� but the scheduling

of those processes on that processor is also �xed� Alternatively� a dynamic scheduling

scheme may not only assign a process to a di�erent processor each time it is scheduled for

execution� but will also a�ect the scheduling order of processes on a particular processor�

In the �eld of scheduling for safety critical� embedded systems� the usual choice is

static scheduling� The potential for failure with dynamic scheduling schemes is usually

considered too great�

The work of Xu � Parnas �	
� considers this in more detail� and strongly recommends

the use of pre�run�time scheduling� possibly the strongest form of static scheduling� The

importance of static scheduling� where a schedule may be constructed to ensure that a

set of processes will always meet their deadlines� is underlined� when it is stated that

�Currently� many safety�critical hard�real�time systems are built using meth�

ods which do not provide any guarantee that critical timing constraints will

be met� As a result� timing errors where computations miss their deadlines

are the most unpredictable� most persistent� most costly� and most di�cult

to detect and correct type of errors in safety�critical hard�real�time software��

and further

�For satisfying timing constraints in hard�real�time systems� predictability of

the system�s behaviour is the most important concern� pre�run�time �static�

CHAPTER �� APPLICATION TO SCHEDULING

scheduling is often the only practical means of providing predictability in a

complex system��

To ensure reliability� it is seen to be vital that the process schedule is derived in advance�

The choice of optimal versus sub�optimal algorithms is more di�cult� Casavant � Kuhl�

discussing general purpose systems� state that�

�In the case that all information regarding the state of the system as well as

the resource needs of a process are known� an optimal assignment can be

made based on some criterion function� Examples of optimisation measures

are minimising total process completion time� maximising utilisation of re�

sources in the system� or maximising system throughput� In the event that

these problems are computationally infeasible� suboptimal solutions may be

tried�� ��
�

In the case of safety critical embedded systems� the choice of optimal versus sub�optimal

is less clear cut� In some areas� performance is of vital importance� and hence an optimal

solution should be derived if at all possible� In other areas� a suboptimal solution� as

measured by a particular metric� may be required to ensure safety� even if it is possible

to derive an optimal solution�

Indeed� much of the work on scheduling real�time systems has concentrated entirely on

suboptimal algorithms� In the �eld of embedded control systems� it is typically considered

more important to ensure safety than to achieve maximum performance� In cases such

as this� the precise details of a processes execution time may be neglected in favour of

a worst�case estimate� Indeed� the precise timing properties of a system may not always

be predictable� yet it is still possible to derive safe schedules using a pessimistic estimate

of the worst case execution time of a process�

This approach to scheduling makes a major assumption� that the worst case execution

time of a process may be found� In certain cases� it is not possible to determine the

worst case execution time� or if this worst case can be determined� it may be found to

be much larger than the typical execution time� This is discussed by Haban � Shin �
��

who state that�

�Due to data�dependent loops and conditional branches in each program

and resource sharing delay during execution� the �worst case execution time�

is usually di�cult to obtain and could be several orders of magnitude larger

than the true execution time��

CHAPTER �� APPLICATION TO SCHEDULING ���

The results presented in chapter
 of this thesis show the same e�ects� systems typically

have a long�tail to their execution time distribution� and the majority of systems complete

in a much shorter time�

These e�ects are further noted by Audsley et al� ���� who note that they cause severe

under utilisation of resources in many systems� They note that this under utilisation

comes from�

�� Software components not taking worst case execution paths�

�� Hardware behaving better than expected � due to gains from caching� pipelining

or other facilities�

� Sporadic processes not executing at their maximum rate�

�� Error handling software �eg� exception handlers or alternatives in a recovery block

model� not executing�

�� Spare time incorporated by schedulability analysis to guarantee hard deadlines

o"ine not being required at runtime�

Much of the under utilisation may be identi�ed as spare capacity � processor time that

is not required at run�time to meet deadlines of crucial tasks�

It may be seen� therefore� that there are two contradictory goals to be met in the

scheduling of real�time� safety�critical embedded systems�

� The desire for safety � It is vital that safety is ensured at all levels� Engineers

must strive at all times to design a system which is safe to the extent that is

reasonably practicable �����

� The need for performance� In many embedded systems severe cost� space� and

weight constraints apply� In cases such as these it may not practical to have a

system operating with much spare capacity� and some increased risk may have to

be accepted to meet other constraints�

When coupled with the increasing drive towards greater use of software�based systems

for embedded control� and the increasing functionality expected from those systems� it

seems clear that the problem of scheduling such systems will not become easier� This

problem has been summarised by Stankovic � Ramamritham ��
�� who note that�

�The next generation of real�time systems will be large� complex� distributed�

adaptive� contain many types of timing constraints� need to operate in a

CHAPTER �� APPLICATION TO SCHEDULING ���

highly non�deterministic environment� and evolve over a long system life�

time ����� for these systems� the typical semantics �all tasks making their

deadlines ���! of the time� associated with ����� static real�time systems is

not su�cient��

Given these problems� it seems clear that reliability modelling techniques should be

extended to model the timing properties of fault�tolerant embedded systems� in order

that reasonable design decisions may be made� Such modelling techniques may then be

used as a design aid during schedulability analysis� In particular� they may be used to

derive a schedule which takes into account the probability distribution of the system�s

execution time� allowing the reliability�performance trade o� to be made explicit�

�� Application of Detailed Timing Data

As was discussed in chapter
� the model developed in this thesis provides for determi�

nation of both reliability and timing properties of a system� This information may then

to applied to scheduling analysis�

There are two ways in which this information may be used� The �rst is to use the full

completion�failure time probability distribution in order to derive a probabilistic schedule

which allows the system to meet all deadlines with a high probability� Determining

such a schedule is a di�cult problem� there are many variables to consider� and a large

range of potential solutions� For all but the simplest systems� this is expected to be a

computationally intractable problem�

The second method by which timing information may be used is to produce tighter

bounds on a processes execution time� Many processes have a long tail to their com�

pletion�failure time probability distribution� and rather than derive a schedule based on

the worst case execution time �allowing ���! of the components to complete execution

before their deadline�� it may be possible to use a reduced upper bound on process ex�

ecution times� and allow a small fraction of the systems to exceed their deadlines� In

many cases it may be possible to achieve large reductions in system slack�time� with only

a small additional risk of failure�

Given more detailed timing information� and a knowledge of the expected use of a system�

the designer is in a position to make an informed decision on whether the absolute worst�

case execution time must be used� or whether a reduced set of bounds can be chosen� with

a speci�c risk that the system will fail to perform within these bounds� In many cases the

absolute worst�case behaviour is su�ciently unlikely� and the failure probabilities of other

CHAPTER �� APPLICATION TO SCHEDULING ���

parts of the system are su�ciently large� that the increased probability of time�bound

over�run will be tolerable�

The generation of schedules which allow all processes in a real�time system to meet all

their deadlines all the time is not� in many cases� a feasible task� Once this is recognised�

it is clear that reliability modelling techniques� such as those developed in this thesis�

which provide detailed timing information� in addition to overall reliability data� must be

utilised� in order to design systems which operate to a speci�c� tolerable� level of risk�

�� Summary

In this chapter� the problems inherent in the scheduling of real�time� safety�critical sys�

tems have been discussed� It has been shown that most current approaches to scheduling

this class of system are based around coarse�grained� worst case� timing information� The

result of this is the generation of ine�cient schedules�

As systems become more complex� and more stringent performance demands are placed

upon them� it is clear that these ine�cient scheduling techniques will no longer be

su�cient� The application of detailed timing information� should such information be

available� may lead to more advanced scheduling techniques which make the trade�o�

between absolute safety and performance explicit� The development of system reliability

models� such as that developed in this thesis� which provide detailed information on the

timing properties of real�time� fault�tolerant� systems is seen to be of great importance�

CHAPTER 	� CONCLUSIONS ���

Chapter �

Conclusions

The initial chapters of this thesis focused on techniques for achieving reliability in embed�

ded systems� The need for fault�tolerance� in addition to fault prevention� was discussed

in chapter � and this led� in chapter �� to a discussion of techniques by which fault�

tolerance can be introduced into a system� These techniques will� if applied correctly�

allow systems to be constructed which can tolerate the e�ects of a wide class of faults

and operate within strict performance criteria�

Before such fault�tolerant techniques can sensibly be applied to a system� there is a need

to determine the e�ects they have on the reliability and failure modes of that system�

In particular� it is important that an accurate failure�reliability model is available during

the design of fault�tolerant and safety critical systems� since it is paramount that the

safety of such systems is ensured by all means reasonably practicable� There are two

aspects to reliability modelling for safety�critical� real�time systems� derivation of the

overall system reliability� and modelling the timing properties of the system� A number

of existing techniques for reliability modelling were discussed in chapter
� and it was

shown that many existing reliability models have focused primarily on deriving the overall

reliability of a system� Whilst this is important� a knowledge of the timing properties of

a system is of equal value� and in many cases this is either ignored or given secondary

treatment�

This is a major problem with current approaches to modelling real�time systems� It is

usual for the timing properties of the system to be abstracted away in order to give each

process a maximum execution time� Provided such a maximum time can be assigned�

it is then possible to devise scheduling algorithms which� given su�cient resources� will

ensure that all deadlines are met� These algorithms are pessimistic since they rely on the

upper bound of a process� execution time� where as in real systems� the probability of

CHAPTER 	� CONCLUSIONS ���

errors occurring is low and the execution time of most processes is typically much less

than the maximum� The system therefore operates with much slack�time� implying low

e�ciency but high reliability�

In chapter �� a new technique for modelling the behaviour of real�time systems was

derived� This technique is based primarily around a Markovian system model� with addi�

tions to allow timed transitions� synchronisation� and concurrency� This basic technique

is applied� in chapter �� to produce a model for the behaviour of a generic real�time

system� This is a discrete time model with a lattice structure which models the progress

of a computation from its initial state to one of several �nal states� completed� de�

tectable fault� hidden fault or failed� This model allows for both the functional and

temporal behaviour of a system to be represented in a single high�level model� and is

derived from generic properties of real�time systems� hence being independent of any

speci�c design�implementation technique for such systems� This is an improvement on

traditional system reliability models which typically focus on functional correctness and

do not adequately model the temporal properties of such systems�

Fault�tolerant systems are built in a hierarchical manner� At the lowest level� these

systems comprise a large number of fault intolerant building blocks� These building

blocks are combined� using techniques such as those discussed in chapter �� to provide

fault�tolerant modules� each of which performs a single aspect of the operation of the

entire system� A number of these modules combine to form the complete system� The

generic real�time system reliability model� developed in chapter �� cannot be used to

directly model the behaviour of most complete fault�tolerant systems to do so would

be a signi�cant oversimpli�cation� It is� however� useful for modelling the behaviour of

small� clearly de�ned� pieces of a system� with de�nite start and �nish points� and clear

failure modes� As such� it maps cleanly onto the lower levels of a fault�tolerant system�

as a technique for modelling the behaviour of the basic building blocks from which the

entire system is built�

As an example of this� the generic real�time system reliability model developed here

is applied� in chapter
� to a study of the properties of recovery block systems� The

recovery block is a simple� commonly�studied technique� which allows fault�tolerance

to be introduced into a system� As such� it provides a good testbed upon which the

properties of a new reliability model may be studied� Application of this new reliability

model to recovery block systems shows that interesting results are obtainable� and that

these results will be of use to the designers of fault�tolerant systems�

It has been shown that the model developed in this thesis permits for modelling both

the reliability and timing properties of the recovery block� It was further shown that

a recovery block system has two modes of operation� Firstly� with low failure rates

the individual alternates dominate� and the system shows a number of likely completion

CHAPTER 	� CONCLUSIONS ���

times� based on the run time of the alternates� Secondly� as failure rates increase the

recovery block shows more homogeneous behaviour� with a range of completion times�

and the e�ects of the individual alternates being much less visible� In addition the

recovery block failure rate increases dramatically� and failures occur earlier�

These e�ects are important� since they show that the timing properties of a recovery block

are greatly a�ected by the order of execution of the alternates within it� This e�ect has

not been considered in previous recovery block models� since the overall system reliability

is not a�ected by this process� It is clear� however� that if completion time� in addition

to reliability� is important� the order of execution of the alternates within the recovery

block must be considered carefully� the model developed herein allows for comparison of

the e�ects of di�ering alternate orderings� based upon test data� and this should ensure

that failures� if they are going to occur� happen early� This gives a higher level recovery

mechanism time to operate before a system�s deadline is exceeded�

Results for recovery block systems with fallible acceptance tests have also been presented�

These fallible acceptance tests are shown to have the potential to produce systems which

appear more reliable than they should� Misclassi�cation of faulty results as correct will

result in systems which appear to have completed successfully� but in fact have hidden

faults contained within them� The model presented herein allows this to be modelled

using simple parameters� and in addition provides an estimate of a system�s reliability

with a perfect acceptance test� from which some idea of the reliability of the acceptance

test in use may be determined�

Chapter
 concluded with a brief discussion of the means by which an N�version pro�

gramming system may be modelled� based again on a combination of building blocks

each modelled using the generic system model� It is clear that this generic model is

applicable for such systems� and should be extensible to other techniques for building

fault�tolerant systems�

It is therefore clear that the model developed in this thesis performs better than other

reliability models developed in the literature� since it allows for both the reliability and

timing properties of a system to be modelled� As is discussed in chapter �� if the

probability distribution of the process� execution times is known� it should be possible

to design a system which relies on this to attain much improved e�ciency� whilst still

managing to operate within a tolerable level of risk�

CHAPTER 	� CONCLUSIONS ���

��� Suggestions for Further Work

The system reliability model developed in this thesis provides a basis upon which both the

reliability and timing properties of a system may be calculated� Whilst initial results� from

the study of recovery block systems� look promising� further work must be undertaken

before the full range of the applicability of this technique is known�

An obvious extension of this work is to further study other fault�tolerant techniques�

Application to N�version programming systems has been brie�y discussed� and this work

should be continued� since N�version programming systems are in common use� In

addition� other techniques for fault tolerance may bene�t from analysis� although the

use of these other techniques is considered less widespread that the use of recovery block

and N�version systems� and many of these other techniques can be considered as variants

or combinations of N�version programming and recovery block methods�

It is noted that the mathematical framework developed in chapter � provides a richer set

of semantics than was used in the modelling of recovery block systems� In particular�

the concepts of synchronisation and N�step transitions were not utilised� The extension

to N�version programming mentioned previously is an example of a situation where

the synchronisation primitives of the model are required� and other concurrent�voting

systems will similarly require this feature of the model�

The use of the N�step transitions provided in the model has not yet been investigated in

any great depth� It is hoped that this feature of the model will allow for faster solution

of certain reliability models� with multiple places being collapsed into one together with

a number of N�step transitions� It not believed to o�er any additional expressive power

to the model�

A further validation of the model would be a comparison with results obtained from study

of an actual system� The analysis performed to date has been theoretical in nature� and

although results are presented in chapter
 which show correlation between this model

and other published models� a comparison with actual reliability data would improve

con�dence in this model�

This last point highlights a major failing in most reliability models published in the

literature� Realistic comparisons between reliability models and actual embedded systems

are di�cult� and expensive to perform� and there is a severe shortage of data with which

to validate these models� Unless this situation changes� the development of e�ective

system reliability models will always be a hit�and�miss a�air� based more in abstract

theory than sound engineering practice�

The recovery block model developed in this thesis is heavily dependent on the reliability

CHAPTER 	� CONCLUSIONS ���

data gathered for the individual alternates� Gathering this data can be di�cult� especially

if the alternates are complex� and there are problems inherent in obtaining a statistically

valid sample of the system�s state space� This di�culty has been noted a number of

times in the literature� for example Littlewood ���� states that

�Issues of data collection remain problamatical in this area� The poor qual�

ity of most collected data attests to the di�culties which have been experi�

enced��

and that

�The chief technical di�culty arises from the requirement that the data must

be collected in an environment which is typical of the use environment� If

the real use data is not available� this means that random testing must be

carried out with a probability pro�le representing the use environment�

The problem therefore� is the selection of the probability pro	le for the random testing

such that a valid sample of the input space is made� It is clear that a uniform probability

pro�le is likely to be somewhat unrepresentative of the use environment of a system� and

some technique must be employed to determine a more realistic probability pro�le� As

an example of this� Geist et al��
��� propose the use of mutation analysis ���� to derive

test cases� This is clearly not the only possible solution� techniques such as simulated

annealing� genetic algorithms� monte�carlo simulation� etc� have also been proposed for

this role�

The selection of test cases is clearly an area worthy of further study� At present� though�

it is clear that extreme care must be taken to ensure the validity of test results� and

hence the validity of the results produced by any software reliability model�

��� Summary

In this thesis� the reliability modelling and analysis of real�time� fault�tolerant� embedded

systems has been considered� It has been shown that many existing reliability modelling

techniques are inadequate for this task� since they model only the overall system relia�

bility� and the timing properties of the system are either neglected� or reduced to simple

metrics� A new reliability model has been derived� which permits the modelling of both

overall system reliability� and the timing distribution of system completion and failure�

This model is based on a set of high level system attributes� which it is expected are

CHAPTER 	� CONCLUSIONS ��	

estimateable from experimental data� This model has been applied to the study of re�

covery block systems� and it has been shown that the results obtained are compatible

with� and extend� a number of other system reliability models� The thesis has concluded

with a discussion of the application of more detailed timing information to the scheduling

of safety�critical real�time systems� where the trade�o� between performance and safety

is discussed� It has been shown that the additional information available with models

such as that developed herein� allows designers to make informed choices regarding this

tradeo�� Hence� system design to a speci�c� tolerable� risk level is enhanced�

APPENDIX A� SIMULATION SOFTWARE ��

Appendix A

Simulation Software

The system reliability model presented in this thesis requires automated analysis� In this

appendix the tools developed to enable this analysis are described� These tools have

been written from scratch� in a mixture of the Sather ���� and Tcl ���� programming

languages� Since these programming languages may be unfamiliar to some readers� a

brief overview of their facilities is now provided�

Sather is an object�oriented language which supports e�cient computation� with pow�

erful abstractions for encapsulation and code reuse� and constructs for improving code

correctness� It is strongly typed� supports multiple inheritance with explicit sub�typing�

which is independent of implementation inheritance� parameterised types� iteration ab�

straction �similar in some respects to the C## standard template library�� garbage

collection� exception handling� assertions� pre� and post�conditions� and class invariants�

The Sather compiler is freely available from the International Computer Science Institute�

Berkeley� and provides an environment with performance comparable to that obtained

using C##� with much reduced development costs� The Sather system is distributed

under a generally unrestrictive license� however since a number of classes developed by

ICSI are included within the simulation software developed for this project� the following

notice is required�

�This program is based in part on Sather libraries distributed free of charge

by the International Computer Science Institute� �	�� Center Street� Suite

��� Berkeley� CA 	���
 and which may be obtained by anonymous ftp from

icsi�berkeley�edu��

The Tcl system was developed by John Ousterhout� and is distributed by Sun Microsys�

tems� It provides a high level scripting language� designed primarily for controlling small�

APPENDIX A� SIMULATION SOFTWARE ���

semi�independent� software tools� Tcl is small� powerful� and easily extensible� It is

this extensibility which has prompted its use in this project� Modules to perform nu�

meric computation are written as high�performance Sather code� and then linked into

the Tcl interpreter� where they become available as regular Tcl commands� The frame�

work within which simulations are performed is driven through simple Tcl commands�

providing a simple means of running multiple simulations� and of selecting parameters�

and portions of the code which perform numeric computation are written in Sather to

ensure high�performance�

It is worth commenting on the means by which these two systems are combined� The

Tcl system is available as a set of C language library routines� which together form

an interpreter� This interpreter evaluates commands provided as C language strings�

whether taken interactively from a terminal� or provided from within another section

of the program code� The ICSI Sather compiler does not produce native code directly�

but rather compiles to C� and then automatically invokes the native C compiler� Sather

provides the means by which a stub�class may be de�ned� with methods being coded

directly in C code� This was primarily intended as a means by which access to low�level

system libraries could be provided� but it is a simple matter to include the Tcl interpreter

in a Sather program using this mechanism�

The two languages are not� however� a seamless �t� in particular� although both Sather

and Tcl support exception handling� they do so in di�erent ways� and it is not possible to

cleanly map exceptions between the two systems� The Sather system allows exceptions to

be arbitrary objects� Tcl restricts them to being strings� Whilst it is possible to generate

a string representation for the type of a Sather exception� and to catch this from a Tcl

script� the possibility of Sather exceptions returning arbitrary data in addition makes

this issue di�cult to resolve with any generality� For the purpose of this project this is

not a signi�cant restriction� Tcl is used to perform high�level scripting only �essentially

iterating through several di�erent parameter values� and directing output�� so mapping

Sather exceptions onto a single Tcl error return su�ces�

These two programming environments are seen to provide a reasonable �t� and although

there are some problems inherent in this combination it does provide both high�level

scripting� and high�performance� with few problems�

A�� Additional Tcl Commands

This section describes the additional commands added to the Tcl system as part of this

simulation� These are accessed via the netsim system described in section A���

The generate command produces a system model� and returns an identi�er model name

APPENDIX A� SIMULATION SOFTWARE ���

by which it may be referenced later� This command takes one of three forms� depending
on the type of network model to be de�ned� The generate alt form produces an
alternate model� such as that described in chapter �� This corresponds to the generic
real�time system model�

generate alt �pd �failure�rate� �pf �failure�rate� �pr �failure�rate�

�cp �completion�profile� �as �model�name�

The generate altat form produces an alternate model with an acceptance test� The
	pca and 	pir parameters may be omitted when specifying this form� and default to ���
in that case� this corresponds to the model shown in �gure
��� If these parameters are
speci�ed the model generated has a fallible acceptance test and corresponds to �gure

����

generate altat �pd �failure�rate� �pf �failure�rate� �pr �failure�rate�

�pca �failure�rate� �pir �failure�rate�

�cp �completion�profile� �as �model�name�

The generate rb form produces a three alternate recovery block model� by combining
three alternates� This corresponds to the model illustrated in �gure
��� assuming the
alternates speci�ed have infallible acceptance tests�

generate rb with �model�name� �model�name� �model�name� as �model�name�

In addition� the forget command causes the system to discard a model de�nition�

forget �model�name�

The load naf and save naf commands are provided to load and save network models
to�from data �les� The �le format is text based� and human�readable�

load�naf �model�name� from �input�file�

save�naf �model�name� as �output�file�

The evaluate command performs an analysis of a system model� The limit limits of the
analysis are speci�ed� together with the set of states to evaluate� Output is produced as
a �le� which is processed with the extract command�

evaluate �from �model�name� �tmin �time� �tmax �time� �o �output�file�

�s �state� ��s �state� ����

The extract command takes data calculated by the evaluate command� and extracts
data for a single state� Output is to a �le� and the format of that �le is a series of pairs
of numbers� giving time and probability� This �le may then be directly plotted� using a
tool such as� for example� gnuplot� or analysed further if desired�

extract �i �input�file� �o �output�file� �s �state�

APPENDIX A� SIMULATION SOFTWARE ���

A�� User Reference

The simulation environment comprises a single executable� netsim� which comprises a

Tcl interpreter with a number of additional commands added� The netsim system oper�

ates in a manner similar to the standard tclsh command interpreter� reading commands

either from �les speci�ed on the command line� or from standard input� There is no

graphical user interface provided with this system�

When started the netsim tool displays the following message�

Network Simulation Tool �� Copyright �C�	

�� 	

 CS Perkins

�Revision� ��� �

�Date� 	

��
��
 �������
 �

Instantiating Tcl interpreter and objects���

Adding new commands���

�

If a number of �le names are given on the command line� the system proceeds to read

command from those �les� one�by�one� and exits when complete� If no parameters are

speci�ed� the system reads commands interactively� A typical command sequence is

shown below�

set rb RB	

foreach pd �������� �������� �

generate altat �cp ���cp�alt	�cp �pd �pd �pf ����	 �pr ����	 �pca ��

 �pir ��� �as alt	

generate altat �cp ���cp�alt��cp �pd �pd �pf ���	� �pr ���	� �pca ��

 �pir ��� �as alt�

generate altat �cp ���cp�alt��cp �pd �pd �pf ���	� �pr ����� �pca ��

 �pir ��� �as alt�

generate rb with alt	 alt� alt� as �rb

evaluate �from �rb �tmax 	�� �o �rb��pd�apd �s �
� �s �
�

extract �i �rb��pd�apd �o �rb��pd��
��dat �s �
�

extract �i �rb��pd�apd �o �rb��pd��
��dat �s �
�

forget alt	

forget alt�

forget alt�

forget �rb

�

This is the sequence used to generate the results for a recovery block with fallible ac�

ceptance test� used in chapter
� As can be seen� most of the work is done using Tcl

extensions written in Sather� The Tcl script itself provides simple scripting and parameter

substitution only�

This then� is a brief description of the netsim system� At present this has system been

run on Unix systems running NeXTstep� IRIX and Linux� Ports to other Unix systems

should be trivial� For the purposes of producing the results illustrated in this thesis�

running time of the simulations has not been excessive� even though the code utilises no

special optimisation techniques� Most simulations were run on a NeXT computer� with

�MB memory� powered by a ��MHz Motorola MC
���� processor�

APPENDIX B� GENERIC REAL TIME SYSTEM MODEL� ANALYSIS ���

Appendix B

Generic Real Time System

Model� Analysis

This appendix provides detailed results from an analysis of the generic real�time sys�

tem model described in chapter � of this thesis� Three sets of results are presented�

corresponding to the three standard systems described in section ��
� binomial� expo�

nential and uniform� For each system� plots of probability against time for each of the

completed� detectable fault� hidden fault� and failed states are provided�

The results are shown in �gures B�� to B���� These �gures are presented in the form of

intensity plots� darker colour indicates a point with greater probability� Exact numeric

values are not shown� these results illustrate the shape of the plots only� The scale is

preserved within each �gure� but is not preserved between �gures�

Each �gure shows the results for a single one of the four �nal states of the model� for

a range of values of the parameters pd� pf and pr� Results are illustrated for a single

overall completion probability only� it has been shown that the shape of the curves is the

same for a range of di�erent systems� provided the base completion probabilities follow

the same pattern� so detailed results are omitted for the sake of brevity�

APPENDIX B� GENERIC REAL TIME SYSTEM MODEL� ANALYSIS ���

pr = 0.000

pr = 0.000

pr = 0.001

pr = 0.005

pr = 0.010

pr = 0.050

pd = 0.000

pr = 0.000

pr = 0.000

pr = 0.001

pr = 0.005

pr = 0.010

pr = 0.050

pd = 0.001

pr = 0.000

pr = 0.000

pr = 0.001

pr = 0.005

pr = 0.010

pr = 0.050

pd = 0.005

pr = 0.000

pr = 0.000

pr = 0.001

pr = 0.005

pr = 0.010

pr = 0.050

pd = 0.010

pr = 0.000

pr = 0.000

pr = 0.001

pr = 0.005

pr = 0.010

pr = 0.050

pd = 0.050

pr = 0.000

pr = 0.000

pr = 0.001

pr = 0.005

pr = 0.010

pr = 0.050

pd = 0.100

30 40 50

pf = 0.000

30 40 50

pf = 0.001

30 40 50

pf = 0.005

30 40 50

pf = 0.010

30 40 50

pf = 0.050

30 40 50

pf = 0.100

Figure B��� Binomial �������� Completed

APPENDIX B� GENERIC REAL TIME SYSTEM MODEL� ANALYSIS ���

pr = 0.000

pr = 0.000

pr = 0.001

pr = 0.005

pr = 0.010

pr = 0.050

pd = 0.000

pr = 0.000

pr = 0.000

pr = 0.001

pr = 0.005

pr = 0.010

pr = 0.050

pd = 0.001

pr = 0.000

pr = 0.000

pr = 0.001

pr = 0.005

pr = 0.010

pr = 0.050

pd = 0.005

pr = 0.000

pr = 0.000

pr = 0.001

pr = 0.005

pr = 0.010

pr = 0.050

pd = 0.010

pr = 0.000

pr = 0.000

pr = 0.001

pr = 0.005

pr = 0.010

pr = 0.050

pd = 0.050

pr = 0.000

pr = 0.000

pr = 0.001

pr = 0.005

pr = 0.010

pr = 0.050

pd = 0.100

30 40 50

pf = 0.000

30 40 50

pf = 0.001

30 40 50

pf = 0.005

30 40 50

pf = 0.010

30 40 50

pf = 0.050

30 40 50

pf = 0.100

Figure B��� Binomial �������� Detectable Fault

APPENDIX B� GENERIC REAL TIME SYSTEM MODEL� ANALYSIS ���

pr = 0.000

pr = 0.000

pr = 0.001

pr = 0.005

pr = 0.010

pr = 0.050

pd = 0.000

pr = 0.000

pr = 0.000

pr = 0.001

pr = 0.005

pr = 0.010

pr = 0.050

pd = 0.001

pr = 0.000

pr = 0.000

pr = 0.001

pr = 0.005

pr = 0.010

pr = 0.050

pd = 0.005

pr = 0.000

pr = 0.000

pr = 0.001

pr = 0.005

pr = 0.010

pr = 0.050

pd = 0.010

pr = 0.000

pr = 0.000

pr = 0.001

pr = 0.005

pr = 0.010

pr = 0.050

pd = 0.050

pr = 0.000

pr = 0.000

pr = 0.001

pr = 0.005

pr = 0.010

pr = 0.050

pd = 0.100

30 40 50

pf = 0.000

30 40 50

pf = 0.001

30 40 50

pf = 0.005

30 40 50

pf = 0.010

30 40 50

pf = 0.050

30 40 50

pf = 0.100

Figure B�
� Binomial �������� Failed

APPENDIX B� GENERIC REAL TIME SYSTEM MODEL� ANALYSIS ���

pr = 0.000

pr = 0.000

pr = 0.001

pr = 0.005

pr = 0.010

pr = 0.050

pd = 0.000

pr = 0.000

pr = 0.000

pr = 0.001

pr = 0.005

pr = 0.010

pr = 0.050

pd = 0.001

pr = 0.000

pr = 0.000

pr = 0.001

pr = 0.005

pr = 0.010

pr = 0.050

pd = 0.005

pr = 0.000

pr = 0.000

pr = 0.001

pr = 0.005

pr = 0.010

pr = 0.050

pd = 0.010

pr = 0.000

pr = 0.000

pr = 0.001

pr = 0.005

pr = 0.010

pr = 0.050

pd = 0.050

pr = 0.000

pr = 0.000

pr = 0.001

pr = 0.005

pr = 0.010

pr = 0.050

pd = 0.100

30 40 50

pf = 0.000

30 40 50

pf = 0.001

30 40 50

pf = 0.005

30 40 50

pf = 0.010

30 40 50

pf = 0.050

30 40 50

pf = 0.100

Figure B��� Binomial �������� Hidden Fault

APPENDIX B� GENERIC REAL TIME SYSTEM MODEL� ANALYSIS ��	

pr = 0.000

pr = 0.000

pr = 0.001

pr = 0.005

pr = 0.010

pr = 0.050

pd = 0.000

pr = 0.000

pr = 0.000

pr = 0.001

pr = 0.005

pr = 0.010

pr = 0.050

pd = 0.001

pr = 0.000

pr = 0.000

pr = 0.001

pr = 0.005

pr = 0.010

pr = 0.050

pd = 0.005

pr = 0.000

pr = 0.000

pr = 0.001

pr = 0.005

pr = 0.010

pr = 0.050

pd = 0.010

pr = 0.000

pr = 0.000

pr = 0.001

pr = 0.005

pr = 0.010

pr = 0.050

pd = 0.050

pr = 0.000

pr = 0.000

pr = 0.001

pr = 0.005

pr = 0.010

pr = 0.050

pd = 0.100

30 40 50

pf = 0.000

30 40 50

pf = 0.001

30 40 50

pf = 0.005

30 40 50

pf = 0.010

30 40 50

pf = 0.050

30 40 50

pf = 0.100

Figure B��� Exponential �������� Completed

APPENDIX B� GENERIC REAL TIME SYSTEM MODEL� ANALYSIS ��

pr = 0.000

pr = 0.000

pr = 0.001

pr = 0.005

pr = 0.010

pr = 0.050

pd = 0.000

pr = 0.000

pr = 0.000

pr = 0.001

pr = 0.005

pr = 0.010

pr = 0.050

pd = 0.001

pr = 0.000

pr = 0.000

pr = 0.001

pr = 0.005

pr = 0.010

pr = 0.050

pd = 0.005

pr = 0.000

pr = 0.000

pr = 0.001

pr = 0.005

pr = 0.010

pr = 0.050

pd = 0.010

pr = 0.000

pr = 0.000

pr = 0.001

pr = 0.005

pr = 0.010

pr = 0.050

pd = 0.050

pr = 0.000

pr = 0.000

pr = 0.001

pr = 0.005

pr = 0.010

pr = 0.050

pd = 0.100

30 40 50

pf = 0.000

30 40 50

pf = 0.001

30 40 50

pf = 0.005

30 40 50

pf = 0.010

30 40 50

pf = 0.050

30 40 50

pf = 0.100

Figure B�
� Exponential �������� Detectable Fault

APPENDIX B� GENERIC REAL TIME SYSTEM MODEL� ANALYSIS ���

pr = 0.000

pr = 0.000

pr = 0.001

pr = 0.005

pr = 0.010

pr = 0.050

pd = 0.000

pr = 0.000

pr = 0.000

pr = 0.001

pr = 0.005

pr = 0.010

pr = 0.050

pd = 0.001

pr = 0.000

pr = 0.000

pr = 0.001

pr = 0.005

pr = 0.010

pr = 0.050

pd = 0.005

pr = 0.000

pr = 0.000

pr = 0.001

pr = 0.005

pr = 0.010

pr = 0.050

pd = 0.010

pr = 0.000

pr = 0.000

pr = 0.001

pr = 0.005

pr = 0.010

pr = 0.050

pd = 0.050

pr = 0.000

pr = 0.000

pr = 0.001

pr = 0.005

pr = 0.010

pr = 0.050

pd = 0.100

30 40 50

pf = 0.000

30 40 50

pf = 0.001

30 40 50

pf = 0.005

30 40 50

pf = 0.010

30 40 50

pf = 0.050

30 40 50

pf = 0.100

Figure B��� Exponential �������� Failed

APPENDIX B� GENERIC REAL TIME SYSTEM MODEL� ANALYSIS ���

pr = 0.000

pr = 0.000

pr = 0.001

pr = 0.005

pr = 0.010

pr = 0.050

pd = 0.000

pr = 0.000

pr = 0.000

pr = 0.001

pr = 0.005

pr = 0.010

pr = 0.050

pd = 0.001

pr = 0.000

pr = 0.000

pr = 0.001

pr = 0.005

pr = 0.010

pr = 0.050

pd = 0.005

pr = 0.000

pr = 0.000

pr = 0.001

pr = 0.005

pr = 0.010

pr = 0.050

pd = 0.010

pr = 0.000

pr = 0.000

pr = 0.001

pr = 0.005

pr = 0.010

pr = 0.050

pd = 0.050

pr = 0.000

pr = 0.000

pr = 0.001

pr = 0.005

pr = 0.010

pr = 0.050

pd = 0.100

30 40 50

pf = 0.000

30 40 50

pf = 0.001

30 40 50

pf = 0.005

30 40 50

pf = 0.010

30 40 50

pf = 0.050

30 40 50

pf = 0.100

Figure B��� Exponential �������� Hidden Fault

APPENDIX B� GENERIC REAL TIME SYSTEM MODEL� ANALYSIS ���

pr = 0.000

pr = 0.000

pr = 0.001

pr = 0.005

pr = 0.010

pr = 0.050

pd = 0.000

pr = 0.000

pr = 0.000

pr = 0.001

pr = 0.005

pr = 0.010

pr = 0.050

pd = 0.001

pr = 0.000

pr = 0.000

pr = 0.001

pr = 0.005

pr = 0.010

pr = 0.050

pd = 0.005

pr = 0.000

pr = 0.000

pr = 0.001

pr = 0.005

pr = 0.010

pr = 0.050

pd = 0.010

pr = 0.000

pr = 0.000

pr = 0.001

pr = 0.005

pr = 0.010

pr = 0.050

pd = 0.050

pr = 0.000

pr = 0.000

pr = 0.001

pr = 0.005

pr = 0.010

pr = 0.050

pd = 0.100

30 40 50

pf = 0.000

30 40 50

pf = 0.001

30 40 50

pf = 0.005

30 40 50

pf = 0.010

30 40 50

pf = 0.050

30 40 50

pf = 0.100

Figure B�	� Uniform �������� Completed

APPENDIX B� GENERIC REAL TIME SYSTEM MODEL� ANALYSIS ���

pr = 0.000

pr = 0.000

pr = 0.001

pr = 0.005

pr = 0.010

pr = 0.050

pd = 0.000

pr = 0.000

pr = 0.000

pr = 0.001

pr = 0.005

pr = 0.010

pr = 0.050

pd = 0.001

pr = 0.000

pr = 0.000

pr = 0.001

pr = 0.005

pr = 0.010

pr = 0.050

pd = 0.005

pr = 0.000

pr = 0.000

pr = 0.001

pr = 0.005

pr = 0.010

pr = 0.050

pd = 0.010

pr = 0.000

pr = 0.000

pr = 0.001

pr = 0.005

pr = 0.010

pr = 0.050

pd = 0.050

pr = 0.000

pr = 0.000

pr = 0.001

pr = 0.005

pr = 0.010

pr = 0.050

pd = 0.100

30 40 50

pf = 0.000

30 40 50

pf = 0.001

30 40 50

pf = 0.005

30 40 50

pf = 0.010

30 40 50

pf = 0.050

30 40 50

pf = 0.100

Figure B���� Uniform �������� Detectable Fault

APPENDIX B� GENERIC REAL TIME SYSTEM MODEL� ANALYSIS ���

pr = 0.000

pr = 0.000

pr = 0.001

pr = 0.005

pr = 0.010

pr = 0.050

pd = 0.000

pr = 0.000

pr = 0.000

pr = 0.001

pr = 0.005

pr = 0.010

pr = 0.050

pd = 0.001

pr = 0.000

pr = 0.000

pr = 0.001

pr = 0.005

pr = 0.010

pr = 0.050

pd = 0.005

pr = 0.000

pr = 0.000

pr = 0.001

pr = 0.005

pr = 0.010

pr = 0.050

pd = 0.010

pr = 0.000

pr = 0.000

pr = 0.001

pr = 0.005

pr = 0.010

pr = 0.050

pd = 0.050

pr = 0.000

pr = 0.000

pr = 0.001

pr = 0.005

pr = 0.010

pr = 0.050

pd = 0.100

30 40 50

pf = 0.000

30 40 50

pf = 0.001

30 40 50

pf = 0.005

30 40 50

pf = 0.010

30 40 50

pf = 0.050

30 40 50

pf = 0.100

Figure B���� Uniform �������� Failed

APPENDIX B� GENERIC REAL TIME SYSTEM MODEL� ANALYSIS ���

pr = 0.000

pr = 0.000

pr = 0.001

pr = 0.005

pr = 0.010

pr = 0.050

pd = 0.000

pr = 0.000

pr = 0.000

pr = 0.001

pr = 0.005

pr = 0.010

pr = 0.050

pd = 0.001

pr = 0.000

pr = 0.000

pr = 0.001

pr = 0.005

pr = 0.010

pr = 0.050

pd = 0.005

pr = 0.000

pr = 0.000

pr = 0.001

pr = 0.005

pr = 0.010

pr = 0.050

pd = 0.010

pr = 0.000

pr = 0.000

pr = 0.001

pr = 0.005

pr = 0.010

pr = 0.050

pd = 0.050

pr = 0.000

pr = 0.000

pr = 0.001

pr = 0.005

pr = 0.010

pr = 0.050

pd = 0.100

30 40 50

pf = 0.000

30 40 50

pf = 0.001

30 40 50

pf = 0.005

30 40 50

pf = 0.010

30 40 50

pf = 0.050

30 40 50

pf = 0.100

Figure B���� Uniform �������� Hidden Fault

APPENDIX C� TIMING PROPERTIES OF THE RECOVERY BLOCK ���

Appendix C

Timing Properties of the

Recovery Block

In chapter
 a number of system reliability models were developed� and their behaviour

studied� In particular� the e�ects of the alternate ordering on the behaviour of a recovery

block was discussed in section
����� The purpose of this appendix is to provide additional

data to further validate the conclusions drawn in section
����� This is achieved through

the analysis of the properties of an two more recovery block systems� a modi�ed version

of the system studied previously� and a system comprised of a signi�cantly di�erent set

of alternates�

C�� Recovery Block System �

The �rst additional system studied is based around that used in section
����� with the

probabilities of hidden fault and recovery increased by a factor of ten� as in table C���

The alternates used are unchanged� see �gure
�
 on page
� for the completion pro�les

used� These alternates have been combined to form six recovery block systems� with the

orderings chosen as in table
�� on page
��

pf pr

Primary ����� �����

�st Alternate ����� �����

�nd Alternate ����� �����

Table C��� Alternate Parameters

APPENDIX C� TIMING PROPERTIES OF THE RECOVERY BLOCK ���

Plots of completion�failure probability for these six recovery block systems is presented

in �gures C�� to C��� When compared with the completion pro�les discussed previously�

�gures
�� to
��� it is clear that there are a number of features common to both

systems� Although the exact value of the completion�failure probability is modi�ed by

the increased hidden fault�recovery rates in this new system� it is clear that the two

systems show similar behaviour� the shape of the completion�failure probability curves

is similar in both cases� As such� it is clear that the conclusions drawn in section
����

hold for this new system�

The mean completion and failure times for this new system are illustrated in �gure C���

When compared to the previous results� �gures
�	 and
���� it is once again seen that the

results are similar� A greater number of systems show increases in their mean completion

time in this new case� due to the di�ering failure probabilities� but the essential features

of the curves remain constant�

It is clear� therefore� that a change in the model parameters does not a�ect the basic

properties of a recovery block system� merely the details of its behaviour�

0

5

10

15

20

25

30

35

1e-05 0.0001 0.001 0.01 0.1 1

M
ea

n
C

om
pl

et
io

n
T

im
e

Forward Failure Probability

RB1
RB2
RB3
RB4
RB5
RB6

5

10

15

20

25

30

35

40

45

50

55

1e-05 0.0001 0.001 0.01 0.1 1

M
ea

n
T

im
e

T
o

F
ai

lu
re

Forward Failure Probability

RB1
RB2
RB3
RB4
RB5
RB6

Figure C��� Mean Completion�Failure Time

APPENDIX C� TIMING PROPERTIES OF THE RECOVERY BLOCK ��	

0 20 40 60
Time

RB1

pd = 0.00001

pd = 0.00005

pd = 0.00010

pd = 0.00010

pd = 0.00100

pd = 0.00500

pd = 0.01000

pd = 0.05000

pd = 0.10000

0 20 40 60
Time

RB2

pd = 0.00001

pd = 0.00005

pd = 0.00010

pd = 0.00010

pd = 0.00100

pd = 0.00500

pd = 0.01000

pd = 0.05000

pd = 0.10000

0 20 40 60
Time

RB3

pd = 0.00001

pd = 0.00005

pd = 0.00010

pd = 0.00010

pd = 0.00100

pd = 0.00500

pd = 0.01000

pd = 0.05000

pd = 0.10000

0 20 40 60
Time

RB4

pd = 0.00001

pd = 0.00005

pd = 0.00010

pd = 0.00010

pd = 0.00100

pd = 0.00500

pd = 0.01000

pd = 0.05000

pd = 0.10000

0 20 40 60
Time

RB5

pd = 0.00001

pd = 0.00005

pd = 0.00010

pd = 0.00010

pd = 0.00100

pd = 0.00500

pd = 0.01000

pd = 0.05000

pd = 0.10000

0 20 40 60
Time

RB6

pd = 0.00001

pd = 0.00005

pd = 0.00010

pd = 0.00010

pd = 0.00100

pd = 0.00500

pd = 0.01000

pd = 0.05000

pd = 0.10000

Figure C��� Recovery Block Instantaneous Completion Probability for di�erent pd

APPENDIX C� TIMING PROPERTIES OF THE RECOVERY BLOCK ��

0 20 40 60
Time

RB1

pd = 0.00001

pd = 0.00005

pd = 0.00010

pd = 0.00010

pd = 0.00100

pd = 0.00500

pd = 0.01000

pd = 0.05000

pd = 0.10000

0 20 40 60
Time

RB2

pd = 0.00001

pd = 0.00005

pd = 0.00010

pd = 0.00010

pd = 0.00100

pd = 0.00500

pd = 0.01000

pd = 0.05000

pd = 0.10000

0 20 40 60
Time

RB3

pd = 0.00001

pd = 0.00005

pd = 0.00010

pd = 0.00010

pd = 0.00100

pd = 0.00500

pd = 0.01000

pd = 0.05000

pd = 0.10000

0 20 40 60
Time

RB4

pd = 0.00001

pd = 0.00005

pd = 0.00010

pd = 0.00010

pd = 0.00100

pd = 0.00500

pd = 0.01000

pd = 0.05000

pd = 0.10000

0 20 40 60
Time

RB5

pd = 0.00001

pd = 0.00005

pd = 0.00010

pd = 0.00010

pd = 0.00100

pd = 0.00500

pd = 0.01000

pd = 0.05000

pd = 0.10000

0 20 40 60
Time

RB6

pd = 0.00001

pd = 0.00005

pd = 0.00010

pd = 0.00010

pd = 0.00100

pd = 0.00500

pd = 0.01000

pd = 0.05000

pd = 0.10000

Figure C�
� Recovery Block Instantaneous Failure Probability for di�erent pd

APPENDIX C� TIMING PROPERTIES OF THE RECOVERY BLOCK ���

0 20 40 60
Time

RB1

pd = 0.00001

pd = 0.00005

pd = 0.00010

pd = 0.00010

pd = 0.00100

pd = 0.00500

pd = 0.01000

pd = 0.05000

pd = 0.10000

0 20 40 60
Time

RB2

pd = 0.00001

pd = 0.00005

pd = 0.00010

pd = 0.00010

pd = 0.00100

pd = 0.00500

pd = 0.01000

pd = 0.05000

pd = 0.10000

0 20 40 60
Time

RB3

pd = 0.00001

pd = 0.00005

pd = 0.00010

pd = 0.00010

pd = 0.00100

pd = 0.00500

pd = 0.01000

pd = 0.05000

pd = 0.10000

0 20 40 60
Time

RB4

pd = 0.00001

pd = 0.00005

pd = 0.00010

pd = 0.00010

pd = 0.00100

pd = 0.00500

pd = 0.01000

pd = 0.05000

pd = 0.10000

0 20 40 60
Time

RB5

pd = 0.00001

pd = 0.00005

pd = 0.00010

pd = 0.00010

pd = 0.00100

pd = 0.00500

pd = 0.01000

pd = 0.05000

pd = 0.10000

0 20 40 60
Time

RB6

pd = 0.00001

pd = 0.00005

pd = 0.00010

pd = 0.00010

pd = 0.00100

pd = 0.00500

pd = 0.01000

pd = 0.05000

pd = 0.10000

Figure C��� Recovery Block Cumulative Completion Probability for di�erent pd

APPENDIX C� TIMING PROPERTIES OF THE RECOVERY BLOCK ���

0 20 40 60
Time

RB1

pd = 0.00001

pd = 0.00005

pd = 0.00010

pd = 0.00010

pd = 0.00100

pd = 0.00500

pd = 0.01000

pd = 0.05000

pd = 0.10000

0 20 40 60
Time

RB2

pd = 0.00001

pd = 0.00005

pd = 0.00010

pd = 0.00010

pd = 0.00100

pd = 0.00500

pd = 0.01000

pd = 0.05000

pd = 0.10000

0 20 40 60
Time

RB3

pd = 0.00001

pd = 0.00005

pd = 0.00010

pd = 0.00010

pd = 0.00100

pd = 0.00500

pd = 0.01000

pd = 0.05000

pd = 0.10000

0 20 40 60
Time

RB4

pd = 0.00001

pd = 0.00005

pd = 0.00010

pd = 0.00010

pd = 0.00100

pd = 0.00500

pd = 0.01000

pd = 0.05000

pd = 0.10000

0 20 40 60
Time

RB5

pd = 0.00001

pd = 0.00005

pd = 0.00010

pd = 0.00010

pd = 0.00100

pd = 0.00500

pd = 0.01000

pd = 0.05000

pd = 0.10000

0 20 40 60
Time

RB6

pd = 0.00001

pd = 0.00005

pd = 0.00010

pd = 0.00010

pd = 0.00100

pd = 0.00500

pd = 0.01000

pd = 0.05000

pd = 0.10000

Figure C��� Recovery Block Cumulative Failure Probability for di�erent pd

APPENDIX C� TIMING PROPERTIES OF THE RECOVERY BLOCK ���

C�� Recovery Block System �

The second additional recovery block system has been chosen so that the alternates

have signi�cantly di�erent completion pro�les� than those used previously� The aim is

to show that the properties of the recovery block noted previously are not an artifact of

the particular set of alternates chosen� but generalise to a range of systems� This new

set of alternates is illustrated in �gure C�
� Once again� these three alternates have been

combined to form six recovery block systems� with the orderings chosen as in table
��

on page
��

0

0.001

0.002

0.003

0.004

0.005

0 2 4 6 8 10 12 14 16 18 20

C
om

pl
et

io
n

P
ro

ba
bi

lit
y

Time

Alternate 1
Alternate 2
Alternate 3

Figure C�
� Recovery Block Alternates

The plots of completion�failure probability against time produced by the simulation of

these recovery blocks are illustrated in �gures C�� to C���� When compared with the

completion pro�les discussed previously� �gures
�� to
��� it is clear that there are a

number of features common to both systems�

The instantaneous completion probability plots� �gure C��� show the alternates executing

sequentially for small values of pd� and as the forward failure probability is increased the

three alternates become less distinct� and the completion pro�les merge into one� shifting

towards earlier failures�

The cumulative completion probability plots� �gure C��� show similar e�ects� As the

failure rate increases the plots becomes smoother� with the e�ects of the individual

alternates once again becoming less noticeable�

The failure pro�le plots� �gures C�	 and C���� are una�ected by the ordering of the

alternates� As the failure rate is increased the failure pro�les show the systems becoming

more likely to fail� and that failures occur earlier during the execution of the system�

The mean completion and failure time data� �gure C���� also shows e�ects similar to

those observed previously�

APPENDIX C� TIMING PROPERTIES OF THE RECOVERY BLOCK ���

0 20 40 60
Time

RB1

pd = 0.00001

pd = 0.00010

pd = 0.00100

pd = 0.01000

pd = 0.10000

0 20 40 60
Time

RB2

pd = 0.00001

pd = 0.00010

pd = 0.00100

pd = 0.01000

pd = 0.10000

0 20 40 60
Time

RB3

pd = 0.00001

pd = 0.00010

pd = 0.00100

pd = 0.01000

pd = 0.10000

0 20 40 60
Time

RB4

pd = 0.00001

pd = 0.00010

pd = 0.00100

pd = 0.01000

pd = 0.10000

0 20 40 60
Time

RB5

pd = 0.00001

pd = 0.00010

pd = 0.00100

pd = 0.01000

pd = 0.10000

0 20 40 60
Time

RB6

pd = 0.00001

pd = 0.00010

pd = 0.00100

pd = 0.01000

pd = 0.10000

Figure C��� Recovery Block Instantaneous Completion Probability for di�erent pd

APPENDIX C� TIMING PROPERTIES OF THE RECOVERY BLOCK ���

0 20 40 60
Time

RB1

pd = 0.00001

pd = 0.00010

pd = 0.00100

pd = 0.01000

pd = 0.10000

0 20 40 60
Time

RB2

pd = 0.00001

pd = 0.00010

pd = 0.00100

pd = 0.01000

pd = 0.10000

0 20 40 60
Time

RB3

pd = 0.00001

pd = 0.00010

pd = 0.00100

pd = 0.01000

pd = 0.10000

0 20 40 60
Time

RB4

pd = 0.00001

pd = 0.00010

pd = 0.00100

pd = 0.01000

pd = 0.10000

0 20 40 60
Time

RB5

pd = 0.00001

pd = 0.00010

pd = 0.00100

pd = 0.01000

pd = 0.10000

0 20 40 60
Time

RB6

pd = 0.00001

pd = 0.00010

pd = 0.00100

pd = 0.01000

pd = 0.10000

Figure C��� Recovery Block Cumulative Completion Probability for di�erent pd

APPENDIX C� TIMING PROPERTIES OF THE RECOVERY BLOCK ���

0 20 40 60
Time

RB1

pd = 0.00001

pd = 0.00010

pd = 0.00100

pd = 0.01000

pd = 0.10000

0 20 40 60
Time

RB2

pd = 0.00001

pd = 0.00010

pd = 0.00100

pd = 0.01000

pd = 0.10000

0 20 40 60
Time

RB3

pd = 0.00001

pd = 0.00010

pd = 0.00100

pd = 0.01000

pd = 0.10000

0 20 40 60
Time

RB4

pd = 0.00001

pd = 0.00010

pd = 0.00100

pd = 0.01000

pd = 0.10000

0 20 40 60
Time

RB5

pd = 0.00001

pd = 0.00010

pd = 0.00100

pd = 0.01000

pd = 0.10000

0 20 40 60
Time

RB6

pd = 0.00001

pd = 0.00010

pd = 0.00100

pd = 0.01000

pd = 0.10000

Figure C�	� Recovery Block Instantaneous Failure Probability for di�erent pd

APPENDIX C� TIMING PROPERTIES OF THE RECOVERY BLOCK ���

0 20 40 60
Time

RB1

pd = 0.00001

pd = 0.00010

pd = 0.00100

pd = 0.01000

pd = 0.10000

0 20 40 60
Time

RB2

pd = 0.00001

pd = 0.00010

pd = 0.00100

pd = 0.01000

pd = 0.10000

0 20 40 60
Time

RB3

pd = 0.00001

pd = 0.00010

pd = 0.00100

pd = 0.01000

pd = 0.10000

0 20 40 60
Time

RB4

pd = 0.00001

pd = 0.00010

pd = 0.00100

pd = 0.01000

pd = 0.10000

0 20 40 60
Time

RB5

pd = 0.00001

pd = 0.00010

pd = 0.00100

pd = 0.01000

pd = 0.10000

0 20 40 60
Time

RB6

pd = 0.00001

pd = 0.00010

pd = 0.00100

pd = 0.01000

pd = 0.10000

Figure C���� Recovery Block Cumulative Failure Probability for di�erent pd

APPENDIX C� TIMING PROPERTIES OF THE RECOVERY BLOCK ���

15

20

25

30

35

40

45

50

55

0.00001 0.00010 0.00100 0.01000 0.10000 1.00000

M
ea

n
C

om
pl

et
io

n
T

im
e

Forward Failure Probability

RB1
RB2
RB3
RB4
RB5
RB6

25

30

35

40

45

50

55

60

65

0.00001 0.00010 0.00100 0.01000 0.10000 1.00000

M
ea

n
F

ai
lu

re
 T

im
e

Forward Failure Probability

RB1
RB2
RB3
RB4
RB5
RB6

Figure C���� Mean Completion�Failure Time

C�� Summary

These results are intended to show that the properties of the recovery block are common

across a range of alternates� As such� two systems have been studied in this appendix�

and a further system in chapter
� These systems have been chosen to have a range of

properties� and hence it is hoped that the results produced� which are similar in many

ways� illustrate this conclusion�

It is� of course� realised that a small sample such as this cannot provide proof that all

recovery blocks operate in a similar manner� No study of the detailed timing behaviour

of a recovery block can do that� the range of possibilities is too great� This study shows

likely behaviour� and provides techniques by which the actual behaviour of a recovery

block can be modelled based on the behaviour of the alternates comprising that recovery

block�

APPENDIX D� COINCIDENT FAULTS IN RECOVERY BLOCK SYSTEMS ��	

Appendix D

Coincident Faults in Recovery

Block Systems

As was discussed in section
���
� it is not possible to assume that the alternates in a

recovery block system fail in an independent manner� In this appendix an analysis of

the recovery block model is performed� to illustrate the behaviour of this model with a

number of dependent alternate failure modes� Three parameters of the recovery block

model are candidates for modi�cation due to the e�ects of dependent failure of the

alternates� These parameters fall into two categories� those representing detectable

faults� pd� and those representing hidden faults� pf and pr�

In section D�� the e�ects of simulating dependent alternate failure using increased values

of the pd parameter are discussed� This simulates the e�ects of increased detectable

fault rates in the second and subsequent alternates in a recovery block�

In section D�� the e�ects of modifying the second category of recovery block parameters

are discussed� These modi�cations represent a recovery block system where dependent

alternate faults cause the occurrence of faults which are not immediately detectable�

Results for the combination of these two e�ects are not presented here� These e�ects

have been shown to combine in a linear fashion� and hence the presentation of detailed

results for this would not be useful�

In this appendix the method of analysis� and the results obtained are presented� A

detailed discussion of these results is presented in sections
���
�� and
���
��� and is

not repeated here�

APPENDIX D� COINCIDENT FAULTS IN RECOVERY BLOCK SYSTEMS ��

D�� E�ects of pd

This section provides a detailed analysis of the recovery block system discussed in sec�

tion
���
��� This system uses the same set of alternates� �gure
�
� and pf and pr

parameters� table
��� as that described in section
�����

The e�ects of dependent faults in the alternates of a recovery block are here modelled

by means of a failure probability multiplier� This is a small factor� pdm � by which the

forward failure probability� pd� is multiplied in subsequent alternates� That is� the forward

failure probability in alternate n� pnd � is de�ned by equation D���

pnd � pdm � pn��d �D���

As could be expected� increased pdm results in a reduced completion probability and

an increase in the failure probability� It is clear that systems where the probability

of detectable fault is large exhibit greatest change in their behaviour due to pdm � a

result which is not entirely surprising since the absolute di�erence in the probability

of detectable fault is necessarily greater for such systems� All in all� the completion

and failure probability plots� �gures D�� to D��� illustrate that increased pdm does not

signi�cantly a�ect the behaviour of a recovery block system� there is a change in the

value of the completion and failure probability curves� but their shape is essentially the

same as observed previously� �gures
�� to
���

APPENDIX D� COINCIDENT FAULTS IN RECOVERY BLOCK SYSTEMS ���

0 20 40 60
Time

RB1

pdm = 1.0

pdm = 1.1

pdm = 1.2

pdm = 1.3

pdm = 1.4

pdm = 1.5

0 20 40 60
Time

RB2

pdm = 1.0

pdm = 1.1

pdm = 1.2

pdm = 1.3

pdm = 1.4

pdm = 1.5

0 20 40 60
Time

RB3

pdm = 1.0

pdm = 1.1

pdm = 1.2

pdm = 1.3

pdm = 1.4

pdm = 1.5

0 20 40 60
Time

RB4

pdm = 1.0

pdm = 1.1

pdm = 1.2

pdm = 1.3

pdm = 1.4

pdm = 1.5

0 20 40 60
Time

RB5

pdm = 1.0

pdm = 1.1

pdm = 1.2

pdm = 1.3

pdm = 1.4

pdm = 1.5

0 20 40 60
Time

RB6

pdm = 1.0

pdm = 1.1

pdm = 1.2

pdm = 1.3

pdm = 1.4

pdm = 1.5

Figure D��� Instantaneous Completion Probability� pd � �������

APPENDIX D� COINCIDENT FAULTS IN RECOVERY BLOCK SYSTEMS ���

0 20 40 60
Time

RB1

pdm = 1.0

pdm = 1.1

pdm = 1.2

pdm = 1.3

pdm = 1.4

pdm = 1.5

0 20 40 60
Time

RB2

pdm = 1.0

pdm = 1.1

pdm = 1.2

pdm = 1.3

pdm = 1.4

pdm = 1.5

0 20 40 60
Time

RB3

pdm = 1.0

pdm = 1.1

pdm = 1.2

pdm = 1.3

pdm = 1.4

pdm = 1.5

0 20 40 60
Time

RB4

pdm = 1.0

pdm = 1.1

pdm = 1.2

pdm = 1.3

pdm = 1.4

pdm = 1.5

0 20 40 60
Time

RB5

pdm = 1.0

pdm = 1.1

pdm = 1.2

pdm = 1.3

pdm = 1.4

pdm = 1.5

0 20 40 60
Time

RB6

pdm = 1.0

pdm = 1.1

pdm = 1.2

pdm = 1.3

pdm = 1.4

pdm = 1.5

Figure D��� Instantaneous Failure Probability� pd � �������

APPENDIX D� COINCIDENT FAULTS IN RECOVERY BLOCK SYSTEMS ���

0 20 40 60
Time

RB1

pdm = 1.0

pdm = 1.1

pdm = 1.2

pdm = 1.3

pdm = 1.4

pdm = 1.5

0 20 40 60
Time

RB2

pdm = 1.0

pdm = 1.1

pdm = 1.2

pdm = 1.3

pdm = 1.4

pdm = 1.5

0 20 40 60
Time

RB3

pdm = 1.0

pdm = 1.1

pdm = 1.2

pdm = 1.3

pdm = 1.4

pdm = 1.5

0 20 40 60
Time

RB4

pdm = 1.0

pdm = 1.1

pdm = 1.2

pdm = 1.3

pdm = 1.4

pdm = 1.5

0 20 40 60
Time

RB5

pdm = 1.0

pdm = 1.1

pdm = 1.2

pdm = 1.3

pdm = 1.4

pdm = 1.5

0 20 40 60
Time

RB6

pdm = 1.0

pdm = 1.1

pdm = 1.2

pdm = 1.3

pdm = 1.4

pdm = 1.5

Figure D�
� Cumulative Completion Probability� pd � �������

APPENDIX D� COINCIDENT FAULTS IN RECOVERY BLOCK SYSTEMS ���

0 20 40 60
Time

RB1

pdm = 1.0

pdm = 1.1

pdm = 1.2

pdm = 1.3

pdm = 1.4

pdm = 1.5

0 20 40 60
Time

RB2

pdm = 1.0

pdm = 1.1

pdm = 1.2

pdm = 1.3

pdm = 1.4

pdm = 1.5

0 20 40 60
Time

RB3

pdm = 1.0

pdm = 1.1

pdm = 1.2

pdm = 1.3

pdm = 1.4

pdm = 1.5

0 20 40 60
Time

RB4

pdm = 1.0

pdm = 1.1

pdm = 1.2

pdm = 1.3

pdm = 1.4

pdm = 1.5

0 20 40 60
Time

RB5

pdm = 1.0

pdm = 1.1

pdm = 1.2

pdm = 1.3

pdm = 1.4

pdm = 1.5

0 20 40 60
Time

RB6

pdm = 1.0

pdm = 1.1

pdm = 1.2

pdm = 1.3

pdm = 1.4

pdm = 1.5

Figure D��� Cumulative Failure Probability� pd � �������

APPENDIX D� COINCIDENT FAULTS IN RECOVERY BLOCK SYSTEMS ���

0 20 40 60
Time

RB1

pdm = 1.0

pdm = 1.1

pdm = 1.2

pdm = 1.3

pdm = 1.4

pdm = 1.5

0 20 40 60
Time

RB2

pdm = 1.0

pdm = 1.1

pdm = 1.2

pdm = 1.3

pdm = 1.4

pdm = 1.5

0 20 40 60
Time

RB3

pdm = 1.0

pdm = 1.1

pdm = 1.2

pdm = 1.3

pdm = 1.4

pdm = 1.5

0 20 40 60
Time

RB4

pdm = 1.0

pdm = 1.1

pdm = 1.2

pdm = 1.3

pdm = 1.4

pdm = 1.5

0 20 40 60
Time

RB5

pdm = 1.0

pdm = 1.1

pdm = 1.2

pdm = 1.3

pdm = 1.4

pdm = 1.5

0 20 40 60
Time

RB6

pdm = 1.0

pdm = 1.1

pdm = 1.2

pdm = 1.3

pdm = 1.4

pdm = 1.5

Figure D��� Instantaneous Completion Probability� pd � �������

APPENDIX D� COINCIDENT FAULTS IN RECOVERY BLOCK SYSTEMS ���

0 20 40 60
Time

RB1

pdm = 1.0

pdm = 1.1

pdm = 1.2

pdm = 1.3

pdm = 1.4

pdm = 1.5

0 20 40 60
Time

RB2

pdm = 1.0

pdm = 1.1

pdm = 1.2

pdm = 1.3

pdm = 1.4

pdm = 1.5

0 20 40 60
Time

RB3

pdm = 1.0

pdm = 1.1

pdm = 1.2

pdm = 1.3

pdm = 1.4

pdm = 1.5

0 20 40 60
Time

RB4

pdm = 1.0

pdm = 1.1

pdm = 1.2

pdm = 1.3

pdm = 1.4

pdm = 1.5

0 20 40 60
Time

RB5

pdm = 1.0

pdm = 1.1

pdm = 1.2

pdm = 1.3

pdm = 1.4

pdm = 1.5

0 20 40 60
Time

RB6

pdm = 1.0

pdm = 1.1

pdm = 1.2

pdm = 1.3

pdm = 1.4

pdm = 1.5

Figure D�
� Instantaneous Failure Probability� pd � �������

APPENDIX D� COINCIDENT FAULTS IN RECOVERY BLOCK SYSTEMS ���

0 20 40 60
Time

RB1

pdm = 1.0

pdm = 1.1

pdm = 1.2

pdm = 1.3

pdm = 1.4

pdm = 1.5

0 20 40 60
Time

RB2

pdm = 1.0

pdm = 1.1

pdm = 1.2

pdm = 1.3

pdm = 1.4

pdm = 1.5

0 20 40 60
Time

RB3

pdm = 1.0

pdm = 1.1

pdm = 1.2

pdm = 1.3

pdm = 1.4

pdm = 1.5

0 20 40 60
Time

RB4

pdm = 1.0

pdm = 1.1

pdm = 1.2

pdm = 1.3

pdm = 1.4

pdm = 1.5

0 20 40 60
Time

RB5

pdm = 1.0

pdm = 1.1

pdm = 1.2

pdm = 1.3

pdm = 1.4

pdm = 1.5

0 20 40 60
Time

RB6

pdm = 1.0

pdm = 1.1

pdm = 1.2

pdm = 1.3

pdm = 1.4

pdm = 1.5

Figure D��� Cumulative Completion Probability� pd � �������

APPENDIX D� COINCIDENT FAULTS IN RECOVERY BLOCK SYSTEMS ���

0 20 40 60
Time

RB1

pdm = 1.0

pdm = 1.1

pdm = 1.2

pdm = 1.3

pdm = 1.4

pdm = 1.5

0 20 40 60
Time

RB2

pdm = 1.0

pdm = 1.1

pdm = 1.2

pdm = 1.3

pdm = 1.4

pdm = 1.5

0 20 40 60
Time

RB3

pdm = 1.0

pdm = 1.1

pdm = 1.2

pdm = 1.3

pdm = 1.4

pdm = 1.5

0 20 40 60
Time

RB4

pdm = 1.0

pdm = 1.1

pdm = 1.2

pdm = 1.3

pdm = 1.4

pdm = 1.5

0 20 40 60
Time

RB5

pdm = 1.0

pdm = 1.1

pdm = 1.2

pdm = 1.3

pdm = 1.4

pdm = 1.5

0 20 40 60
Time

RB6

pdm = 1.0

pdm = 1.1

pdm = 1.2

pdm = 1.3

pdm = 1.4

pdm = 1.5

Figure D��� Cumulative Failure Probability� pd � �������

APPENDIX D� COINCIDENT FAULTS IN RECOVERY BLOCK SYSTEMS ��	

D�� E�ects of pf

This section provides a detailed analysis of the recovery block system discussed in sec�

tion
���
��� This system uses the same set of alternates� �gure
�
� and pf and pr

parameters� table
��� as that described in section
����� In addition� pd was set equal

to ��������

The e�ects of dependent faults in the alternates of the recovery block are here modelled

by means of a failure probability multiplier� This is a small factor� pfm � by which the

probability of hidden fault occurrence� pf� is multiplied in each alternate� That is� the

value of pf in alternate n is de�ned by equation D���

pnf � pfm � pn��f �D���

The instantaneous completion probability for these systems is shown in �gure D�	� The

results are clear� increasing the value of pfm does not signi�cantly a�ect the shape

of the completion pro�le� but the value of the instantaneous completion probability is

modi�ed� In particular� it is seen that some parts of the curve show reduced completion

probability� whilst others show an increase� This e�ect is clearly seen in the cumulative

completion probability plots� �gure D���� where it is seen that there is a divergence in

the cumulative completion probability plots� dependent on the value of pfm � It is noted

that this e�ect depends heavily on the ordering of the execution of the alternates� the

RB� system� for example� shows little change in its behaviour� whereas the RB
 system

is heavily a�ected�

The failure probability plots� �gures D��� and D��� show the expected increase in failure

probability as pfm is increased� It is noted that� once again� all six recovery block systems

behave in an identical manner�

APPENDIX D� COINCIDENT FAULTS IN RECOVERY BLOCK SYSTEMS ��

0 20 40 60
Time

RB1

pdm = 1.0

pdm = 1.1

pdm = 1.2

pdm = 1.3

pdm = 1.4

pdm = 1.5

0 20 40 60
Time

RB2

pdm = 1.0

pdm = 1.1

pdm = 1.2

pdm = 1.3

pdm = 1.4

pdm = 1.5

0 20 40 60
Time

RB3

pdm = 1.0

pdm = 1.1

pdm = 1.2

pdm = 1.3

pdm = 1.4

pdm = 1.5

0 20 40 60
Time

RB4

pdm = 1.0

pdm = 1.1

pdm = 1.2

pdm = 1.3

pdm = 1.4

pdm = 1.5

0 20 40 60
Time

RB5

pdm = 1.0

pdm = 1.1

pdm = 1.2

pdm = 1.3

pdm = 1.4

pdm = 1.5

0 20 40 60
Time

RB6

pdm = 1.0

pdm = 1.1

pdm = 1.2

pdm = 1.3

pdm = 1.4

pdm = 1.5

Figure D�	� Instantaneous Completion Probability

APPENDIX D� COINCIDENT FAULTS IN RECOVERY BLOCK SYSTEMS ���

0 20 40 60
Time

RB1

pdm = 1.0

pdm = 1.1

pdm = 1.2

pdm = 1.3

pdm = 1.4

pdm = 1.5

0 20 40 60
Time

RB2

pdm = 1.0

pdm = 1.1

pdm = 1.2

pdm = 1.3

pdm = 1.4

pdm = 1.5

0 20 40 60
Time

RB3

pdm = 1.0

pdm = 1.1

pdm = 1.2

pdm = 1.3

pdm = 1.4

pdm = 1.5

0 20 40 60
Time

RB4

pdm = 1.0

pdm = 1.1

pdm = 1.2

pdm = 1.3

pdm = 1.4

pdm = 1.5

0 20 40 60
Time

RB5

pdm = 1.0

pdm = 1.1

pdm = 1.2

pdm = 1.3

pdm = 1.4

pdm = 1.5

0 20 40 60
Time

RB6

pdm = 1.0

pdm = 1.1

pdm = 1.2

pdm = 1.3

pdm = 1.4

pdm = 1.5

Figure D���� Instantaneous Failure Probability

APPENDIX D� COINCIDENT FAULTS IN RECOVERY BLOCK SYSTEMS ���

0 20 40 60
Time

RB1

pdm = 1.0

pdm = 1.1

pdm = 1.2

pdm = 1.3

pdm = 1.4

pdm = 1.5

0 20 40 60
Time

RB2

pdm = 1.0

pdm = 1.1

pdm = 1.2

pdm = 1.3

pdm = 1.4

pdm = 1.5

0 20 40 60
Time

RB3

pdm = 1.0

pdm = 1.1

pdm = 1.2

pdm = 1.3

pdm = 1.4

pdm = 1.5

0 20 40 60
Time

RB4

pdm = 1.0

pdm = 1.1

pdm = 1.2

pdm = 1.3

pdm = 1.4

pdm = 1.5

0 20 40 60
Time

RB5

pdm = 1.0

pdm = 1.1

pdm = 1.2

pdm = 1.3

pdm = 1.4

pdm = 1.5

0 20 40 60
Time

RB6

pdm = 1.0

pdm = 1.1

pdm = 1.2

pdm = 1.3

pdm = 1.4

pdm = 1.5

Figure D���� Cumulative Completion Probability

APPENDIX D� COINCIDENT FAULTS IN RECOVERY BLOCK SYSTEMS ���

0 20 40 60
Time

RB1

pdm = 1.0

pdm = 1.1

pdm = 1.2

pdm = 1.3

pdm = 1.4

pdm = 1.5

0 20 40 60
Time

RB2

pdm = 1.0

pdm = 1.1

pdm = 1.2

pdm = 1.3

pdm = 1.4

pdm = 1.5

0 20 40 60
Time

RB3

pdm = 1.0

pdm = 1.1

pdm = 1.2

pdm = 1.3

pdm = 1.4

pdm = 1.5

0 20 40 60
Time

RB4

pdm = 1.0

pdm = 1.1

pdm = 1.2

pdm = 1.3

pdm = 1.4

pdm = 1.5

0 20 40 60
Time

RB5

pdm = 1.0

pdm = 1.1

pdm = 1.2

pdm = 1.3

pdm = 1.4

pdm = 1.5

0 20 40 60
Time

RB6

pdm = 1.0

pdm = 1.1

pdm = 1.2

pdm = 1.3

pdm = 1.4

pdm = 1.5

Figure D���� Cumulative Failure Probability

BIBLIOGRAPHY ���

Bibliography

��� ACM Committee on Computers and Public Policy� Forum on risks to the public

in computers and related systems� Internet mailing list �risks
csl�sri�com��

Archived at http���catless�ncl�ac�uk�Risks��

��� T� Anderson and P� A� Lee� The provision of recoverable interfaces� In Digest of

papers �
th International symposium on fault�tolerant computing� IEEE� �	�	�

�
� T� Anderson and P� A� Lee� Fault tolerance � Principles and practice� Springer�

Verlag� �		��

��� C� Andre� Synchronized elementary net systems� In G� Rozenberg� editor� Advances

in Petri nets �
�
� volume ��� of Lecture notes in Computer Science� pages ����
�

Springer�Verlag� �	�	�

��� J� Arlat� K� Kanoun� and J��C� Laprie� Dependability modeling and evaluation of

software fault�tolerant systems� IEEE Transactions on computers�
	����������
�

April �		��

�
� J� Arlat� L� Kanoun� and J��C� Laprie� Dependability evaluation of software fault�

tolerance� In Proceedings ��th International Symposium on Fault� Tolerant Com�

puting� IEEE� June �	���

��� N� C� Audsley� A� Burns� M� F� Richardson� and A� J� Wellings� Incorporating un�

bounded algorithms into predictable real�time systems� Computer Systems Science

� Engineering� ���������	� April �		
�

��� A� Avizienis� M� Lyu� and W� Schutz� Multi�version software development� A

UCLA�Honeywell joint project for fault�tolerant �ight control systems� Technical

Report CSD�����
�� Dept� Computer Science� University of California� Los Angeles�

�	���

�	� S� Balaji� L� Jenkins� L� M� Patnaik� and P� S� Goel� Workload redistribution for

fault�tolerance in a hard real�time distributed computing system� In �
th Interna�

tional Symposium on Fault�Tolerant Computing� pages

�
�
� IEEE� �	�	�

BIBLIOGRAPHY ���

���� M� Balakrishnan and C� S� Raghavendra� An analysis of a reliability model for

repairable fault�tolerant systems� IEEE Transactions on Computers� ���
��
���

	� March �		
�

���� Bell laboratories� The ESS No� �A processor� Bell Systems Technical Journal� �
����

February �	���

���� P� A� Bernstein� Sequoia� A fault�tolerant tightly coupled multiprocessor for Trans�

action Processing� IEEE Computer� ������
����� February �	���

��
� A� Burns and A� J� Wellings� Real time systems and their programming languages�

Addison�Wesley� �		��

���� J� Campos and M� Silva� Structural techniques for performance bounds of stochastic

Petri net models� In G� Rozenberg� editor� Advances in Petri nets �

�� volume

�	 of Lecture notes in computer science� pages
�� �
	�� Springer Verlag� �		��

���� J� Carlier� Ph� Chretienne� and C� Girault� Modelling scheduling problems with

timed Petri nets� In Advances in Petri nets �
��� volume ��� of Lecture notes in

computer science� pages
����� Springer Verlag� �	���

��
� T� L� Casavant and J� G� Kuhl� A taxonomy of scheduling in general purpose

distributed computing systems� IEEE Transactions on software engineering� ������

February �	���

���� G� Chiola� M� A� Marsan� G� Balbo� and G� Conte� Generalized stochastic petri nets�

A de�nition at the net level and its implications� IEEE Transaction on Software

Engineering� �	�����	����� February �		
�

���� K� L� Chung� Markov Chains with stationary transition probabilities� Springer�

Verlag� second edition� �	
��

��	� G� F� Clement and R� D� Royer� Recovery from faults in the No� �A processor� In Di�

gest of papers� �th Annual International Symposium on Fault Tolerant Computing�

pages �������� January �	���

���� F� Cristian� Understanding fault�tolerant distributed systems� Communications of

the ACM�
����� February �		��

���� A� Csenki� Reliability analysis of recovery blocks with nested clusters of failure

points� IEEE Transactions on Reliability� ������
���
� March �		
�

���� R� A� DeMillo� A� J� O�utt� and F� G� Sayward� Hints on test data selection� Help

for the practicing programmer� IEEE Computer� ��� April �	���

BIBLIOGRAPHY ���

��
� B� Dimitrov� Z� Khalil� N� Kolev� and P� Petrov� On the optimal total processing

time using checkpoints� IEEE Transactions on Software Engineering� �������

�

���� May �		��

���� C� I� Dimmer� The Tandem Non�Stop system� In T� Anderson� editor� Resilient

Computer Systems� pages �����	
� Collins� �	���

���� D� E� Eckhardt and L� D� Lee� A theoretical basis for the analysis of multiversion

software subject to coincident errors� IEEE Transactions on Software Engineering�

SE������������������ December �	���

��
� E� N� Elnozahy and W� Zwaenepoel� Manetho� Transparent rollback�recovery with

low overhead� limited rollback� and fast output commit� IEEE Transactions on

computers� ������ May �		��

���� J� R� Elphick� Fault Tolerance in Rotorcraft Digital Flight Control Systems� PhD

thesis� Department of Electronics� University of York� Heslington� York� YO� �DD�

UK�� January �		
�

���� Engineering Council� Guidelines on risk issues� �� Maltravers Street� London� WC�R

ER� UK� February �		
�

��	� European Space Agency� Software reliability modeling study� February �	��� Invi�

tation to tender AO�����
	����NL�IW�

�
�� R� Geist� A� J� O�utt� and F� C� Harris� Estimation and enhancement of real�time

software reliability through mutation analysis� IEEE Transactions of Computers�

�������������� May �		��

�
�� J� N� Gray� The transaction concept� Virtues and limitations� In Proceedings of the

�th International conference on very large databases� IEEE� �	���

�
�� J� N� Gray� Why do computers stop and what can be done about it� In Proceedings

�th Symposium on Reliability in Distributed Software and Database Systems� pages

���� Los Angeles� January �	�
�

�

� A� Grnarov� J� Arlat� and A� Avizienis� On the performance of software fault�

tolerance strategies� In Proceedings of the ��th International Symposium on Fault�

Tolerant Computing� IEEE� �	���

�
�� P� J� Haas and G� S� Shedler� Stochastic Petri net representation of discrete event

simulations� IEEE Transaction on Software Engineering� ������
���
	
� April �	�	�

�
�� D� Haban and K� G� Shin� Application of real�time monitoring to scheduling tasks

with random execution times� IEEE Transactions on software engineering� �
�����

December �		��

BIBLIOGRAPHY ���

�

� Health and Safety Executive� The tolerability of risk from nuclear power stations�

�		��

�
�� A� Hein and K� K� Goswami� Combined performance and dependability evaluation

with conjoint simulation� In Proceedings of the �th European Simulation Sympo�

sium� pages

��

	� Friedrich�Alexander�Universit�at Erlangen�N�urnburg� October

�		�� Society for Computer Simulation�

�
�� B� E� Helvik� Modelling the in�uence of unreliable software in distributed computer

systems� In Digest of papers � ��th International symposium on fault�tolerant

computing� pages �

����� IEEE� �	���

�
	� M� P� Herlihy and J� M� Wing� System�level primitives for Fault�Tolerant distributed

computing� In Digest of papers � ��th International symposium on fault�tolerant

computing� IEEE� �	�
�

���� P� G� Hoel� Elementary Statistics� John Wiley � Sons� Inc��
rd edition� �	���

���� A� J� Hopkins and T� B� Smith� The architectural elements of a symmetric fault�

tolerant multiprocessor� IEEE Transactions on Computers� C�������	������ May

�	���

���� A� Je�rey� Mathematics for Engineers and Scientists� Van Nostrand Reinhold

�International�� Fourth edition� �	�	� ISBN � ��� ����
 ��

��
� Z� Jelinski and P� B� Moranda� Software reliability research� In W� Freiberger�

editor� Statistical Computer Performance Evaluation� pages �
������ Academic

Press� New York� �	���

���� K� H� Kim and H� O� Welch� Distributed execution of recovery blocks� An approach

for uniform treatment of hardware and software faults in real�time applications� IEEE

Transactions on computers�
����� May �	�	�

���� K� H� Kim and J� C� Yoon� Approaches to implementation of a repairable distributed

recovery block scheme� In Digest of papers � ��th International symposium on fault�

tolerant computing� IEEE� �	���

��
� J� C� Knight and N� G� Leveson� An experimental evaluation of the assumption of

independence in multiversion programming� IEEE Transactions on Software Engi�

neering� SE�������	
���	� January �	�
�

���� J� C� Knight� N� G� Leveson� and L� D� St�Jean� A large scale experiment in n�

version programming� In Digest of papers � ��th Annual International Symposium

on Fault�Tolerant Computing� pages �
���
	� �	���

BIBLIOGRAPHY ���

���� J��C� Laprie� Dependability evaluation of software systems in operation� IEEE

Transactions on Software Engineering� SE��������������� November �	���

��	� J��C� Laprie� J� Arlat� C� Beounes� and K� Kanoun� De�nition and analysis of

hardware and software fault�tolerant architectures� IEEE computer� July �		��

���� J��C� Laprie and K� Kanoun� X�Ware reliability and availability modeling� IEEE

Transactions of Software Engineering� �������
������ February �		��

���� J� Ledoux and G� Rubino� A counting model for software reliability analysis� Tech�

nical Report ���� Institut de Recherche en Informatique et Systemes Aleatoires

�IRISA�� Campus Universitaire de Beaulieu�
���� Rennes Cedex� France� July �		
�

���� N� G� Leveson� Software safety� Why� what and how� ACM Computing Surveys�

��������� � �

� �	�
�

��
� B� Littlewood� Stochastic reliability�growth� A model for fault�removal in computer

programs and hardware designs� IEEE Transactions on Reliability� R�
�����
�
�
���

October �	���

���� B� Littlewood� Software reliability prediction� In T� Anderson� editor� Resilient

Computing Systems� chapter �� pages �����
�� Collins� �	���

���� B� Littlewood� Limits to evaluation of software dependability� In N� Fenton and

B� Littlewood� editors� Software Reliability and Metrics� chapter
� pages �������

Elsevier Science Publishers Ltd�� �		��

��
� B� Littlewood and D� Wright� A bayesian model that combines disparate evidence

for the quantitative assessment of system dependability� In Digest of papers �

�nd Conference on the Mathematics of Dependable Systems� University of York�

September �		�� The Institute of Mathematics and it�s Applications� Invited paper�

���� M� A� Marsan� Stochastic Petri nets� an elementary introduction� In G� Rozenberg�

editor� Advances in Petri nets �
�
� volume ��� of Lecture Notes in Computer

Science� pages ���	� Springer�Verlag� �	�	�

���� M� A� Marsan� G� Conte� and G� Balbo� A class of generalized stochastic petri nets

for the performance evaluation of multiprocessor systems� ACM Transactions of

Computer Systems� �����	
����� May �	���

��	� P� Merlin� A Study of the recoverability of Computing Systems� PhD thesis� Dept�

Information and Computer Science� University of California� Irvine� �	���

�
�� M� K� Molloy� Performance analysis using stochastic Petri nets� IEEE Transactions

on computers� C�
��	��	�
�	��� September �	���

BIBLIOGRAPHY ��	

�
�� M� K� Molloy� Discrete time stochastic petri nets� IEEE Transactions on software

engineering� SE�������������
� April �	���

�
�� P� Morrison and E� Morrison� Charles Babbage and his Calculating Engines� Dover�

New York� �	
��

�

� J� E� B� Moss� Nested Transactions � An approach to reliable distributed comput�

ing� MIT Press� �	���

�
�� J� D� Musa� Validity of execution�time theory of software reliability� IEEE Transac�

tions on Reliability� R����
�������	�� August �	�	�

�
�� J� D� Musa� Software reliability data� Technical report� Bell Telephone Laboratories�

January �	��� Report obtainable from DACS� Rome Air Development Centre� Rome�

New York�

�

� P� M� Nagel and J� A� Skrivan� Software reliability� Repetitive run experimentation

and modeling� Technical Report CR��
��

� NASA� Washington� DC� February

�	���

�
�� E� Nett� R� Kroger� and J� Kaiser� Implementing a general error recovery mecha�

nism in a distributed operating system� In Digest of papers � ��th International

symposium on fault�tolerant computing� IEEE� �	�
�

�
�� E� Nett and R� Schumann� Supporting fault�tolerant distributed computations under

real�time requirements� Computer communications� ������ May �		��

�
	� V� F� Nicola and A� Goyal� Modeling of correlated failures and community error

recovery in multiversion software� IEEE Transactions on Software Engineering�

�
�
��
���
�	� March �		��

���� S� Omohundro and D� Stoutamire� The Sather ��� Speci	cation� International Com�

puter Science Institute� �	�� Center Street� Suite
��� Berkeley� California 	�����

USA� December �		�� Available at http���www�icsi�berkeley�edu�
sather��

���� J� K� Ousterhout� Tcl and the Tk Toolkit� Addison�Wesley� �		��

���� C� Y� Park� Predicting program execution times by analysing static and dynamic

program paths� Real�Time Systems� ��
��
�� �		
�

��
� C� S� Perkins and A� M� Tyrrell� A new markov model for dependability and tem�

poral evaluation of hard real�time systems� In Proceedings of the �th European

Simulation Symposium� pages
���
	�� Friedrich�Alexander�Universit�at Erlangen�

N�urnburg� October �		�� Society for Computer Simulation�

BIBLIOGRAPHY ��

���� C� S� Perkins and A� M� Tyrrell� Reliability models for hard real�time systems�

In Proceedings of the �nd IMA Conference on the Mathematics of Dependable

Systems� University of York� September �		��

���� J� L� Peterson� Petri nets� Computing Surveys� 	�
����
����� September �	���

��
� J� L� Peterson� Petri net theory and the modeling of systems� Prentice�Hall� �	���

ISBN ���
�

�	�
���

���� G� Pucci� A new approach to the modeling of recovery block structures� IEEE

Transactions on software engineering� ��������	��
�� February �		��

���� B� Randell� System structure for software fault tolerance� IEEE Transactions on

Software Engineering� SE��������
�� June �	���

��	� A� Ranganathan and S� Upadhyaya� Performance evaluation of rollback�recovery

techniques in computer programs� IEEE Transactions on Reliability� ������������
�

June �		
�

���� A� B� Romanovsky and I� V� Sturtz� Unplanned recovery for non�program object� In

Digest of papers � ��th International Distributed Computing Symposium� Tampe�

U�S�A�� �		��

���� R� K� Scott� J� W� Gault� and D� F� McAllister� Fault�tolerant software reliability

modeling� IEEE Transactions of Software Engineering� SE��
���������	�� May

�	���

���� T� Shepard and J� A� M� Gagn�e� A pre�run�time scheduling algorithm for hard

real�time systems� IEEE Transactions on Software engineering� ������ July �		��

��
� Y��B� Shieh� D� Ghosal� P� R� Chintamaneni� and S� K� Tripathi� Modeling of

hierarchical distributed systems with fault�tolerance� IEEE Transactions on Software

Engineering� �
������������ April �		��

���� D� P� Siewiorek� Fault tolerance in commercial computers� IEEE Computer� pages

�
�
�� July �		��

���� A� Z� Spector� J� J� Bloch� D� S� Daniels� R� P� Draves� D� Dunchamp� J� L�

Eppinger� S� G� Menees� and D� S� Thompson� The Camelot project� Database

Engineering� 	�
����	 � �
�� September �	�
�

��
� J� A� Stankovic and K� Ramamritham� What is predictability for real�time systems�

Real�Time Systems� ������������� �		��

���� J� Tain� P� Lu� and J� Palma� Test�execution�based reliability measurement and

modeling for large commercial software� IEEE Transactions on Software Engineer�

ing� �������������� May �		��

BIBLIOGRAPHY ���

���� L� Tak�acs� Stochastic processes� Methuen� �	
��

��	� D� Taylor and G� Wilson� Stratus� In T� Anderson� editor� Dependability of Resilient

Computers� chapter ��� pages ��� � �

� BSP� �	�	�

�	�� L� A� Tomek� J� K� Muppala� and K� S� Trivedi� Modeling correlation in software

recovery blocks� IEEE Transactions on Software Engineering� �	�������������
�

November �		
�

�	�� A� Tripathi and J� Silverman� System�level primitives for fault�tolerant distributed

computing� In Digest of papers � ��th International symposium on fault�tolerant

computing� IEEE� �	�
�

�	�� D� Wilson� The STRATUS computer system� In T� Anderson� editor� Resilient

Computer Systems� pages �����
�� Collins� �	���

�	
� J� Xu and D� L� Parnas� On satisfying timing constraints in hard�real�time systems�

IEEE Transactions on Software Engineering� �	���������� January �		
�

