The Design of a Digital Amphitheater *

Allison Mankin, Ladan Gharai, Ron Riley, Maryann Perez Maher, Jaroslav Flidr
USC / Information Sciences Institute
Arlington VA

October 10, 2000

Abstract

In this paper, we present the design of what we have
termed a Digital Amphitheater (DA). The DA is a
network teleconferencing architecture and applica-
tion that aims to assemble together remote partici-
pants into a virtual lecture hall or amphitheater. One
of the main uses that we envision for the DA is that
of hosting a technical conference with hundreds of
remote participants. (In fact we plan to use the DA
to host a program meeting with roughly 200 remote
attendees.) Although the design of the DA makes
use of existing multicast conferencing technologies,
a new active service architecture was developed to
meet the challenge of working with hundreds of si-
multaneous video streams. Low rate video streams
are coalesced in real-time so that each participant
receives only a few video streams, instead of a sepa-
rate stream from each participant. The active service
approach includes that DA users dynamically locate
instances of video merge service. The basic design
and architecture of the DA are presented, along with
measurements pertaining to the thesis that the DA
will allows commodity PCs to participate in hundred
sender videoconferences.

*This paper is based upon work supported by the
Defense Advanced Research Projects Agency Information
Technology Office. Any opinions, findings and conclu-
sions or recommendations expressed in this material are
those of the authors and do not necessarily reflect the
views of DARPA. The authors may be contacted at
{mankin,maher,rriley,ladan,jflidr@east.isi.edu}.

1 Motivation

The concept of a Digital Amphitheater arose out of
a desire to support large virtual conference meetings,
in order to use the network to bring an effect of mass
telepresence. In a virtual meeting the goal is to have
every participant be a visible attendee, who can be
seen speaking, bored or even sleeping in his/her chair.
Therefore the default is for all participants to be per-
manent video senders.

This may seem quixotic as it implies a very large
scale many-to- many multicast, and the state for this
in routers has been increasingly viewed as onerous
[6]. However, with the DA, the hundreds of indi-
vidual video sources are unicast. A smaller num-
ber of nodes perform the multicasting, after a novel
merge of the audience video images into rows. Multi-
cast announce-listen is used to enable the individual
senders to dynamically find the fewer multicasters.
None of this is incompatible with networks that might
have only source-specific multicast IP [5] if PIM-SSM
[9] becomes the dominant Internet multicast routing
protocol. The DA design is for a few-to-many multi-
cast session.

This may seem to be like relay or server-based
(H.323-like) conferencing, but the similarity is mis-
leading. The DA approach is not primarily motivated
by the routing issues. The active services are pro-
vided to enable all commodity PCs to participate in
hundreds of participant conferences. This motivation
is distinct from those of router-based multicast assists
(GRA) or other active router approaches as well as
from unicast relays, all of which exist to compensate



for limitations or absence of multicast routing.

As designed, the amphitheater video merge ser-
vices (AVMSs) in the DA will dynamically load-
balance DA users among themselves. They can pro-
vide some network performance benefits in doing so,
but their primary role is to alleviate the end-system
processing.

Video teleconferencing among small groups of peo-
ple (2-5) is prevalent, but large structured meet-
ings, such as research or professional conferences,
have never been tried and are considered infeasible.
Among the reasons why large scale conferencing, on
the order of hundreds of participants, is hard, the
most basic problem is overcoming end-system limi-
tations. The packet processing needed, both at the
network and application layer, to handle hundreds of
individual video streams overwhelms most PC end-
systems today, in bus access, interrupt processing,
packet handling and demultiplexing, decoding, and
display processing.

There’s also the issue of physical screen space. How
do we effectively display so many video images? Prac-
tical user applications for displaying and managing a
large remote audience do not yet exist. The common
problem of network bandwidth limitations which im-
pede or disrupt the quality of communication is not
the primary one addressed by the DA design; the ma-
jority of the hundreds of senders are in the audience
and little resolution is needed for their images: think
of the experience of a large conference; one recognizes
many people and their reactions by a small amount
of visual data per person.

Many of the current teleconferencing tools, espe-
cially the research-oriented ones such as the popu-
lar UCL MBONE tools[12] have been designed with
scaling properties in mind. Nevertheless their scaling
approaches don’t fully address the challenges men-
tioned above. We are taking an approach of devel-
oping an active network service[1] that relieves end-
systems from the system overhead of a hundred or
several hundreds of video flows.

2 The DA User Application

The DA user application is an integrated teleconfer-
encing tool. We have designed a JAVA-based graph-
ical user interface (GUI) and a C-language multime-
dia library. The application is tailored to users with
little experience in teleconferencing, attempting to
give the illusion of looking across the auditorium at
the other participants in the conference. The most
novel feature of the display is the arraying of rows
of attendees into “seats”. The speaker or a panel
of speakers is automatically positioned at the top
(or in a central location if the user is for instance
using multiple displays). The “audience” section is
a scrollable panel that can essentially accommodate
any number of attendees. Figure 1 shows an example
DA user’s display. The DA user application will be
user-configurable, so that the arrangement of areas
can be specified to suit.

Creating the seated audience requires image pro-
cessing both at send and merge time. At send time,
the DA application does the needed processing to in-
sert a uniform background and the back of an au-
ditorium chair into the video stream behind its own
sending user’s image. An image processing algorithm
has been designed to find the outline of the person
in each frame, even as he/she moves. It is feasible
because the audience member video uses a low frame
rate (on the order of five fps), based on the intuition
that one cannot watch the people across an audito-
rium extremely closely, so the video flow needs to be
fresh enough not to annoy [11] the viewers but need
not be updated at a full-motion rate.

The amphitheater video merge service (AVMS)
takes the incoming images and tiles them into a long
single row, which the user display will show as multi-
ple, staggered and scaled rows. It is important to un-
derstand that the video merging here is application-
specific (not a general transcoder or the like).

The AVMS is responsible not only for creating
merged audience rows but for compiling an iden-
tity matrix for the rows. It identifies the arriv-
ing video uniquely by its source and RTP Synchro-
nization Source (SSRC) Identifier [10]. It packages
audience-identifying information from the sources’
RTCP messages (user name mandatorily, along with



Digital Amphitheater — [Example Conference|

Ladan Gharai Jarda Flidr Speaker - Harrison Maryann Maher  Termry Gibbons
T W W W

Figure 1: The Digital Amphitheatre Display



other information that may be collected for a par-
ticular DA meeting, such as project affiliation) in a
data format that the DA receiver side can use to al-
low meeting enhancement; unlike in current physical
meeting, in a DA meeting, an attendee can use a
mouse click to learn who a fellow attendee is.

The AVMS also uses the unique per-source identity
to maintain the integrity of rows, leaving an empty
seat if someone “leaves”. If we allowed shifting to fill
the empty spaces, there would be a disturbing musi-
cal chairs effect. Our “seating” algorithm strives to
visually smooth over such changes; new arrivals are at
first placed in a trailing “reserved section”; members
returning within some time window take back their
original seat; eventually open seats are refilled with
newer arrivals. The seating function is hierarchical:
the receiving DA (or a recursively merging second
level of AVMS) preserves the order of audience row
sections from multiple AVMS’s.

Figure 1 shows three types of video images:
speaker, first-row, and audience, decreasing in res-
olution and frame rate. The audience level in the
preliminary code versions uses 80x64 images at five
frames per second[8] and uses a non-traditional codec,
YUVCR. We chose this codec to minimize AVMS la-
tency and support the merge algorithm and because
it has no set image sizes. More detail is provided in
in Section 6.

A feature of the DA user application is the user’s
choice of seating preference. Before starting video
transmission, the user requests first row seating if
desired (to be seen better, though, rather than to see
better) and also indicates if he/she is capable of send-
ing speaker-quality video. Receivers have markers in
their audience directory that show who is willing to
be in the front row, and once one receiver has chosen
a sender, that sender is signaled to transmit front row
quality rather than just audience quality, and he or
she ”changes seats” for the choosing receiver.

Along with the GUI, the DA user application in-
cludes audio and video codecs, RTP/RTCP engines,
and the client side of the DA merge service protocol
(AVMCEP, see Section 4). Where appropriate, we are
reusing rather than re-implementing, by borrowing
internal parts of the UCL RAT, VIC, and SDR [12],
with thanks.

3 The DA Architecture

The Digital Amphitheater requires coordinating and
making tractable up to several hundred individual
multimedia sources. The keys to a scalable solution
are the amphitheater service discovery and merge
functions. The section entitled Merge Service de-
scribes and shows a figure of the spatial compositing
of the individual images into larger, aligned frames
by the merge function. We have already described
how resultant frames are processed by the receiving
user application to create the amphitheater layout.

The video merging is performed by AVMS daemons
conceived along the lines of the “active service” model
of Amir and McCanne, where an active service is a
service inside the network implemented at the appli-
cation layer and specific to an application. A proto-
col among the AS daemons will allow them to form a
hierarchy so that they can use several stages of pro-
cessing and avoid overload of flows on any one node.

Figure 2 illustrates the distribution of video data
from four DA session participants. Participants Al
and A2 belong to the same site network A, while par-
ticipants B and C are in distinct other networks. The
traffic from A1 and A2 is merged first within their site
at AVMS-A and then again in an AVMS discovered
by AVMS-A outside their site, also discovered by par-
ticipants B and C, which do not have local AVMSs.

The DA makes use of the Session Description and
Session Announcement protocols (SDP and SAP)[2]
[3]. We define a new SDP attribute to flag that a
session is one requiring AVMS. A DA user is a nor-
mal SAP listener that filters for DA sessions only,
ignoring others. Once the user decides to join the
DA session, the application begins an autodiscovery
process described in the next section.

4 The Video Merge Service

Protocol

The amphitheater video merge service protocol
(AVMSP) is derived from the active service control
protocol (ASCP) [1]. ASCP protocols are based on
the announce-listen communication model that is the
core of the light-weight session architecture. The ba-



Backbone

Al A2

Figure 2: Merge Hierarchy

sic operation is as follows: A participant/client multi-
casts requests on a well-known AVMSP group with a
limited scope (an inter-AVMS protocol handles reach-
ing a distant AVMS, if that is needed). A listen-
ing AVM acts on these requests by creating a merge
service instantiation and acknowledging the request
with a reply. The reply is periodically announced on
the AVMSP group so that other potential clients can
automatically learn about the merge service instan-
tiation. (Clients will also periodically refresh their
desire for the service.)

AVMSs communicate with each other on their own
multicast group. The inter-AVMS protocol allows
them to autoconfigure into a merge hierachy. The
AVMSs need to run a positioning algorithm which
aims to position the least loaded servers at the top of
the hierarchy.

5 Background Processing
In order to engender the feeling of an audience in

an auditorium, the local background of video sup-
plied by audience participants is removed and re-

80x64

80x64 20464

80x64

Figure 3: Merging three individual 80x64 frames, into
a single 240x64 frame.

placed with a generic conference chair. The generic
and static background creates the illusion of a mass
audience as well as compressing the audience video
aggregate to some degree. This section describes the
processing and algorithms currently used in the DA
for this background replacement. We plan experi-
ments with audiences and audience evaluation and
expect this processing to evolve.

The modest spatial and temporal resolution of the
video used for audience members will allow us to per-
form the background image processing on precoded
data and include the task in the rest of those of the
DA user application (that is, at the sender’s work-
station). The data is collected, preprocessed, and
processed in standard 24-bit RGB format. It is con-
verted to the DA’s current YUVCR format just be-
fore transmitting.

There are a number of video preprocessing steps
to facilitate segmenting the audience members from
their background. First, the raw video is collected at
the native resolution of the audience member’s cam-
era. Then, the odd rows of the image are removed to
avoid interlace artifacts inherent in some video for-
mats. The image is then downsampled horizontally
by a factor of two to preserve the aspect ratio of the
image, reduce the amount of data to be processed,
and to improve signal to noise levels of the image
intensities.

A feature of the Digital Amphitheater user applica-
tion is that it enforces a brief training period in which



the audience member must turn the camera on but
stay out of the frame. During this training, the back-
ground reference frame is collected. A heuristic is
used to detect if the audience member is not provid-
ing empty background for this training and the DA
user application will not add the user to the audience
without it.

The background reference frame is preprocessed as
described above. There is not a large constraint on
users other than the training, but we have yet to de-
termine how well the DA will be able to compensate
if there are either significant changes in lighting or
moves of the camera after training.

The preprocessed video is displayed in a local mir-
ror function to allow the audience member to check
his or her position.

Frames collected after the background frame will
undergo an additional preprocessing step to adjust
for minor variations in camera exposure and lighting.
An optimum scale is found between the current and
background frame. Since we assume that the current
frame will typically include the audience member, a
simple least-squares error fit between the two frames
would not produce the desired scale. Instead, we seek
the statistical mode rather than the mean of the ra-
tion of the current frame to the background frame.

For each frame, we calculate the histogram of the
ratio of pixels from the current frame to the back-
ground frame quantized into 256 bins over the range
0.5 to 2.0. Pixel pairs with ratios outside this range
are not included in the histogram. We also exclude
pixels with R, G, or B values of 255 as they may be
saturated.

Once the optimum scale has been found, pixels
from the current frame are compared to the scaled
pixels from the background frame. A binary mask is
created of the pixel pairs that are within a threshold
distance. This mask will be filtered with morphologi-
cal operators to remove isolated clusters of pixels [7].
The filtered mask will define the segmentation of the
audience member from the background. The pixels in
the current frame identified as background will be re-
placed with an image of an auditorium chair common
to all audience members of the DA. Another simple
algorithm will provide a base initial size of the person.

The processed image is further downsampled to the

Name | CPU RAM | OS

chai 400 Mhz PPRO | 64M | FBSD 2.2
sport | 200 Mhz PPRO | 96M | FBSD 2.2
hafez | 550 Mhz PIII 256M | Linux 2.2

Table 1: Measured PC Hosts

resolution required for displaying audience members
on the DA, encoded, and sent to the amphitheater
video merge server (possibly collocated).

6 The Amphitheater Video

Merge Service

The amphitheater video merge service (AVMS) is
responsible for merging multiple individual video
streams into a single video stream. To create a
merged video frame, individual video frames are tiled
next to each other. The meta-data in the merged
frame is adjusted to reflect the correct position of the
video data within the new frame. Figure 3 displays
an example of how three video frames are merged.

In our current implementation of the video merge
service, we have used a non-traditional video codec,
YUVCR, designed to exploit high bandwidth testbed
links, that does some compression based on con-
ditional replenishment [4]. In YUVCR, the video
data is represented in planar YUV format, where the
chrominance and luma values are represented sepa-
rately. Compared with an RGB representation, this
can provide for some reduction in data; for exam-
ple with a 4:2:0 color subsampling, the video data is
reduced by half compared with RGB.

The conditional replenishment also results in rate
reduction. It operates in the following manner: Each
video frame is divided into blocks of 16x16. Before
transmission, each block is compared with the cor-
responding block from the previous frame and only
if the content has changed the block is transmit-
ted. The conditional replenishment algorithm also
includes an aging process which will cause unchang-
ing blocks to be transferred after a certain period.

Since video frames are transmitted in block units
and only changed blocks are transmitted, when pack-



80 64/0/1| Y U|V]Y | Y U|vY | 23YUV___:
RTP  yuver X Y 384 bytes _ XY
header header o

Figure 4: The RTP payload for a 80x64 video frame with two new blocks, (0,1) and (2,3).

etizing a video frame, each block must be preceded
by its coordinates in the video frame. Figure 4 dis-
plays the RTP header and payload for a video frame
of which blocks (0,1) and (2,3) are being transmit-
ted. The figure displays the standard RTP header
followed by the payload header, which for YUVCR
contains the height and width of the video frame
(80x64). Next, are the coordinates of the (0,1) block,
followed by its data and then coordinates of the next
updated block and its data. Each block is 384 bytes
long and an RTP packet must always carry an inte-
gral number of blocks.

YUVCR lends itself well to our notion of merg-
ing with its block based structure, because blocks
carry their coordinates with them and this reduces
our merge algorithm to the manipulation of these co-
ordinates. Because an AVMS is also likely to be a
commodity PC, the processing it has to do must be
of as low overhead as possible.

The operation of the actual merge algorithm is as
follows: First the arriving video streams are sorted
out, and partially reconstructed, while a boolean ma-
trix keeps track of new incoming blocks. As soon as
a frame is completed (the RTP M-bit is received), it
is placed in the output data.

After a set time interval, (the output frame rate of
the merge services is a parameter and later will be
agreed upon among the AVMSs), an RTP stream is
generated from the output buffers. This video stream
represents the merged video frame, therefore all of the
x and y coordinates in this stream are adjusted so as
to reflect the correct position of the given block in
the merged video frame. And of course, only updated
blocks since the last transmission, are transmitted.

The separation of the incoming and outgoing video
streams via the input and output buffers, allows for
independent frame rates between the incoming video
streams and the outgoing video stream. Therefore,

the AVMS can adjust the outgoing frame rate ac-
cording to current bandwidth availability.

7 Measurements

We conducted measurements pertaining to the cen-
tral premise, that a commodity desktop PC can sus-
tain the images of a large meeting better if most of
the video flows are merged into a high-bandwidth but
single flow. An experiment with a hundred individ-
ual senders daunted our ability to coordinate senders
(still lacking the carrot of a new application for them
to try at this point), so we conducted the measure-
ments with all the senders we could muster, max-
imally thirteen. We contrasted performance mea-
surements of all sending their individual multicasts
with measurements of a flow from a prototype AVMS,
merging the individuals. The systems used in the
measurement are listed in Table 1.

A separate PC collected full trace data using tcp-
dump, so that the throughput, frame rate and so on
of merged and unmerged flows could be measured.

For measuring the internal behavior (of the three
systems in Table 1), we extended the vmstat tool as it
is found in FreeBSD (calling it xvmstat) so that it in-
cluded interrupt and load average statistics, and sim-
ply collected this at one-second intervals. The video
senders, whether they were multicasting individual
flows or unicasting to the AVMS, were a large range
of Pentium PCs running a YUVCR source with the
80x64, five frames per second, audience parameter
as their only possible output. The software sourcing
YUVCR source was not the DA user application yet,
but was a UCL vic [12] we modified to send and re-
ceive YUVCR. The DA user application’s Java GUI
needs more optimization than we were able to achieve
for the timing of the NOSSDAV workshop.



Flow Kbps PPS FPS
ToMerge 788.98 | 134.17 | 102.16
FromMerge | 1011.14 | 117.32 1.59
(13 senders)
Individuals 670.43 | 113.82 | 86.56
(12 senders)

Table 2: Video Applications’ Network Traffic

System Ctxsw/s | NIC Intr/s
chai (AVMS) 116.84 481.31
sport (rcv merge) 91.67 312.59
sport (rcv indivs) 159.91 312.13
hafez (rcv merge) 965.24 360.82
hafez (rcv indivs) | 1263.87 355.49

Table 3: Video Processing Performance

The receiver for the performance measurements
was also a modified vic that would display the merged
or unmerged YUVCR. Receiver statistics were taken
with the receiver windows selected, not in thumbnail
form (the individual flow windows are bigger than
thumbnails). The measurement runs were a mini-
mum of 300 seconds long.

The results of the measurements are shown in Ta-
bles 2 and 3:

The results are clear that the use of merged flows
for the DA is likely to improve the end-user’s system
performance in at least one of the metrics described
above, the context switch processing. (There is also
a surprising, but consistent difference in the mag-
nitude of the measured context switches per second
between FreeBSD and Linux, which we have not yet
explained). The fact that measurement senders failed
during our individual runs makes it hard to say that
the merge service has no impact on interrupts per
second for the receiver; the individual runs all unfor-
tunately had one less sender than the merged runs.
More measurements are planned, of course.

CPU load average is another metric that is obvi-
ously of interest for assessing the DA design, but the
measurements of CPU shown by the tools for these
runs were very low for both merged and unmerged
experiments (ranging from 0.02 to 0.15, with consid-

erable variation). CPU load experiments with much
larger numbers of senders will be a future study for
the DA project.

An exception with respect to load average was
when our initial naive rendering of the YUV planar
data into RGB caused the 200 Mhz measured system
to thrash. Those measurement results have guided
a revised receiver design for both the test tool (the
modified vic) and the DA user application (Section
8).

8 Conclusions and Future

Work

As expected, we found some processor performance
benefits in having a merged video stream instead of
individual streams, despite similar packet per second
rates of the two flows. In future work, we will un-
derstand the difference between Linux and FreeBSD
results better. We will investigate the impact of the
larger frames on quality of video under loss. We ex-
pect to be able to show more benefit when at higher
CPU loads, but this result will require larger tests.

As we work towards characterizing the space of the
benefits from a merged video stream for very large
conferences, we also continue to develop the DA ap-
plication software. Our future work will include mak-
ing a general release of the DA source and seeking a
hundred volunteers to participate in testing it. We
expect that the video flows for a full conference could
exceed 10 Mbps, so we expect that good sites for users
will be on US and international educational testbeds.

The measurements are important to efficient im-
plementation of the application. In early runs, the
large merged video stream caused a 200 Mhz PC
to reach full CPU utilization, with large numbers of
page faults registering in the xvmstat output.

We speculate that this was the result of conver-
sion between image formats when the merged video
was displayed. The YUVCR codec used in the DA
encodes 16x16 blocks of pixels in YUV 4:2:0 planar
with conditional replenishment.

In order to be displayed, the YUVCR encoded
video must be decoded into a sequence of frames. The



frames are typically created in YUV planar format
and converted to RGB for display. Unfortunately,
as the size of the video frame increased, as in merg-
ing a large number of video streams, converting from
YUV planar to RGB apparently caused significant
page swapping.

In order to eliminate this thrashing due to con-
verting the large merged frame from YUV planar to
RGB, we plan to generate an RGB format image di-
rectly from the 16x16 blocks of the YUVCR stream.
Although the input blocks are still in planar format,
their small size will lead to far fewer page faults.

References

[1] E. Amir, S. McCanne, and R. Katz. An Active
Service Framework and its Application to Real-
time Multimedia Transcoding. In Proceedings of
ACM SIGCOMM, Vancouver, 1998.

[2] M. Handley and V. Jacobson. SDP: Session De-
scription Protocol. RFC 2327, IETF, April 1998.

[3] M. Handley, C. Perkins, and E. Wheland.
SAP: Session Announcement Protocol. Work in
Progress NA, IETF, March 2000.

[4] Mark Handley. YUVCR Codec. personal corre-
spondence, AT&T Center for Internet Research
at ICSI.

[5] H. Holbrook and B. Cain. Source-Specific Multi-
cast for IP. Work in Progress NA, IETF, March
2000.

[6] H. Holbrook and D. Cheriton. EXPRESS Multi-
cast. In Proceedings of ACM SIGCOMM, Cam-
bridge, MA, 1999.

[7] Anil K. Jain. Video Compression. Prentice Hall,
1989.

[8] A.S. Patrick. The Human Factors of MBONE
Videoconferences: Recommendations for Im-
proving Sessions and Software. Technical re-
port, Communications Research Center, Ot-
tawa, 1998.

[9] H. Sandick and B. Cain. PIM-SM Rules for
Source-Specific Multicast. Work in Progress NA,
IETF, March 2000.

[10] H. Schulzrinne, S. Casner, R. Frederick, and
V. Jacobson. RTP: A Transport Protocol for
Real-Time Applications. RFC 1889, IETF, Jan
1996.

[11] J.C. Tang and E.A. Isaacs. Why Do Users Like
Video? Computer Supported Cooperative Work
(CSCW), 1:163-193, 1992.

[12] http://www-mice.cs.ucl.ac.uk/multimedia.
Freely available vic, sdr, and other tools,
University College London, 2000.



