

Poor Man’s Content-Centric Networking (with TCP)

Pasi Sarolahti, Jörg Ott

Karthik Budigere
Aalto University

Department of Communications and Networking

P.O. Box 13000, FI-00076 Aalto

Finland

{psarolah,kbudiger}@cc.hut.fi

jo@comnet.tkk.fi

Colin Perkins
University of Glasgow

School of Computing Science

Glasgow G12 8QQ

United Kingdom

csp@csperkins.org

ABSTRACT
A number of different architectures have been proposed in sup-
port of data-oriented or information-centric networking. Besides
a similar visions, they share the need for designing a new net-
working architecture. We present an incrementally deployable ap-
proach to content-centric networking based upon TCP. Content-
aware senders cooperate with probabilistically operating routers for
scalable content delivery (to unmodified clients), effectively sup-
porting opportunistic caching for time-shifted access as well as de-
facto synchronous multicast delivery. Our approach is application
protocol-independent and provides support beyond HTTP caching
or managed CDNs. We present our protocol design along with a
Linux-based implementation and some initial feasibility checks.

1. INTRODUCTION
The way in which the Internet is used has evolved over time,

moving from being a platform for providing shared access to re-
sources, to become a means for sharing content between groups of
like-minded users. Today, three forms of content sharing dominate
the traffic in the Internet: web peer-to-peer applications, and me-
dia streaming (both via HTTP and other protocols), with the latter
gaining in share [17].

This shift in network usage has driven two parallel strands of re-
search and development. Network operators and content providers
have responded with a host of pragmatic engineering solutions to
provide content centric caching and media distribution within the
existing network architecture, while the research community has
studied a range of alternative architectures. Content distribution
networks (CDNs) provide the pragmatic approach to data-oriented
networking. They provide a transparent redirection and content
caching infrastructure, with proactive content push, that can di-
rect requests to the closest replica of content to improve access
times and reduce network load. Distribution and caching of con-
tent in CDNs is commonly applied at the object (HTTP resource)
level, and so is generally limited to this single application pro-
tocol. This works very well for web data, and modern adaptive
HTTP streaming applications that segment media flows into short

.

cachable chunks, but is problematic for live or open-ended content,
and for non-HTTP traffic.

The pervasiveness and effectiveness of this CDN infrastructure
exert a strong pull on applications to use HTTP-based content dis-
tribution. In some cases this may be appropriate, the ongoing mi-
gration of on-demand video streaming to use rate-adaptive chunked
distribution over HTTP [1] is a timely example, but in other cases,
that infrastructure is a poor fit. Large-scale live television distri-
bution provides one example that does not fit well with the CDN
model, and instead relies on IP multicast for effective, low-latency,
transport. Peer-to-peer applications also do not benefit from these
mechanisms, and instead construct their own overlays to provide
good performance (some operators have started to deploy mecha-
nisms to help overlays find suitable well-located peers (e.g., [24])
to enable caching and local content distribution). The result is that
non-HTTP applications are disadvantaged: there is still no effective
application neutral content distribution infrastructure.

In parallel to these engineering efforts, the research community
has seen an upsurge of interest in data-oriented, and content- and
information-centric networking (ICN), to re-architect the network
to better suit the traffic mix and needs of all its users. Several ar-
chitectures have been proposed as a future networking approach
to address the above trends, and to allow identification and ac-
cess of content inside the network, irrespective of the communi-
cation context. Three prominent examples include DONA [16]
and PSIRP [15, 23], which operate at the packet level, as well as
CCN [13] which uses larger chunks as basic unit of content distribu-
tion. These architectures, however, are clean slate designs that typi-
cally require intrusive modifications to the communication stack or
even the entire network architecture. Moreover, naming and rout-
ing issues are not yet solved to scale.

In this paper, we propose a novel poor man’s approach to content-
centric networking. We use the idea of uniquely-labelled data units
within content flows, coupled with packet-level caching of content
at routers, to build a pervasive content caching and distribution net-
work. This approach can provide much of the benefit of the pro-
posed ICN architectures, but is incrementally deployable in today’s
Internet, and builds on current protocol stacks and standard trans-
port protocols, such as TCP. In contrast to operating on HTTP-level
objects, caching done at the packet level, independent of the higher
layer protocols, offers more fine-grained caching and retrieval, and
achieves broad applicability: to the web, to streaming, and to peer-
to-peer overlays.

We implement packet-level caching on top of TCP flows, and
preserve the traditional endpoint views and APIs. This includes the
notion of using IP addresses and port numbers for connection iden-
tification by endpoints, client-server and peer-to-peer interaction

paradigms, and the use of URIs for resource-level content iden-
tification.1 We add per-packet labels at the sender side to make
packets identifiable as content units in caching routers inside the
network; these labels are invisible to receivers. Caching routers op-
erate opportunistically and may keep packets cached for some time
after forwarding them. Caching routers keep state for any subset of
flows with labeled packets, so that they are able to service requests
across different flows autonomously from cached packets. This ar-
chitecture supports two complementary uses of packet caching:2

• Pseudo-multicast: a synchronous delivery of data from each
cache router to a virtually unbounded number of downstream
cache routers and receivers where these are identified as be-
ing subscribed for the same data.

• Packet-level caching: time-shifted access to popular content
from different receivers (as a function of the cache size and
the request diversity).

This paper hints that we may gain the performance benefits of
ICN relating to caching and delivering data to multiple receivers in
a multicast fashion, while being able to keep the end-to-end trans-
port state consistent. Our solution, Multi-Receiver TCP (MRTCP),
is based on TCP as the primary transport protocol for our target
application class. It requires a modest amount of modifications to
sending (usually server) TCP/IP stack, but it works with unmodi-
fied off-the-self TCP receivers (usually clients). Caching routers
must be modified to be able to take advantage of MRTCP, but
legacy routers and servers interoperate seamlessly with our enhance-
ment.

Our main contributions are primarily of conceptual nature: 1)
We present a complete design for a TCP enhancement that enables
flow-independent content caching with legacy receivers (Section 3)
and allows for improvements when receivers are MRTCP-aware
(Section 4). 2) We outline how applications need to operate to
make use of MRTCP features (Section 6). 3) We have implemented
MRTCP in the Linux kernel, an MRTCP caching node, and of en-
hancements to an open source web server to support MRTCP using
which we carry out initial interoperability tests with legacy clients
(Section 7). We leave an encompassing performance evaluation for
further study but rather focus on implementation feasibility in this
paper.

Network operators and content providers have an incentive to
deploy MRTCP since its pseudo-multicast and pervasive packet
caching can significantly reduce their network load, albeit with
increased router complexity. The incentive for receivers to de-
ploy MRTCP is lower, unless those receivers participate in peer-to-
peer overlays or host local content, but deployment to edge routers
achieves much of the benefit for in-network state reduction (see
Section 5).

We opt for implementation above the IP layer because we do not
want to affect IP forwarding in non-caching routers and want to be
independent of the IP version. Moreover, we would like to support
generic caching independent of a particular application protocol
and thus stay below the application layer. We also want to mini-
mize the depth of extra packet inspection effort in caching routers;
we believe that packet-level handling of TCP in caching routers
1Despite the fragility of URIs caused by their inclusion of content
location and access method, in addition to content identification,
users have accepted them as a viable and familiar way to convey
pointers to content.
2As a side effect, we could also support packet retransmissions
within the context of a TCP connection, but this is not in our present
focus.

!"

!"

!"

D E F

H

Q

G

T

C
!"

B

A

!"

J

I

S

R

U

Sender

Receivers

Routers

#$%&'()*"

+,-.%&'()*"

Figure 1: Sample network topology with one sender S, a num-
ber of receivers A, ..., J, and routers Q, R, T, U, ...

might be within the reach in the near future (e.g., [5]). Section 9
discusses the trade-off of implementation at other layers.

2. OVERVIEW AND RATIONALE
In today’s Internet, content identification is rather coarse-grained,

with objects, or chunks thereof, being identified by URIs, or other
application protocol specific identifiers. These identifiers generally
conflate a name for the content with an indirection mechanism that
can be used to locate the content, for example using the DNS, or a
distributed hash table. Content delivery protocols typically specify
a name for the content to be retrieved at the start of a transaction,
but do not usually identify the individual data packets as part of
the content being sought. Content retrieval occurs subsequently as
a sequence of packets that are not self-identifying, and are linked
to the content identification only by the distribution protocol. The
link between a content identifier and a packet flow is broken with
a new resource is identified (usually by a new retrieval request), or
when the connection is closed.

The link between named content and packet flows is further weak-
ened by protocols such as HTTP and RTSP that support content
type negotiation when requesting a piece of named content. Under
such protocols, receivers may, for example, specify preferred en-
codings or indicate their user agent type, and senders may provide
a suitable variant of a resource in return. This means that the pack-
ets delivered in response to a request for a particular named content
item may differ depending on who requested that content.

In contrast to this present-day behavior, a key requirement in our
design of poor man’s content-centric networking is being able to
identify packets comprising some content inside one TCP connec-
tion, and make those packets re-usable across TCP connections.
To achieve this, we split up the interaction between sender and re-
ceiver into phases—content identification and content retrieval—
switching between which is controlled by the sender-side applica-
tion.

Consider the example network shown in Figure 1, where re-
ceivers A through J fetch content originating from some original
sender S. The network comprises a set of routers, of which those
labeled Q, R, T, and U are upgraded caching routers we discuss
below, while the others are standard IP routers. Content is dissem-
inated in a downstream direction, while requests and acknowledg-
ments flow upstream. The basic operation of MRTCP is depicted in
Figure 2(a) using HTTP as an example. Initially, the sender and a

37

Receiver A Sender

SYN/ACK

Content

identification

Content

retrieval

Configure

label

Clear

label

Configure

label

Clear

label

Content

identification

Content

retrieval

GET <X> HTTP/1.1

200 OK (header only)

GET <Y> HTTP/1.1

200 OK (header only)

!
"

FIN/ACK

Router

38

Receiver B Sender

SYN/ACK

Content

identification

Content

retrieval

Configure

label

Clear

label

Configure

label

Clear

label

Content

identification

Content

retrieval

GET <X> HTTP/1.1

200 OK (header only)

GET <Z> HTTP/1.1

200 OK (header only)

!
"

FIN/ACK

Router

!!

!!

!!

!!

Figure 2: (a) (left) Basic MRTCP interaction between a receiver (e.g., a web browser) and a sender (e.g., a web server). The gray-
shaded areas show content retrieval with labeled and thus cachable packets (thicker arrows) whereas the the white areas show
non-cachable packets. Caching routers only recognize labeled packets (which they may cache, indicated by black circles) and ACKs
for flows containing such; they ignore all others. (b) (right) After the first data packet has primed a router about the content unit
retrieved via a flow (white circle), the router may respond with cached packets and mark this in the forwarded ACKs. All control
packets (SYN, FIN, ACK) travel end-to-end.

receiver are in the content identification phase (white background)
and exchange an upstream request to specify the content to retrieve,
and a corresponding downstream acknowledgment: the HTTP GET
request and the 200 OK header response in this example. The data
packets sent during this phase are unlabeled and so considered non-
cachable so that routers Q, R, T and U do not look at them.

Based upon the negotiated piece of content, the sender decides
how to label the packets carrying that content, and indicates this
via the Sockets API to the underlying transport (“configure label”).
If needed, multiple labels may be used for a single resource and
labels updated during the retrieval, e.g., if the resource is large (see
below). Labeling packets signifies the beginning of the content re-
trieval phase (shaded gray in Figure 2(a)). During this phase, only
labeled data packets, that may be cached by the upgraded routers
Q, R, T and U on the path, are transmitted. The connection returns
to the content identification phase when the label is cleared (“clear
label”), and is then ready for identification of the next piece of con-
tent. The content identification and content retrieval phases may be
alternated repeatedly until the connection is torn down. Note that
the two directions of a connection are treated independently as it is
up to the respective sender to indicate when and how to label data
packets.

There are two variants of MRTCP: (i) a stateful variant, that re-
quires a small amount of state at the routers for those flows they de-
cide to cache, but works with standard TCP clients; and (ii) a state-
less variant, that does not require per-flow state at the routers, but
requires modifications to TCP clients. Both variants use the same
labeling mechanisms to identify content in packets, and a network
can support both variants at the same time, allowing gradual de-
ployment of MRTCP. Also, the same MRTCP sender implementa-
tion works with both variants as MRTCP senders can indicate their
support during the SYN/ACK handshake. In this paper, we focus

primarily on the stateful variant that works with legacy clients, but
we also outline the stateless variant in section 4.

MRTCP uses normal end-to-end transport connections and the
end-to-end TCP signaling works (nearly) as before: both endpoints
perform the SYN/ACK and FIN/ACK handshakes and the sender
receives all acknowledgements. Thus, the sender becomes aware
of all interactions, can engage into content identification and nego-
tiation, and is subsequently able to trace the transmission progress.

The sender labels packets according to their contents as specified
by the application. This is done via a small extension to the Sock-
ets API. The label is then included in-band with the data packets.
A TCP connection may arbitrarily mix labeled and unlabeled pack-
ets and different labels may be used as well. It is up to the sender
to ensure that packet boundaries match content labels, and are re-
usable across connections. For example, in an HTTP response, the
start-line and headers are sent separately in the first packet(s) so
that the content starts on a packet boundary (ensuring framing is
maintained is a sender-side modification to TCP, but needs no pro-
tocol or receiver-side changes). Routers observe passing packets
and may cache (any subset of) the labeled ones using the label as
the key to the cached content. In Figure 2, this is indicated by the
white and the black circles.

Data packets lead to acknowledgments sent by the receiver. For
flows that contained labeled packets before—this recognition and
flow-to-label mapping is indicated by the white circles in the figure—
the ACKs are noticed by routers and trigger (re)transmissions of
packets from the router cache if fitting data is available. If so, this
reduces the data transmission times and the amount of traffic at the
sender end.

Transport-level ACKs are exchanged end-to-end, but MRTCP-
aware routers will add a TCP option to the acknowledgments when
they are processed. The option is used to coordinate the transmis-

Type

Content label (8 bytes)

Offset / Next sequence (4 bytes)

Length FCS

Figure 3: MRTCP_DATA / MRTCP_ACK option.

sion of packets, and it tells which are the next data packets to be
sent, and how many packets are allowed to be transmitted in re-
sponse to the acknowledgment. (see figure 2(b) for retrieval of the
resource). This way the repeated transmission by other (upstream)
routers and the sender can be avoided. The sender is ultimately
responsible for providing reliability, and will transmit packets not
cached by any router, and retransmit those packets lost end-to-end.

The sender application does not notice the difference between
packets being sent by intermediary routers or by the sender system:
it feeds the full content into the MRTCP connection via the Sockets
API. It is the sender side kernel MRTCP implementation that de-
cides per connection which of these packets are actually sent and
which can be safely discarded. As a consequence, the MRTCP ap-
proach is suitable for reducing data transmission, but does not help
local data access optimization.

In the following section, we describe the protocol details of the
stateful variant of MRTCP, built on TCP because of its universal de-
ployment (MRTCP is conceptually easier to implement with SCTP
than with TCP, since SCTP natively preserves frame boundaries,
but the lack of SCTP deployment makes it a less attractive base for
development).

3. MRTCP: CONTENT-AWARE TCP
MRTCP extends TCP to become content-aware on a per-packet

basis. As discussed in Section 2, an MRTCP connection is subdi-
vided into phases of labeled and unlabeled packets. Packets with
the same label carry pieces of the same content, but multiple la-
bels may be used for larger content items. The labeling allows
MRTCP-enabled caching routers to identify resources and store re-
lated packets and, for the stateful case we discuss in this section, to
determine which resource a flow is carrying at a given point in time
so that they can respond to ACKs with the right data packets.

3.1 Content Identification: TCP Options
Labels are set by the sender and are carried as a TCP option

so that they are ignored by legacy TCP receivers. MRTCP uses the
MRTCP_DATA option to indicate to which content item a particular
data packet belongs. The option, as illustrated in Figure 3, contains
a content label (h_label) that identifies the resources, and a content
offset (h_offset). In this work we assume that the content label
is 8 bytes, although there are benefits in choosing a larger label,
weighing against the cost of using the scarce TCP option space, as
will be discussed later. The content offset is 4 bytes, and indicates
the relative offset of the TCP payload in bytes from beginning of
the content item. There is also a 4-bit space for flags (F), and a 4-bit
h_cansend field (CS) that is used in MRTCP acknowledgments.

For now it is sufficient to assume that the content label is any
arbitrary byte string identifying the content item, chosen such that
the collision of content labels for two separate objects is unlikely.
For example, the label could be a self-certifying identifier that binds
the label to the content in some way. We will discuss the security
aspects of content labeling later in this paper.

MRTCPTCP/IP headers

four-tuple label state
label sequence data

payload

Flow table
Packet cache

Incoming packet

Figure 4: Data structures in flow-aware MRTCP router.

The relative content offset allows different receivers to request
a particular segment of content, in spite of randomly initialized
TCP sequence numbers in their respective TCP connections. With
a four-byte content sequence number, if a resource is larger than
4GB, multiple labels have to be used. Also smaller resources may
use multiple labels, as will be discussed later.

Content is acknowledged using the MRTCP_ACK option. The
structure of the option is similar to MRTCP_DATA, but this op-
tion informs upstream routers about the next content sequence that
should be transmitted (h_nextseq), either by an intermediate cache,
or by the sender. MRTCP_ACK also makes use of the h_cansend

field, by which a downstream client or router can tell how many
packets the upstream nodes are allowed to send.

3.2 Receiver operation
For the stateful variant of MRTCP routers, we assume legacy

TCP receivers that we are not able to influence. What is important
from an MRTCP perspective is that they ignore unknown TCP op-
tions and just process the data contained in the packet3. The legacy
receivers carry out their normal operation, and may implement dif-
ferent flavors of TCP: they may acknowledge every or every other
packet, continuously update the receive window, possibly applying
window scaling, and use different TCP options, such as timestamps
or selective acknowledgments. However, the MRTCP sender may
choose to disable some of these options during the initial negoti-
ation, to save in the precious TCP option space also needed for
MRTCP to operate.

TCP receiver implementations may be sensitive to significant
packet reordering and may perform other (undocumented) sanity
checks before accepting data. Therefore, MRTCP is designed to
maintain ordered segment transmission as much as possible.

3.3 Router operation with legacy receivers
A flow-aware MRTCP router contains two tables, as shown in

Figure 4: the flow table and the packet cache. The flow table is used
to track TCP connections that carry labeled content in cache or to be
cached. Each connection is identified by the source/destination IP
address/port 4-tuple. The table stores the content label (mr_label)
that is currently transmitted across this TCP connection along with
the transmission progress of the resource, and some TCP state vari-
ables necessary for feeding packets into the connection:

• Sequence offset (mr_offset), The TCP sequence number cor-
responding to the first byte of the content item that is cur-

3According to measurements made few years ago, unknown TCP
options are correctly ignored by nearly all Internet hosts, and will
not hamper the normal TCP communication [19].

rently in transit. This is used to match sequence numbers
from incoming acknowledgments to content sequence num-
bers that are relative to the beginning of the content, for cache
matching.

• Next content sequence number (mr_nextseq) to be sent. This
field is updated based on the number of bytes in data seg-
ments received from the sender, and bytes acknowledged in
MRTCP_ACKs arriving from the receiver. If a router gets
a larger sequence number from either side than what it has
stored in mr_nextseq, it sets mr_nextseq to this sequence num-
ber. The router uses this parameter to choose the next cached
segment to be sent. After sending cached data in response
to an ACK, the router increases the value of this field by the
number of bytes sent, and reports the new value to upstream
nodes in the h_nextseq field of an MRTCP_ACK option.

• Last acknowledgment number (mr_lastack) received. Ac-
knowledgements are for the next content byte that is expected.
The acknowledgement number is used to distinguish dupli-
cate acknowledgments from those that advance the window.
The router does not send cached content on duplicate ac-
knowledgements, to avoid the possibility of (re)transmitting
duplicate packets to the network. Letting MRTCP routers
retransmit lost content from their cache is an interesting op-
timization, however, which we discuss more in Section 8.

• Congestion window (mr_cwnd) maintains the number of bytes
allowed to be in transit, as indicated by the difference of
mr_nextseq and mr_lastack. There is also a duplicate ACK
counter (mr_dupacks) for identifying three consecutive du-
plicate acknowledgments as an indication of congestion.

The packet cache stores named content items. The tuple of (con-

tent label, content offset) identifies the cached data, which corre-
sponds to the payload of the TCP segment (data, length) that con-
tains the content. Inside the cache, packets are organized accord-
ing to their labels so that all-or-nothing decisions can be taken for
caching and evicting packets.

Figure 5 outlines the operation of an MRTCP router. When such
a router receives a data packet with MRTCP_DATA TCP option,
it caches the payload data based on the content label (h_label) and
offset (h_offset) extracted from the packet header. If this is the first
packet with the given content label in a particular TCP flow, the
router stores the 4-tuple identifying the flow along with the current
content label in the flow table (figure 5(a)). The router also stores
the packet’s TCP sequence number to be able to determine the con-
tent offset in subsequent TCP segments and acknowledgments. The
router initializes the next content sequence field to the content se-
quence that would follow the current segment, and the last content
acknowledgment field to 0. If the content label changes, i.e., trans-
mission of a new content object starts, the content label for the flow
is set accordingly, and the sequence number and acknowledgment
fields are re-initialized. The router also updates the state informa-
tion in the flow table according to the TCP and MRTCP headers
(figure 5(b)).

When an acknowledgment from the client comes in, the router
checks if information about the connection is available in the flow
table (figure 5(c)). If there is no matching 4-tuple, the packet is
forwarded without any further action.

If the 4-tuple matches, but the incoming acknowledgment does
not include an MRTCP_ACK TCP option, the router performs the
following operations:

!"#$%&'(

!"#$%&'(

!"#$%&'(

)(

!"#$()*+",(

*+,%#-(

*+,%#-(

-,.%#/(

)(

"./+"(

"./+"(

"*+,"(

)(

*0.0+(

*0.0+(

-0*0,(

)(

1+20(

1+20(

1,20(

)(

.3(4#50+6(76&8&19:57'.;19(<#6(.(=#$(

>?(
@A?(

?.B"#.'C(*&D+(/B0+*(
"./+"(

#-*+0(*+,E(

F%057"+(G(=#$%&'(

A#10+10(&0+8(H"./+"3(

HI#10+10(#-*+0(G(JK(*&D+3(

!"#$%&"'()*#+,-(

!"#$!%

#&%'"()$*%+,-$./0,%1("(2+,3&%

4'%
56'%

'"7!0"89%-+:$%#7*$-%
!"#$!%

-$;<%

60,*$,*%+*$=%1!"#$!&%

>!0?@+8%

>!0?@+8%

!"#$%&'(

A%

!"#$()*+",(

-$;@0B%

-$;@0B%

-,.%#/(

A%

!"#$!%

!"#$!%

"*+,"(

A%

C@*DE!$%F%G0?@+8%

0*12,3(1*14,(

F% '*3*("*+,"(

0B-$*%

#/-,3(

8"*"%0B-$*%

-*"*$%

-*"*$%

-3*3,(

A%

1(0,*$,*%0B-$*H%-+:$&%
!"#$%&"'()*#+,-(

,$I*%

,$I*%

5,63(

A%

!"#$%&'(

!"#$%&'(

!"#$%&'(

)(

!"#$()*+",(

*+,%#-(

*+,%#-(

-,.%#/(

)(

"./+"(

"./+"(

"*+,"(

)(

*0.0+(

*0.0+(

-0*0,(

)(

1+20(

1+20(

1,20(

)(

34(5.36+0(7+07&+8."(9*.:;"+(3.*+4(

<5(
=>5(
.36?(

@%0A;"+(B(C#$%&'(

D(

<5(
=>5(

5.E"#.'F(*&G+(/E0+*(
"./+"(

*+,?(

"./+"(

3*45,0(4*46,(

'*0*("*+,"(#/-,0(

'.0.(#-*+0(

'.0.("./+"(#-*+0(

'.0.("./+"(#-*+0(

#-*+0(

"./+"(

#-*+0D*&G+(
<5(

=>5(
.36?(

A;'.0+(

!"#$%&"'()*#+,-(.$/0*/1,1()*#+,-(

23-'$&"'()*#+,-(

Figure 5: Overview of caching-related operations in a flow-
aware MRTCP router.

1. The router updates mr_lastack based on the acknowledgment
number in the packet. It calculates new congestion window
by procedures discussed in Section 3.5.

2. The router checks if the congestion window and the receive
window allow data to be transmitted (not shown in the fig-
ure). It determines the amount of outstanding data using
the information in mr_nextseq and mr_lastack, and compares
this to a locally maintained congestion window to determine

how many new packets can be transmitted (local variable
“can_send”). For these calculations the router can assume
an approximate fixed packet size, for example based on the
largest segment size observed in the flow. The router also
needs to check that it does not exceed the receiver’s adver-
tised window when it calculates the “can_send” value. When
determining the can_send value, the router should ensure that
it does not request transmission of packets that may have
been triggered by earlier acknowledgments at some of the
upstream routers. For example, if an earlier acknowledgment
had allowed transmission of two new packets, and mr_nextseq

is advanced just by one packet, the router should set the
can_send value to 0, because the second packet might be on
its way to the router.

3. If can_send is positive, the router uses mr_label and
mr_nextseq to determine if it has the next consecutive packet
in its packet cache. If can_send is 0, or the next packet
cannot be found in the cache, the router does not send any
cached data, and forwards the received acknowledgment to-
wards the TCP sender after adding an MRTCP_ACK op-
tion. This MRTCP_ACK option uses mr_label for the con-
tent label in the option, the (possibly updated) mr_nextseq

for the next sequence field, and the final value of can_send

for h_cansend.

4. If the next packet was found in the cache, and the value of
can_send allows sending it, the router builds a new packet,
using the information in the recent acknowledgment and in
the flow table to build the TCP and IP headers, with the
MRTCP_DATA option to assist the downstream routers. The
router uses the IP address and port of the original sender as
the source address. The router then decrements can_send by
one and updates mr_nextseq based on the highest sequence
number transmitted (which should be larger than the previ-
ous value of mr_nextseq). This procedure is then repeated
from step 3, until can_send reduces to 0, or the next packet
cannot be found in the cache.

When an MRTCP router receives an acknowledgment that was
previously processed by a downstream MRTCP router, and there-
fore has the MRTCP_ACK option, it follows the above procedure
with the following small exceptions: 1) before evaluating what data
to send, the router updates the mr_nextseq field based on the in-
formation from the arriving MRTCP_ACK option, if the incoming
value is larger than currently stored; and 2) instead of maintain-
ing an own congestion window, it uses the h_cansend parameter
from the MRTCP_ACK option together with the receive window
to determine how many (if any) further packets can be sent from
the local cache. This leads to conservative behavior: the local
transmission rate never exceeds a smaller congestion window on a
downstream router. When an incoming acknowledgement contains
MRTCP_ACK option, the router can only send data from the point
indicated by the h_nextseq field in the option, in other words, the
router that first inserted the MRTCP_ACK option has the control
over which packets are sent. Otherwise multiple stateful MRTCP
router might be sending same packets in parallel. If a router sends
data packets in response to a packet with MRTCP_ACK option, it
reduces the h_cansend field in the option by the number of packets
sent, and updates the h_nextseq field accordingly, before passing
the acknowledgment towards the TCP sender.

Building the TCP and IP headers based on an incoming acknowl-
edgment and the information in flow table is fairly straight-forward.
Choosing the value for receiver’s advertised window is a bit more

problematic because the router cannot know the buffer state at the
end host. Since flow state gets established by a labeled data packet,
the router remembers the last value seen from the sender and uses
it when creating data packets.

If an MRTCP_ACK option is present in a packet, a router knows
that there is another downstream router that is MRTCP-aware and
is tracking the flow state for the TCP connection. This allows for
the router to drop its own flow state, and send cached packets just
based on information in incoming acknowledgments. This requires
that a valid TCP sequence number is also carried with the acknowl-
edgments, so that the router is able to compose a valid TCP segment
that hits the expected receive window. We will discuss more about
stateless MRTCP router operation in Section 4.

3.4 Sender operation
An MRTCP sender initiates a TCP connection as normal, ex-

cept that it may refuse some TCP options (for example, TCP times-
tamps) during the SYN/ACK handshake to ensure enough option
space for the MRTCP extensions. The TCP maximum segment
size is also negotiated such that there is enough room for the con-
tent labels.

Within a TCP connection, the MRTCP sender operates as nor-
mal TCP until an application indicates the start of a labeled content
by assigning a label to the outgoing data. From this point, on the
sender includes MRTCP_DATA options in packets using the con-
tent label set by the application. Like MRTCP routers, an MRTCP
sender maintains a mapping between the content offset and the TCP
sequence number in the socket control block. The application can
change the content label within the same TCP connection at any
time (for example, when starting a new object in the case of per-
sistent HTTP connections or when the size exceeds 4GB), and it
can indicate the end of a content item, after which the sender stops
including the MRTCP_DATA options in the packets. Setting and
resetting the label is done via a local socket operation (see below).

When a sender receives an acknowledgment, it adjusts its trans-
mission window normally based on the information in the acknowl-
edgment. If there have been MRTCP-aware routers on the con-
nection path, the sender will receive MRTCP_ACK options with
the acknowledgments. In this case, instead of its own congestion
window, the sender will use the h_cansend field in determining
whether it can send data in response to the acknowledgment, and
the h_nextseq field in determining what packet to send next. If the
value of h_cansend is 0, it is likely that routers along the path have
sent packets in response to the acknowledgment, and the sender
does not send any data. The sending application is responsible for
ensuring that labelled (and potentially cachable) content is identical
on all (re)transmissions, whether sent or not.

When an MRTCP_ACK option arrives, the TCP sender checks
if the value of h_nextseq is larger than the current SND.NXT, and
in such case updates SND.NXT based on the incoming value. This
way the sender avoids re-sending data that has been transmitted
by one of the routers. The sender does not increase its congestion
window, because it cannot take a reliable sample of the network
conditions from the acknowledgment. Likewise, it is not possible
to take round-trip time samples. However, from the incoming ac-
knowledgment the server gets information about the progress of
the transport, and can move along its transmission window accord-
ingly.

The sender is responsible for sending content to fill in gaps if
some packets are not cached in routers, and for performing retrans-
missions to repair end-to-end packet losses. If an incoming ac-
knowledgment is a duplicate acknowledgment, the sender can trig-
ger fast retransmission and the following loss recovery normally. If

for each incoming acknowledgment (pkt):
if (pkt.ack == mr_lastack) {

mr_dupack++;

if (mr_dupack == 3)
mr_cwnd >> 1;

can_send = 0;
} else if (pkt.ack > mr_lastack) {

mr_cwnd++;
mr_dupack = 0;
mr_lastack = pkt.ack;

rack = pkt.ack - mr_offset;
can_send = cwnd - (mr_nextseq - rack);

}

Figure 6: Congestion control algorithm at MRTCP router.

the retransmissions are sent containing an MRTCP_DATA option,
the retransmitted data can be cached. Our Linux implementation
allows this, because data is packetized when it is received from
the socket, and the content label and offset information is attached
to at that point. If sender receives acknowledgment without the
MRTCP_ACK option, it reacts to it normally, using its local state,
e.g., for congestion window and next sequence number to be sent.

3.5 Flow and Congestion Control
An MRTCP router needs to manage its transmission rate to avoid

overloading the network, and to keep within the advertised receiver
window. Therefore, an MRTCP sender and stateful routers need to
manage congestion window similar to any normal TCP sender.

At an MRTCP router it is desirable to keep the amount of per-
flow state and per-packet processing to a minimum. Furthermore,
we do not want to maintain separate per-flow timers at the router.
Therefore, we apply a simplified form of congestion control that
roughly follows TCP’s behavior with minimal amount of process-
ing and state. The algorithm is shown in Figure 6.

In this algorithm, pkt.ack refers to the acknowledgment field of
the incoming acknowledgment, and the mr_* variables are as de-
scribed earlier. The calculated received acknowledgement, rack, in-
dicates the content sequence that was acknowledged, and can_send

tells how many packets can be sent. The congestion window
mr_cwnd is managed on per packet basis here, for the reasons of
efficiency. The first half of the algorithm processes duplicate ac-
knowledgments: in this case no new packets are sent by the router,
and in case of three consecutive dupacks, the congestion window is
halved. The second half of the algorithm processes an acknowledg-
ment for new data, and increases the congestion window similarly
to slow start. The algorithm then determines how many new pack-
ets can be sent. Commonly, depending on whether the receiver has
applied delayed acknowledgments or not, the router will send two
or three packets out for an incoming acknowledgment, if it can find
the data in its cache.

If an acknowledgment contains an MRTCP_ACK option, the
value of h_cansend field is also considered in addition to the above
algorithm, and the smaller of the two values is used. Downstream
routers can use MRTCP_ACK to indicate that they have used all
of their congestion window quota, and signal to the upstream hosts
that they should not create new packets in response to this acknowl-
edgment.

The above algorithm does not fully compare to the standard TCP
congestion control algorithm [2], and in fact seems more aggressive
since it only applies slow start, without any retransmission timers.

On the other hand, use of MRTCP caches has potential to signif-
icantly reduce the traffic from the upstream network path, so its
overall effect is more likely to reduce congestion from network than
to increase it.

As for flow control, an MRTCP router may misinterpret TCP’s
receiver window size field (rwin) in a TCP acknowledgment packet
because the two ends may have negotiated window scaling. Be-
cause window scaling negotiation happens during TCP connection
establishment handshake when content label is not yet announced,
it is hard for an MRTCP router to detect a scaled window, without
tracking all TCP SYN/ACK handshakes. As a rough approxima-
tion, the router checks if rwin > 0 and will send segments only
in this case. We assume that a receiver will not report “silly win-
dows” so that at least one segment transmission will be possible.
The router then sends packets as allow by can_send. All packets
sent by a router will be marked in the corresponding ACK trav-
eling upstream (and recorded at every MRTCP router) so that the
same packets will never be sent by another router (unless the ACK
is lost); the recovery will take place at the MRTCP sender that will
interpret the rwin field correctly.

3.6 Operational limitations
The design of MRTCP is guided by the idea of simplicity. A

router router does not need to implement complex algorithms and
the per-flow state that is maintained can be inferred from any pass-
ing data packet, so that route changes or reboots are not an issue,
and the router can safely discard flow state and is able to recreate it
later if needed.

MRTCP-enabled routers avoid sending out-of-order segments.
Therefore, if there is a packet missing in the cache, subsequent
data is not sent before the missing packet arrives from an upstream
router or from the original sender, potentially at the cost of in-
creased round-trip time. While this may impede performance, not
sending out-of-order segments avoids triggering duplicate ACKs
at the receiver and, possibly, consequent retransmissions and con-
gestion window updates at the sender. Moreover, the semantics of
the h_nextseq field in the MRTCP_ACK is also problematic with
out-of-order segments: An additional bit mask would be needed to
indicate which packets were sent.

4. STATELESS MRTCP
Per-flow state in MRTCP routers is required to allow them to

construct TCP packets representing cached content that fit properly
into the sequence number space of the end-to-end TCP connection,
and to manage an appropriate transmission rate. Because main-
taining per-flow state may be expensive for busier routers, we now
discuss how to use MRTCP in such way that a router does not need
to keep any per-flow state, i.e., there is no flow table in the router.
In this case, the corresponding state needs to be managed by one of
the downstream routers, or the TCP receiver, which then needs to
be modified to be able to support MRTCP. If the receiver supports
MRTCP, it can provide the necessary mapping information in each
ACK and the flow state in the routers is no longer needed. In the
following we focus on the case where the TCP receiver is modified
to support MRTCP.

We warn early on, that the stateless operation at routers is vul-
nerable to a wider range of security issues than when the routers
manage per-flow state. In particular, it becomes easier for outside
sources to pollute caches with arbitrary labels. Per-flow state at
routers provides some tools to protect against such attack. We will
return to this issue in Section 8.

MRTCP receivers use the same TCP options as does the stateful
variant of MRTCP for acknowledgment, and are compatible with

any upstream stateful MRTCP routers on the path to the sender. The
difference is, that the MRTCP_ACK option is added already at the
receiver, A stateless router that receives the MRTCP_ACK option
takes it as a request to send the next packet(s), that is indicated
by the h_nextseq field. The maximum number of packets that the
router can send is given in h_cansend field. Since the label and the
offset are explicitly specified by the MRTCP receiver, indexing into
the cache works straight away and no additional flow table mapping
is required by the MRTCP router.

In addition, for a stateless router to work without the flow ta-
ble, another option called TCP_STATE must be included by the
receiver. This option contains the TCP sequence number to be
included in the data packet for the first byte of the content off-
set sent by routers. The rest of the header fields for sending a
cached content can be built from the TCP/IP headers of the incom-
ing MRTCP_ACK packet: the source and destination IP addresses
and ports are just reversed from the ACK packet. The concerns
on selecting the receiver’s advertised window discussed in the pre-
vious section apply also here: the router needs to choose a value
that allows bidirectional traffic without overloading the receiving
buffers too often. Moreover, MRTCP receivers accept TCP seg-
ments that have the ACK bit cleared and the acknowledgment se-
quence number set to 0, so that the routers do not need to track the
sender-side acknowledgments either. In effect, the receiving TCP
performs the state tracking on behalf of the routers so that these can
be stateless.

Because stateless routers cannot carry out congestion control,
MRTCP receivers need to maintain an equivalent of the conges-
tion window (for example, using the algorithm in Section 3.5), and
communicate the maximum number of packets that can be sent to
the upstream routers. This information is sent in the h_cansend

field of the MRTCP_ACK option. Routers will process this field
similarly as in the stateful case, reducing it by the number of pack-
ets sent in response to the acknowledgment. Exploring different
receiver-based congestion control mechanisms (such as [11]) is for
further study.

The MRTCP router operation is mostly unchanged. The router
uses the h_cansend field to determine how many packets to send,
and the information from incoming packets and the TCP_STATE
option to be able to build and send a valid TCP segment. Before
forwarding the acknowledgment, the router reduces the h_cansend

value in the option by the number of packets it sent in response to
the ACK.

When a receiver supports MRTCP and manages the related con-
nection state, it is unnecessary for a stateful router to include the
state information in its flow table. Another possible optimization
could be for the routers to include a “sent_by_router” flag in the
MRTCP_DATA option when a packet is sent from the cache. The
receiver could use this information for its congestion control heuris-
tics, gaining the knowledge that the packet did not come from the
original source. This could also tell a receiver to ignore the adver-
tised window inside the packet but stick to the value last received
from the source instead. We will investigate these ideas further as
part of our future work.

5. CACHING CONSIDERATIONS
The basic operation of our MRTCP router is inspired by the

router design considerations for ICNs as in [5]: packets are received
and queued for forwarding, but data packets carrying a content la-
bel are at the same time indexed, stored, and kept accessible for
later until they are overwritten by future packets. The total buffer
may be larger than the share used for queuing. To simplify the or-
ganization of the cache, fixed sized memory cells can be used for

storing packets.
As our cachable packets carry labels for identification, indexing

them could use, e.g., a fixed set of bits from the label (or some hash
function) and the content sequence number and utilize a hierarchy
of fast and slower memory, as suggested in [5]. The indexing just
needs to ensure that consecutive packets can be easily identified; a
simple implementation might, e.g., allow storing up to 2k consecu-
tive packets by using the lower k bits of the sequence number.

For retrieving packets, if an MRTCP_ACK option is included,
the label and next sequence fields are used in the same fashion (plus
a full label comparison to check if it is the right packet). Otherwise,
a more expensive indirect lookup is required via the flow state to
obtain the label and the offset field. This indirection is needed only
at the first router with a matching flow that then adds the ACK label.
Since routers closer to the receivers usually see fewer flows and
packets, the identification may be left to those routers closer to the
edge, simplifying the task for more heavily loaded routers further
in the core; the latter could simply ignore unlabeled packets passing
through. We note that a network operator may deploy edge routers
that support MRTCP, and gain most of the benefit they would if
edge hosts were upgraded; this clearly eases deployment, since the
incentive to deploy is on the network operator that benefits from
caching.

As MRTCP routers cache opportunistically (unlike, e.g., [3]),
they do not require coordination with any upstream or downstream
routers, and may operate independently. This may also be the case
for routers in a content-centric networking environment [5], but
those expect suitably designed transport or application protocols.
In contrast, we have to consider the interaction with TCP endpoints.
For this reason, our protocol design tries to avoid out-of-order de-
livery of TCP segments and allows a router only to send consecu-
tive segments in response to an ACK. Any gap needs to be filled in
by an upstream router or the sender and causes extra delay. Conse-
quently, this should be reflected in the router’s caching strategy.

MRTCP routers manage content items, TCP flows, and cachable
packets carrying pieces of content items as part of flows. Flow
state is essential for responding to ACK packets but routers can
only maintain state about a finite number of flows. When a new
flow is detected and the flow table is full, we choose the flow with
a probability of pc for caching. Since pc is evaluated upon each
incoming packet, choosing pc sufficiently small will statistically
ensure that short flows don’t get cached easily. If a flow passes
this check, we select the least recently used flow as the one to be
replaced.

Packets are considered with respect to the content items to which
they belong, and independent of the individual flows referencing
them. The basic idea is to cache packets that belong together, and
to give precedence to packets for which content items already ex-
ist and are in active use. Ideally, all packets belonging to a re-
source should be stored and purged jointly when no longer re-
quested, effectively implementing a least-frequently-used (LFU) or
least-recently-used (LRU) policy on content items as a whole.

However, storing large content items as a whole may not be fea-
sible and contradicts the basic idea of fine-grained caching using
packets. Therefore, we suggest taking caching and purging deci-
sions jointly on series of, e.g., 2k, packets belonging to a resource.
The packets, or packet series, per content item can additionally be
managed using LRU for purging. In case a packet needs to be dis-
carded, the oldest ones are dropped. If the size of a series falls
below a certain threshold, the entire series is dropped.

This organization of per-item caching serves the two different
target uses of MRTCP without the router being consciously aware.
For the retrieval of cachable web objects, files, or on-demand stream-

ing, all packets of a content item will be accessed repeatedly as long
as the resource is popular. Hence, packets from all areas of the re-
source (possibly even all its packets) are likely to remain cached.
This also serves packet retransmissions well. For multicast-style
synchronous streaming, only a relatively small window of pack-
ets (say, a few seconds worth of content) of a resource would be
popular at any given time—those parts currently streamed. This
window of activity advances continuously with the content playout
point, while older packets will no longer see any requests, and will
be dropped due to the per-resource LRU mechanism.

6. APPLICATION EXAMPLES
MRTCP-aware applications use an extended variant of the Berke-

ley Sockets API. When establishing a TCP connection, labeling is
turned off by default. A sender can issue control commands—in
our implementation this is currently a send() system call with the
label contained in the buffer and a flag indicating that this call con-
tains a label, although the protocol is not tied to the details of the
API—to set or change a label, or to stop labeling.4 Such a marking
will is reflected in the local send buffer; all subsequent data will
use the corresponding label until the next control command. The
sender uses the same system calls for sending data as usual such as
write(), writev(), sendfile(), etc.

To ensure that packets are easily cachable and reusable, the sender
must ensure that content is always split at the same packet bound-
aries when fetched by different receivers, or using different off-
sets. To do this, the server application explicitly controls the initial
boundary for each label relative to the content offset and the sub-
sequent segment size to use both subject to MSS and MTU size
limitations).

Content labels are removed by the receiving implementation be-
fore data is passed to the application, so that the application does
not notice if it has received labeled data. Even if a receiver is
MRTCP-aware, all handling is done inside the kernel.

The implementation of applications using these primitives is
straightforward. We will discuss this in two examples: a web server
and a live streaming server.

6.1 Web server
A web server opens a TCP socket and configures MRTCP sup-

port. It then begins accepting regular HTTP requests. For each
request, the server takes the request URI, the client-side prefer-
ences (e.g., based upon the Accept and the User-Agent headers),
and any cookies included in the request into account, and resolves
the request to a version of a resource. It computes a label for the
resource in a way that repeated requests for the same version of the
resource will yield the same label. This may be achieved by using
a cryptographic hash over the data comprising the content to be re-
turned (and thus could be pre-computed). Finally, it initializes the
content sequence number to the offset where retrieval shall start;
typically this is zero, but different offsets can be requested in an
HTTP Range header.

The server write()s the HTTP response header, including the
CRLF separating it from the HTTP body, to the TCP socket. The
server then sets the content label and the content sequence num-
ber, and writes the body of the HTTP response. After the end of
the HTTP body, the server issues another control command to clear
the label again. Finally, the server returns to processing the next
request.

This simple procedure allows HTTP connections to be kept alive
for retrieval multiple objects and is compatible with pipelining and
4We use send() to be able to re-use the same code base with ns-3.

the use of multiple parallel TCP connections. It works naturally for
(adaptive) HTTP streaming of video content, as the latter is built
on top of basic HTTP primitives; in this case, content encoded at
different bit rates would simply use different labels.

The operations for retrieving chunks of data in peer-to-peer sys-
tems follow a similar scheme, except that they use different means
for content identification, and may use bidirectional data transmis-
sion.

6.2 Synchronous (multicast-style) streaming
Synchronous media streaming, as often used for IPTV, differs

from the above scenarios in one important respect: a receiver re-
questing a stream at time t0 will receive the program feed start-
ing from what was “aired” at that very moment, while another re-
ceiver joining at t1 > t0 will not receive the content sent prior to t1
(with the possibly exception of some video I-frames from the past,
needed for seamless codec operation). This effectively means that
a request for a synchronous media stream can be seen as a request
for a content item at a given initial offset, and that this offset is
implied by the time at which the request is issued.

An MRTCP-capable IPTV server would treat each program chan-
nel as a content item of potentially infinite size with changing la-
bels at different offsets. The sender only needs to maintain the
presently used label and the count of bytes sent using this label,
i.e., the content sequence number. Such a server resolves a request
for a program channel as described for HTTP above, but also takes
into account the current playback time when the request was re-
ceived and translates this into the current label and offset for the
stream content item (or the next/previous suitable entry point for a
receiver). After sending the response header in the respective pro-
tocol (assume HTTP again, for example) it then simply configures
the label and offset and then sends the response data as before. This
works for plain as well as for adaptive HTTP streaming.

7. INITIAL EXPERIMENTATION
In this section, we briefly report on our proof-of-concept imple-

mentation. We use it to perform some a small set of real-world
experiments to test interoperability with existing client implemen-
tations, and to assess the fundamental feasibility of our approach.
(We discuss some of the deployment issues along with further per-
spectives in the next section.)

We have implemented the sender-side MRTCP algorithm in the
Linux kernel5. The implementation requires a modest amount of
modifications in sender-side TCP algorithms, to add the
MRTCP_DATA options in packets, using a special flag for send
call to allow applications pass the content label to the kernel, and
processing of the incoming acknowledgments with MRTCP_ACK
option.

To assess the suitability of MRTCP in the real world, we de-
veloped a prototype of an MRTCP implementation for a network
node as a bump-in-the-wire, mrtcp-bridge, that performs L2 for-
warding of frames between two Ethernet interfaces. The purpose
is primarily to validate that an MRTCP router implementation can
be done using the specification above and to demonstrate interop-
erability with unmodified receivers; we do not aim for performance
measurements at this point.

mrtcp-bridge is written in C (some 1,400 LoC), runs on Linux,
and uses packet sockets to capture and forward packets as well as
to send cached replies. It implements the stateful version of an

5We use Linux kernel version 2.6.26, which is the most recent ver-
sion supported by the Network Simulation Cradle packaged with
ns-3.9.

MRTCP router and as such tracks resources, flows, and packets,
with a configurable number of entries for each. Hash tables are
used for efficient matching. The data structures allow for the im-
plementation of diverse purging policies, of which we presently use
LRU for resources, packets, and flows.

As a server, we chose a lightweight open source web server,
lighttpd

6 version 1.4.18 (for which the H.264 HTTP streaming ex-
tension7 is readily available). For our initial experimentation, we
assume static and browser-independent resources and compute use
as a label the first 8 bytes of an MD5 hash over the request URI.
As described in section 6, we set the label after writing the HTTP
headers and reset it when the message body is finished. The chunk-
based write queue of lighttpd makes it easy to add identifiable la-
bels at the right positions into the data stream and initiate the cor-
responding control commands accordingly. Overall, less than 30
lines of code needed to be changed or added.

For simple interoperability experiments we connect the server
through a separate machine running mrtcp-bridge to our lab net-
work and issue web requests from different web browsers and wget

to retrieve copies of the authors’ home pages and documents stored
on the server.

The simple experiments confirm that the use of TCP options does
not impact interoperability across the operating systems we tried:
MacOS Leopard and Snow Leopard, different versions of Debian
and Ubuntu Linux, and Microsoft Windows XP and Windows 7 as
well for mobile phones Android (HTC Nexus One), iPhone OS,
Linux (Nokia N900), and Symbian S60 (Nokia E71).

We also find that, in all cases, the mrtcp-bridge can feed pack-
ets from its cache into different TCP connections, to the same and
different hosts. As expected given the light load, the resources are
completely stored on the mrtcp-bridge so that only the SYN/ACK,
request/response header, and the FIN/ACK handshakes take place
end-to-end—and the first labeled packet always comes from the
server as this is needed to prime the router.

8. DISCUSSION

8.1 Content label namespace
MRTCP identifies content items using labels and uses a content

sequence number for addressing segment-sized pieces of an item.
Moreover, we assume that the label name space is managed by each
server and therefore can include the server IP address and port num-
ber in the identification process (thus effectively enlarging the name
space). This has the advantage that the label name space becomes
implicitly hierarchically managed as the server process becomes
responsible for its own space and can actively avoid clashes. The
disadvantage is that the content becomes tied to a single server,
even if multiple server could serve the same content independently,
use coherent labeling, and ensure similar packetization boundaries.

Our present experimental implementation uses 8 bytes labels as
a tradeoff between limited TCP option space and the probability of
label collisions. As long as we use per-server labels, the available
space should suffice to guarantee statistical uniqueness when using
hash functions to compute the labels (and a server data base could
recognize any clashes offline) or to allow enumerating all versions
of the stored content items.

When wanting to share the identifiers across servers to better
exploit redundancy, the label space will need to grow. Since coor-
dination can no longer be reasonably achieved, using, e.g., 160-bit
SHA-1 hashes (that still fit into TCP options) would be advisable.
6http://www.lighttpd.net/
7http://h264.code-shop.com/trac/wiki

Such a label would be self-certifying. MRTCP-aware receivers can
validate such self-certifying labeled content items. In this case, the
items should just be reasonably short—similar to chunks in CCN or
HTTP streaming—so that validation can take place before the con-
tent gets passed to the application and processed. However, legacy
receivers cannot perform such validations and would suffer from
clashes, making them vulnerable to accidental clashes or intention-
ally mislabeled content. This calls for explicit end-to-end content
protection at the application layer (irrespective of the underlying
transport) to detect false content—which should be pursued in an
information-centric Internet anyway.

8.2 Cache pollution and DoS attacks
MRTCP routers do not track individual connections for caching

packets but only look at labeled packets instead. This allows an
attacker to send large numbers of labeled segments towards a peer
to pollute caches en route with false data packets. The label and
sequence increments to use could easily be learned by accessing
the sender and retrieving the same resource. One protection against
this in routers, besides the ingress filtering at the ISP level and RPF
checks in the router, is accepting packets only from an active con-
nection between a receiver and a sender that is in the flow table.
A new flow could be activated only after a grace period in which
ACKs were sent to the sender and no RST packets were seen in re-
sponse. This would essentially rely on the protection mechanisms
against third-party traffic injection inherent to TCP.

If injecting false packets does not succeed, an adversary could
still try to launch a denial of service attack against a router by send-
ing volumes of arbitrarily labeled packets some of which the router
would store. The mechanism of prioritizing accepting incoming
packets from existing over new flows helps here (and the attacker
might have to send data at a high rate to achieve the desired effect).
And even if this de-facto disturbs one router along a path, there are
others available along the path to a server who can jump in.

Finally, adversaries might fake ACK packets to trigger data packet
transmission to unsuspecting receivers. The flow state in state-
ful MRTCP routers will prevent this (as ACKs do not create flow
state). Even though stateless MRTCP routers might reply if there is
a matching packet, this would not support amplification attacks as
the number of generated packets per ACK is limited.

8.3 Middleboxes
MRTCP uses TCP options for its signaling, relying on its options

being passed end-to-end. Even though TCP server implementa-
tions ignore unknown options, connections may fail upon setup or
mid-connection if TCP options included cause middleboxes to drop
packets. Earlier experiments [19] hinted that TCP connection es-
tablishment only fails rarely (0.2%) because of unknown TCP op-
tions and also that the use of options in the middle of a connection
only leads to some 3% of failures. Recent findings [8] showed that
out of the top 10,000 web sides listed by Alexa only some 0.15%
did not respond to unknown TCP options in the SYN packets, again
likely due to the SYN packets being dropped by middleboxes. The
authors are not aware of more recent detailed studies on the be-
havior of middleboxes with respect to TCP options, but the above
results appear promising to achieve at least backward-compatible
operation.

While the translation of IP addresses and port numbers in NAT
devices is not an issue for MRTCP, some of those were also found
to modify TCP sequence numbers [10, 19]. Since MRTCP only
communicates the content sequence numbers in its options and im-
plies the mapping from the TCP sequence number, the mappings
will remain intact and MRTCP operate correctly across such mid-

dleboxes.
MRTCP expects the segment boundaries to remain unchanged

when the packets traverse the network. As TCP does not pro-
vide any guarantees to that end, some middleboxes re-align packet
boundaries as they see fit. It remains for further study, what the
impact of unknown TCP options (that differ at least in the content
sequence) on the behavior of such middleboxes would be. Mak-
ing packets small or larger or gluing them together would destroy
the proper mapping between the content sequence number and the
TCP sequence number; moreover, a shift in offsets would make
cache matches unlikely.

Finally, any application layer gateway (e.g., a proxy or cache)
that terminates a TCP connection will appear as the remote end-
point to the sender.

9. OTHER RELATED WORK
MRTCP is designed to enable pervasive content caching, to sup-

port packet reuse across transport connections. Such reuse is in-
tended to be useful for both synchronous and time-shifted con-
tent replication. The motivation behind MRTCP came from the
data-oriented and content-centric networking architectures, such as
DONA [16], PSIRP [15, 23], and CCN [13], and the thought that a
useful, general purpose, content caching and distribution infrastruc-
ture could be designed to fit within the current Internet architecture.

To some extent, MRTCP could be viewed a probabilistic variant
of redundancy elimination in which repeated transmission of the
same data across (costly links inside) the network is avoided using
by fingerprinting the contents of packets or data streams, caching
contents, and replacing repeated content by small tokens that can
be removed to restore the original data downstream of a bottleneck
[20]. Many proposals have been made to this end. For exam-
ple, snoop [6] suggested packet-level retransmissions to cope with
losses on wireless links within the same TCP connection context,
and numerous commercial “WAN optimizer” products implement
these ideas. This architecture is, however, restricted to closely co-
operating caches, e.g., at both ends of a capacity-constrained link.
More recent proposal take redundancy elimination at the packet
level further by extending the concept to network-wide operation
within and/or across domains [3, 4] domains. These approaches,
however, require coordination across nodes, updated routing proto-
cols and broad support in routers.

Other systems focus on redundancy elimination specifically for
synchronous content distribution. CacheCast [21] reduces the traf-
fic volume for datagram traffic across a path segment by avoiding
repeated transmission of the same payload across a link (within a
short time window) and sending summary packets instead to coop-
erating routers. This takes a first towards packet content re-use
across different unicast flows for simultaneous multi-destination
delivery but it does not support reliable transport protocols, works
best only for direct links, and targets short time windows only, lim-
iting its applicability to caching.

Several proposals have been made to add multicast support to
TCP. These include single connection emulation across a multicast
group [22], and to use of multicast to augment unicast TCP [18, 14].
As with Scalable Application layer Multicast (SAM) [7], and the
numerous peer-to-peer content delivery protocols, these typically
rely on overlay nodes that are explicitly addressed when setting up
connections, and hence require wholesale protocol upgrades to gain
benefit.

Pull-patching [12] realizes a unicast-multicast combination at the
application layer, combining multicast delivery of media streams
with HTTP requests for patching the multicast stream where needed,
e.g. for startup synchronization and for repair.

In addition, the ideas in MRTCP have been influenced by the
work done in the mid-late 1990s on reliable multicast transport pro-
tocols (e.g., in the context of the IRTF reliable multicast research
group8 and later in the IETF reliable multicast transport working
group9). Some proposals such Pretty Good Multicast (PGM) [9]
allow for router support for reliable data delivery within a multi-
cast transport group. All TCP enhancements and reliable multicast-
related approaches share that they only support synchronous multi-
destination delivery and require a common group to be explicitly
set up. Moreover, most of them require wide-area multicast sup-
port for efficient operation as well as client side modifications.

10. CONCLUSIONS
Content-centric applications generate the majority of the traffic

in the Internet today. They are supported by a mixture of ad-hoc and
application-specific engineering solutions, but there is no unified
and application-neutral framework for pervasive content caching
and dissemination.

We have presented MRTCP, a TCP enhancement that can provide
flow-independent in-network content caching in both synchronous
pseudo-multicast and time-shifted modes, while maintaining sender
visibility into downloads. By adding content labels to data packets,
and making server side TCP modifications to maintain data fram-
ing, we allow MRTCP routers to effectively cache data. To work
with legacy (unmodified) TCP receivers, routers maintain a per-
flow mapping from TCP state to content identifiers. A stateless
variant of MRTCP is also presented, for scenarios where clients
can be upgraded.

Future work will consider in-network loss repair, rather than end-
to-end retransmission. This can improve performance, but must
be implemented in a manner that provides feedback to the sender
about loss, for quality of experience monitoring. The trade-off be-
tween in-network state and ability to perform sophisticated con-
gestion control between middlebox and receiver will also be con-
sidered further.

MRTCP provides a poor man’s approach to content-centric net-
working. While we do not provide all the benefits of a clean-slate
approach, by operating within the existing architecture, we gain
incremental and mixed deployment, and the ability to effectively
cache named content within the network in an application-neutral,
location-transparent, manner.

Acknowledgement
The authors would like to thank Pekka Nikander for discussions
and useful suggestions during the early part of this work. The re-
search in this paper has been partly funded by the Cisco University
Research Program and by the EC FP7 PURSUIT project under con-
tract ICT-2010-257217.

11. REFERENCES
[1] S. Akhshabi, A. C. Begen, and C. Dovrolis. An Experimental

Evaluation of Rate Adaptation Algorithms in Adaptive
Streaming over HTTP. In Proc. of ACM MM Systems, 2011.

[2] M. Allman, V. Paxson, and E. Blanton. TCP Congestion
Control. RFC 5681, September 2009.

[3] A. Anand et al. Packet caches on routers: the implications of
universal redundant traffic elimination. In Proc. SIGCOMM,
2008.

8http://rmrg.east.isi.edu/
9http://datatracker.ietf.org/wg/rmt/charter/

[4] A. Anand, V. Sekar, and A. Akella. SmartRE: an architecture
for coordinated network-wide redundancy elimination. In
Proc. SIGCOMM.

[5] S. Arianfar, P. Nikander, and J. Ott. On Content-Centric
Router Design and Implications. In Proc. of the ACM CoNext

ReArch workshop, 2010.
[6] H. Balakrishan, S. Seshan, E. Amir, and R. H. Katz.

Improving TCP/IP Performance over Wireless Networks. In
Proc. Mobicom, November 1995.

[7] S. Banerjee, B. Bhattacharjee, and C. Kommareddy. Scalable
application layer multicast. In Proc. SIGCOMM, Pittsburgh,
PA, USA, August 2002.

[8] Andrea Bittau, Michael Hamburg, Mark Handley, David
Mazieres, and Dan Boneh. The case for ubiquitous
transport-level encryption. In Proceedings of USENIX

Security, 2010.
[9] T. Speakman et al. PGM Reliable Transport Protocol

Specification. Experimental RFC3208, 2001.
[10] S. Gupta and P. Francis. Characterization and Measurement

of TCP Traversal through NATs and Firewalls. In ACM IMC,
2005.

[11] Hung-Yun Hsieh, Kyu-Han Kim, Yujie Zhu, and Raghupathy
Sivakumar. A receiver-centric transport protocol for mobile
hosts with heterogeneous wireless interfaces. In Proceedings

of ACM MOBICOM ’03, San Diego, CA, USA, September
2003.

[12] E. Jacobson, C. Griwodz, and P. Halvorsen. Pull-Patching: A
Combination of Multicast and Adaptive Segmented HTTP
Streaming. In ACM Multimedia, 2010.

[13] V. Jacobson et al. Networking Named Content. In Proc.

CoNEXT, December 2009.
[14] K. Jeacle et al. Hybrid Reliable Multicast with TCP-XM. In

Proc. CoNEXT, 2005.
[15] P. Jokela et al. LIPSIN: Line Speed Publish/Subscribe

Inter-Networking. In Proc. SIGCOMM, 2009.
[16] T. Koponen et al. A Data-Oriented (and Beyond) Network

Architecture. In Proc. SIGCOMM, Kyoto, Japan, August
2007.

[17] C. Labovitz et al. Internet inter-domain traffic. In Proc.

SIGCOMM, 2010.
[18] S. Liang and D. Cheriton. TCP-SMO: Extending TCP to

Support Medium-Scale Multicast Applications. In Proc. of

IEEE INFOCOM, 2002.
[19] A. Medina, M. Allman, and S. Floyd. Measuring the

Evolution of Transport Protocols in the Internet. ACM

SIGCOMM CCR, 35(2):37–52, April 2005.
[20] N. T. Spring and D. Wetherall. A protocol-independent

technique for eliminating redundant network traffic. In Proc.

SIGCOMM, 2000.
[21] P. Srebrny, T. Plagemann, V. Goebel, and A. Mauthe.

CacheCast: Eliminating Redundant Link Traffic for Single
Source Multiple Destination Transfers. In Proc. Intl. Conf.

Distributed Computing Systems, 2010.
[22] R. Talpade and M. H. Ammar. Single Connection Emulation:

An Architecture for Providing a Realible Multicast Transport
Service. In Proc. of the IEEE Internation Conference on

Distributed Computing Systems, 1995.
[23] D. Trossen, M. Särelä, and K. Sollins. Arguments for an

information-centric internetworking architecture. SIGCOMM

CCR, 40(2):26–33, 2010.
[24] H. Xie, Y. R. Yang, A. Krishnamurthy, Y. Liu, and

A. Silberschatz. P4P: Provider portal for applications. In
Proc. SIGCOMM, Seattle, WA, USA, August 2008.

