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ABSTRACT

The standards that build the Internet are written in natu-
ral language as opposed to more structured and formal meth-
ods. Whilst natural language can be useful, its use causes
ambiguous and imprecise standards to be written, leading to
errors in implementations. In this work, we propose the in-
troduction of usable formal methods into the definition of
state machines in standards documents. This formality en-
ables automated parsing, which can be used to generate par-
tial implementations to aid in reducing bugs and errors.

1. INTRODUCTION

The protocol standards that define the Internet are writ-
ten in English prose. This use of natural language is benefi-
cial because it allows for wide participation in the standards
process, but it also has some drawbacks. It can be imprecise
and ambiguous, and this can lead to mistakes and security
vulnerabilities in implementations. The use of structured
specification languages and formal methods has been pro-
posed to reduce these ambiguities and improve the quality
of specifications.

Writing full RFCs in a formal language is not feasible.
They are lengthy documents and are written to be read
by humans, for whom it is easier to read natural language.
However, there are certain aspects of RFCs which lend them-
selves to formalisation more than others. Some previous
work in the field that investigates this type of formalisation.
McQuistin et al. [7] propose a type system for the descrip-
tion of the format, parsing and serialisation of protocols,
which allows for flexibility in the syntax used for describing
packets, whilst simultaneously providing sufficient formal-
ity to allow for automated parsing. Further to this work,
McQuistin et al. [8] investigate code generation for parsing
network packets using the type system developed in [7], and
find that a formal syntax similar to that already present in
RFCs can be parsed to generate code, showing that a bal-
ance between formal methods and usability is possible.

In this paper, we consider how state machines are repre-
sented in network protocol standards documents, and whether
it is possible to represent these in a format which is gener-
alisable to most network protocols. Specifically, we present
a formal syntax which is similar to the method used in the
TCP RFC [1] for textually defining state machines, a struc-
tured intermediate representation of state machines which is
machine readable and allows for flexibility in the syntax used
by authors, as well as a method to generate partial code im-
plementations, which provide a base structure of protocols
for the later development of full implementations.

Most of the work that deals with ambiguity in RFCs ad-

dresses other areas of them, such as packet parsing [7], con-
straints and field descriptions [18]. The work that addresses
state machine descriptions in RFCs [9] does so from a nat-
ural language processing perspective. In this work we pro-
pose addressing issues that arise from ambiguities present
in RFCs through the parsing of state machines, achieved by
defining a structured but flexible formal definition of these.

We structure the remainder of this paper as follows. In
Section 2 we discuss the representations used in current
RFCs for the description of state machines, and the type of
state machines which should be used for the representation
of network protocols. In Section 3 we discuss inconsistencies
in these descriptions, and the issues this poses to automated
parsing of RFCs. In Section 4 we motivate and propose a
standardised intermediate representation of state machines
for network protocols. In Section 5 we discuss a syntax de-
signed to parse state machines from RFCs. In Section 6 we
discuss the benefits of code generation enabled by the inter-
mediate representation of state machines. In Section 7 we
critically evaluate the intermediate representation, syntax
and code generation presented in the project. In Section 8
we discuss the related work in this field. Finally, in Section
9 we conclude the work.

2. REPRESENTING STATE MACHINES

As we have discussed previously, many RFCs contain some
form of state machine description. However, the representa-
tion of these state machines varies across RFCs, and there is
no formal structure by which they are written. In this sec-
tion we discuss the styles currently used for the description
of state machines, as well as the specific types of state ma-
chines that should be used to represent network protocols.

State Machines in RFCs

Several RFCs contain ASCII art diagrams, where states
and transitions are displayed visually. An example of this
style of representation is the state machine provided for a
TLS 1.3 client, shown in Figure 1.

Other RFCs contain textual descriptions of state machines,
where the states and transitions are discussed in plain text.
These textual descriptions can be varied in the level of detail
they provide. An example of a high-level textual description
of a state machine is the basic operation description found
in the POP3 RFC, shown in Figure 2.

As well as this, some RFCs provide a combination of both
these methods. TCP [1] contains both an ASCII diagram
as a summary overview of its state machine, as well as a
detailed event processing section which describes state tran-
sitions textually. Finally, some protocols, such as DCCP [5],
contain pseudocode descriptions of their state machines, as
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Figure 1: ASCII diagram representing TLS 1.3 client, RFC
8446 [14]

A POP3 session progresses through a number of states during its
lifetime. Once the TCP connection has been opened and the POP3
server has sent the greeting, the session enters the AUTHORIZATION
state. In this state, the client must identify itself to the POP3
server. Once the client has successfully done this, the server
acquires resources associated with the client's maildrop, and the
session enters the TRANSACTION state. In this state, the client
requests actions on the part of the POP3 server. When the client has
issued the QUIT command, the session enters the UPDATE state. 1In
this state, the POP3 server releases any resources acquired during
the TRANSACTION state and says goodbye. The TCP connection is then
closed.

Figure 2: POP3 state machine overview, RFC 1939 [15]

shown in Figure 3.

Whilst there are several methods used to describe state
machines, we argue that the differences between them are
mainly syntactical. The representations refer to the same
concept, implying that it is possible to express the underly-
ing state machines using any of these methods interchange-
ably. However, different methods have varying degrees of
expressiveness. For example, ASCII diagrams are often not
powerful enough to describe a full state machine. The TCP
RFC [1] notes that the state machine diagram provided is a
summary, and should not be taken as its full specification.
Similarly, the state machines provided in the TLS 1.3 RFC
[14] are described as summaries. Whilst no explicit transi-
tions are described throughout the document, the function-
ality of the protocol is also expressed textually, and can be
used in combination with the diagram provided to extract a
fuller representation of its state machines.

Textual descriptions also vary in terms of expressiveness.
Some are more structured, thorough and explicit than oth-
ers. For example, TCP provides a list of possible states and
events that take place throughout the protocol followed by
detailed event processing descriptions defining the effect of
events on each possible state in the machine. POP3, on the
other hand, does not list all possible states or events, and
is not as explicit or systematic in describing the handling

Step 1: Check header basics
/* This step checks for malformed packets. Packets that fail
these checks are ignored -- they do not receive Resets in
response */
If the packet is shorter than 12 bytes, drop packet and return
If P.type is not understood, drop packet and return
If P.Data Offset is smaller than the given packet type's
fixed header length or larger than the packet's length,
drop packet and return
If P.type is not Data, Ack, or DataAck and P.X == (the packet
has short sequence numbers), drop packet and return
If the header checksum is incorrect, drop packet and return
If P.CsCov is too large for the packet size, drop packet and
return

Step 2: Check ports and process TIMEWAIT state

/* Flow ID is <src addr, src port, dst addr, dst port> 4-tuple */

Look up flow ID in table and get corresponding socket

If no socket, or S.state == TIMEWAIT,
/* The following Reset's Sequence and Acknowledgement Numbers

are taken from the input packet; see Section 8.3.1. */

Generate Reset(No Connection) unless P.type == Reset
Drop packet and return

Figure 3: Exctract of DCCP pseudocode provided in RFC
4340 [5]

of events in the state machine. Further to this, pseudocode
descriptions can be more expressive and explicit than some
textual descriptions, since they provide an outline for im-
plementations and therefore inherently require more detail.
This increased explicitness, however, comes with the cost of
reduced human readability.

As we have argued in this section, the differences across
these methods are mainly syntactical and relating to levels of
detail provided, but the state machines being described are
conceptually identical. Because of this, we hypothesise that
it is possible to develop a generalisable method for defining
state machines for network protocols which is sufficiently
expressive and flexible to encapsulate the different methods
observed into one singular method. This common descrip-
tion method is beneficial since it allows for predictability in
how state machines are defined in RFCs, in turn allowing
for automated parsing of these.

Type of state machines for network protocols

A finite state machine is defined as a triple M = (Q, 2, F),
where @ is a finite set of states, ¥ is a finite set of inputs
to the state machine, and F is a function F' : QXX — @,
representing transitions between states triggered by inputs
[3].

A Mealy machine is a type of finite state machine which
accounts for outputs as well as inputs. Therefore, a Mealy
machine can be defined as M = (Q, %, 0, F,G), where Q,%
and F represent states, inputs and transitions as previously
defined, © represents the set of outputs, the output alpha-
bet, and G is the output function G : QXX — ©O. This
means that the outputs of the state machine are defined
both by the current state and the input to the state ma-
chine [3].

A deterministic state machine is a state machine for which,
given the same starting state and series of inputs, the same
sequence of state transitions will occur.

Given these definitions, we argue that network protocols

should be represented as deterministic Mealy machines. Firstly,

in terms of determinism, it is important that network pro-



tocols are predictable. Whilst in networking certain events
can be unpredictable, such as the loss of a packet or connec-
tion, the handling of the occurrence of these events should be
predictable and repeatable to ensure the safety and robust-
ness of protocols. This predictability allows for testing of
the functionality of protocols, since outputs and transitions
should be expected.

As an example to illustrate these concepts, we will show
how the POP3 state machine can be represented as a deter-
ministic Mealy machine. The state machine for POP3 can
be defined as M = (Q, %, 0, F, G), where:

@, the finite set of states, is the set:

{ DISCONNECTED, AUTHORIZATION, TRANSAC-
TION, UPDATE, USER-ISSUED, USER-ACCEPTED,
AWAIT-PASS-RESPONSE }

3., the finite set of inputs, which in the case of network
protocols are known as events, is the set:

{ DELE [msg], LIST [msg], NOOP, PASS [pass]|, QUIT,
RSET, RETR [msg], STAT, USER [name], GREETING,
OK, ERR }

©, the set of outputs, in the case of POP3 is the set of
possible responses from the server upon the occurrence of
an input:

{ POSITIVE-RESPONSE, NEGATIVE-RESPONSE,
NUM-MESSAGES, SIZE-OF-MAILDROP,
SCAN-LISTING, SEND-MESSAGE, DELETE-MESSAGE

}

3. INCONSISTENCIES AND BARRIERS TO
AUTOMATION

As has been discussed in Section 1, since most RFCs are
written in natural language there is an issue with ambiguity
and inconsistency in these documents. Specifically, in terms
of state machines, there is no widely agreed-upon method for
defining them in the standards community. As was shown
in Section 2, there are several different methods used across
RFCs to define state machines. Even in methods that are
similar, subtle differences can be observed. While two RFCs
may use the same method to describe their state machines,
their formats often differ slightly. For example, in the case
of ASCII diagrams, some protocols use boxes and capitals to
denote states, while others omit boxes and simply contain
text. These slight syntactical differences can be observed
in Figure 4, with differences in how states, user calls and
receiving and sending messages are represented.

F denotes the function which, given the cartesian product
of possible states and inputs, outputs another set of states,
representing the state the machine transitions to given a
starting state and an input. For simplicity, the following is
a subset of the output of the function, and therefore is not
the complete cartesian product of the set of states ad inputs
listed previously:

QXY =

{(USER-ACCEPTED, PASS), (AUTHORIZATION,
QUIT), (TRANSACTION, QUIT), (TRANSACTION,
DELE), ... , (USER-ISSUED, OK)}

Q=

{AWAIT-PASS-RESPONSE, DISCONNECTED,
UPDATE, TRANSACTION, ... , USER-ACCEPTED}

Where the order of these two sets represents the mapping of
transitions. For example, if the state machine receives the
input PASS whilst in the USER-ACCEPTED state, it will
transition to the AWAIT-PASS-RESPONSE state.
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Figure 4: Comparison of different ASCII diagram formats
across RFCs [5] [1] [14]

These slight differences are also present in RFCs that de-
scribe state machines textually. There are syntactical differ-
ences, such as the specific language used to denote a tran-
sition. For a state machine entering a “closed” state, for
example, different representations of this transition can be
“the state machine enters the closed state”, “after entering
the closed state” or “the state changes to closed”, among oth-
ers. Whilst the syntax varies slightly, conceptually these sen-
tences are the identical. As well as these syntactical differ-
ences, there are also structural differences present in textual
descriptions. A comparison of the sections for textual state
machine descriptions of TCP, QUIC and DCCP is shown in
Figure 5.

TCP provides a list of states and events that take place in
the state machine, and in its event processing section lists
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Figure 5: State machine definition sections across different
RFCs
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each event, followed by the states and a description of how
this event affects each state. QUIC describes two state ma-
chines for the sending and receiving of streams, and is not
as organised as TCP. Where TCP is structured and system-
atic, the QUIC RFC [4] narrates the functionality of the
state machine in unstructured text. DCCP also contains a
textual description of transitions and handling of events in
different states which is not as systematically structured as
TCP’s event processing section, but also presents a struc-
tured pseudocode description of the state machine.

Whilst we have identified several different methodologies
for defining state machines across RFCs, we argue that these
methodologies conceptually define the same object. This can
advantageous since it allows the incorporation of automated
parsing of state machines, which in turn can provide ben-
efits such as the generation of partial implementations and
automated testing to prevent errors in the standards writing
and implementation process. To achieve this, as illustrated
in Figure 6, we propose the definition of a structured syn-
tax for the definition of state machines in RFCs. However,
a known issue in the incorporation of formal methods into
the standards development process is that there are sev-
eral barriers to their adoption. Other formal languages have
been defined for different aspects of RFCs in order to avoid
the issues caused by natural language, and these have not
seen wide adoption by the community [18]. These barriers
to adoption can be mitigated by designing formal methods
which are sufficiently expressive whilst maintaining sufficient
flexibility to be easily incorporated into authors’ workflows
[7]. To address this, in addition to the syntax proposed, we
suggest the design of a standardised intermediate represen-
tation of state machines for network protocols. This allows
for flexibility in the syntax used to describe state machines
and the methods used for parsing to avoid overly constrain-
ing authors, whilst maintaining formality in the definition
of these.

text code
parsing generation Protocd]
RFC Intermediate state implementation

machine representation outline

Figure 6: Process of compiling partial code implementations
from RFCs

4. INTERMEDIATE REPRESENTATION OF
STATE MACHINES

‘We have discussed previously the barriers to adoption that
have been experienced in the standards writing community

relating to the adoption of formal methods. To minimise
adoption barriers, any formal methods introduced should
be flexible and familiar, and this can be achieved by design-
ing these formal methods to be as similar to those currently
used as possible. While in this work we propose the develop-
ment of a grammar that can be used to define state machines
in text, we also emphasise the importance of a conceptual
intermediate representation of state machines. This enables
the use and development of other syntaxes which can be
based on and parsed into this intermediate representation,
removing the requirement to learn and use any specific syn-
tax in order to benefit from the advantages of automated
parsing. This makes the intermediate representation more
accessible and flexible, addressing in this way the issues to
adoption discussed. As well as this, a standardised inter-
mediate representation allows for the output of a canonical
representation of state machines. This means that as well as
providing an abstract representation, the use of this abstract
representation allows for the output of a specific format for
network protocol state machines, which is machine readable
and a standardised version of the state machine for a spe-
cific protocol. This allows for a point of comparison of state
machines since they share the same format.

Existing representations of state machines

There is a variety of methods currently used for the repre-
sentation of state machines. One method used to represent
state machines is the use of formal description languages,
such as Lucy [12] [10]. However, since Lucy can be used for
the description of different types of state machines, it has a
high level of abstraction. The language allows for the use
of many features, such as symbols, guards, different types
of states, actions and actors. While this is useful for a de-
scription that encapsulates different types of state machines,
we argue that this level of abstraction is not necessary for
state machines in the specific context of the description of
network protocols. Other similar languages are Robot [11]
and Frame [17], which have the same issue of complexity
unnecessary for the context of this project.

Another method used for the description of state ma-
chines is via UML diagrams. Whilst UML diagrams are
relatively simple to develop and read due to providing a
visual overview of protocols, this comes with certain draw-
backs. Firstly, diagrammatic descriptions of state machines
are limited in the level of complexity they can express. As
discussed in Section 2, several RFCs use ASCII diagrams
for the representation of state machines, but these are often
accompanied by some form of textual functionality descrip-
tion, stating that the diagrams are summaries and should
not be interpreted as a full implementation. Secondly, UML
diagrams can be used for a broad range of diagrams, and
are not restricted to the description of state machines. This
provides excessive flexibility for authors, which complicates
parsing due to the allowance for slight representation dif-
ferences. Further to this, the documentation for UML [2]
is lengthy, and therefore complicates the learning process
for authors. Whilst it is not necessarily required for an
author to read the documentation to be able to develop a
UML diagram, when arguing for formal methods it should
be encouraged that these diagrams are represented in the
same style, which is described through documentation. This
learning curve once again raises concerns with the adoption
of this methodology. Finally, the diagrammatic nature of



UML complicates machine readability of these representa-
tions, which is one of the goals of defining a standardised
intermediate representation.

Because of these issues with other representations, we pro-
pose a representation that is sufficiently domain-specific to
minimise the introduction of theoretical concepts. By only
introducing concepts that are strictly necessary for the spe-
cific context of networking protocols, we constrain the de-
scription space enough to complicate the introduction of er-
rors in how state machines are defined. As well as this,
the representation must be sufficiently flexible to be easily
incorporated into the current workflow of authors.

Design

State machines have a wide range of uses, and are not
only used to describe network protocols. They can be used
to describe a wide variety of systems, ranging from turnstiles
and household appliances [6] to network protocols such as
TCP. As we have briefly discussed in this section, limiting
the context of state machine descriptions to that of network
protocols can simplify the writing process for authors. To
achieve this, we have designed a structured representation of
state machines which limits its components to those in the
specific context of network protocols. As we have discussed,
RFCs use a range of methods to represent state machines,
but their differences are mainly syntactical. We identify the
following common conceptual components. A state machine
to represent network protocols should be formed of three
main elements: states, events and transitions.

e States represent the current status of the protocol, such
as whether a connection is open, listening or closed.

e Events are the input to a state machine, representing
an occurrence in the network protocol, such as the ar-
rival of a packet or a timer going off.

e Transitions represent the movements between states
caused by events. For example, when a server receives
a specific packet which indicates it should close the
connection, it may move from a state that indicates
the connection is open to one indicating the connec-
tion is closed. Not all events cause a state transition,
but transitions require the occurrence of an event.

These core elements of state machines can be observed in
the ASCII diagram shown in Figure 7:

Using this representation, a state machine is formed of a
set of states, a set of events and a set of transitions. States
are represented by their name as is described in text. Events
are also represented by their names, and they are categorised
into types, which we identify to be API calls, incoming mes-
sages, outgoing messages and timers. Transitions are rep-
resented by references to relevant states and events. They
contain a reference to the state the machine moves from, the
state the machine moves to, and the event that causes this
transition.

These elements are structured together to describe the
state machine as follows. A state machine can be described
as the set of all its states, which each are mapped to a set
of transitions for which they are the state from.

In practice, this intermediate representation is developed
using an object oriented approach, with classes representing

77777777777 +
---------- active ||
open |
snd Request||
v
+ e +
| | REQUEST |
+ SR +
| [rcv Request rcv Response
| |snd Response snd Ack
v v

U + ORI +
| RESPOND | | PARTOPEN
P

}‘rcv Ack/DataAzk‘

P
‘r(v packet| |

\ T — . \
oo > OPEN  |<-------ooo- +
S

4

server active close

snd CloseReq or rcv CloseReq
snd Close

.
|| active close
|
|
|
|

|
|
|
|
- + | [ +
| CLOSEREQ |<--------- P >| CLOSING
|
|
|
|
|

D + i +

| rew Close [Few Reset] |
| [snd Reset
"

v
| o —
rcv Close
snd Reset || O — +
PO L |

| TIMEWAIT |
States. 2MSL timer expires

e Transitions

Figure 7: Annotated DCCP state machine diagram,
adapted from [5]

the state machine, states, events and transitions. The state
machine class contains a dictionary of state objects mapped
to their relevant transitions, and these transitions contain
references to the objects of the state from, state to, and
event that causes the transition.

This representation facilitates a canonical output, in this
case a JSON file where a state machine is formed of a dic-
tionary of state names mapped to their relevant transitions,
a dictionary of events mapped to their relevant types and a
list of transitions, as shown in Listing 1.

Listing 1: JSON output

"state_machine" : {

"states" {"state_name" : [("

state_name", "state_to", "event"])
k]

"events"
ll} ,

"transitions"
state_to",

}

{"event_name" "event_type

[("state_from", "
"event")]

5. SYNTAX FOR PARSING RFCS

Whilst we have discussed the importance of the design of
an intermediate representation of state machines for network
protocols, it is necessary to develop a methodology to parse
the text found in RFCs in order to obtain this intermediate
representation. This can be achieved using different meth-
ods, which is the benefit of having a standard intermediate
representation, as it allows flexibility in terms of parsing.
We have chosen to develop a structured textual syntax for
this, identifying common patterns found in the current tex-
tual definitions of state machines across RFCs. We base our
syntax on these definitions in order to maintain familiarity



to ease adoption.

TCP based structure

The structure used in the event processing section of the
TCP RFC [1] is particularly systematic, which simplifies the
design of a grammar to parse it. However, it maintains suf-
ficient expressiveness to remain easily readable by humans.
This syntax is explicit, as it lists and categorises all possible
events and states that occur throughout the state machine.
This can be useful for checking that all states defined are
described in some way, and that no new unaccounted for
states are defined throughout the event processing section.
As well as this, the approach taken to describe event pro-
cessing is systematic and predictable, following a pattern of
listing events, each followed by all the possible states and
these followed by a description of the processing that should
take place. This processing describes the functionality of
the protocol, but also defines the transitions of the state
machine. This structure is illustrated in Figure 8.

Event Description

/ Event name

State From

Non-transition sentence

Transition sentence

State Machine Description

\ containing n events

Event Description (0)

Event Description (n)

Figure 8: Structure of textual state machine description

The definition of transition and non-transition sentences
allows for the identification of transitions that occur, whilst
allowing for explanatory text to be included in the defini-
tion. This provides the flexibility required to allow for a
syntax to be usable and readable. As long as events, the
states from and the states to are clearly listed in our syntax,
explanatory text can be present to describe the functional-
ity of the protocol which may not be strictly necessary for
the extraction of a state machine but is helpful for read-
ers who are implementing the protocol. Furthermore, this
structure follows the logical flow of the functionality of state
machines. Events cause transitions, which is the order in
which this syntax describes the state machine. This allows
for the flow of the syntax to remain simple and readable,
whilst simultaneously facilitating the generation of the in-
termediate representation as the text is parsed.

EBNF based grammar

To enable the parsing of the syntax previously discussed,
we have developed an EBNF based grammar using Lark [16],
a Python library which allows for text parsing. When pars-
ing text, a tree is generated, which has as nodes each of the
rules defined in the grammar. This allows for the traversal
of the tree in order to retrieve the relevant elements from
the text which are necessary to generate the intermediate
representation.

The grammar defined expects a textual input of a state

machine definition. This definition is formed of a listing of
states, a listing of events and an event description. The
two listings are structured as comma-separated lists, with
state and event names and types written following a specific
syntax defined, which can be observed in Figure 9.

QUIT <c d>

—> |AUTHORIZATION STATE

Event processing information in this sentence.Enter

the | DISCONNECTED state.

State From State To

declarations
— [TRANSACTION STATE
nter the|UPDATE state.|

—> |USER-ISSUED STATE

nter the|DISCONNECTED state. «—

—> |USER-ACCEPTED STATE
nter the DISCONNECTED state.] <« |

=

Event
declarations

=

=

RSET < d>

>
Event processing information in this sentence. No
state change.

OK < >

P

—> |USER-ISSUED STATE

nter the [USER-ACCEPTED state. <«—— ———

—> |AWAIT-PASS-RESPONSE STATE
Enter the |TRANSACTION state.

Figure 9: Part of POP3 state machine described in this
syntax

=

The events description is the section of the state machine
where transitions are defined. This is formed of smaller ele-
ments, as shown previously in Figure 8. A specific syntax is
declared for the representation of event names, states from
and transition sentences. As the text is parsed, these are
represented into a tree format. This allows for a traversal of
a the tree which follows the logical structure in which state
machines are defined. An event description contains as its
children subtrees of event names, which themselves contain
subtrees representing state descriptions, themselves contain-
ing transition and non-transition sentences. This traversal
allows for the generation of the intermediate representation.

6. CODE GENERATION

One of the benefits of automatically parsing state ma-
chines from RFCs is that the information retrieved can be
used to generate partial implementations. These partial im-
plementations can provide a structured guide for the devel-
opment of full protocols. Given the development of a canon-
ical representation of network protocol state machines, these
can be checked for correctness using model checkers. This
provides a level of confidence that the code generated from
these models can be checked for logic errors, and therefore
has the potential to provide guarantees around the introduc-
tion of bugs arising from these.

In this project, we generate partial implementations in
Python, but given the nature of the intermediate representa-
tion these implementations could also be generated in other
languages. The structure of the code generated is based
on the intermediate representation discussed previously. A
class is generated for each state, and within this class the
events that cause transitions are represented as methods
which return the state the machine transitions to given this
event. This structure can be observed in Figure 10.

As well as reducing logic errors in implementations, the



edQUIT call():
return Disconnected()

r ivedOK response():

return User

receivedERR respons ;
return Authorization()

Figure 10: Representation of a state in generated code for
POP3

generation of code speeds up the development process for
protocols, since the main logic of the implementation work
is performed automatically, and development can focus on
the addition of event handling code.

7. EVALUATION

In this section we will discuss how well the intermediate
representation, syntax and code generation achieved in this
project can represent state machines present in different net-
work protocols, such as TCP, TLS 1.3, and BGP.

Intermediate Representation

The intermediate representation designed in this project
represents state machines as a set of states and transitions,
the latter formed of groupings of events and states. This
is simple, but sufficiently general to represent most state
machines found in RFCs.

When using the syntax and intermediate representation
defined in this work to represent state machines in existing
RFCs, the following observations are made:

Firstly, the argument we make for singular events occur-
ring in one state causing one transition is not the case in
the description of certain protocols. As an example, we can
analyse at how TCP [1] describes the handling of a segment
arrival. In its syntax, “SEGMENT ARRIVES” is defined
as a singular event. Following our pattern for describing
state machines, this event should be sufficiently informa-
tive to trigger at most one transition for each state. How-
ever, the handling of this event is in reality more complex,
and depending on different factors of the TCP session dif-
ferent transitions are possible. In the handling description
of this event when the session is in the “SYN-SENT” state,
there are several potential transitions described depending
on the settings of different bits present in the segment. One
potential transition described is that if the RST bit is set
and the ACK is acceptable, the state machine moves to the
“CLOSED?” state. Another possible transition occurs during
the checking of the SYN bit, which only occurs if the ACK
is acceptable or there is no ACK and the segment does not
contain a RST. Further checks are performed, with the state
machine potentially moving to the “ESTABLISHED” state
depending on their results. Given other conditions depen-

dent on similar checks to those mentioned here, the state
machine may also move to the “SYN-RECEIVED?” state.
This description violates the principle of the determinism of
network protocol state machines, since given the same event
and transition the machine will not always perform the same
transition, as it depends on factors relating to the segment
being received.

From this we can conclude that events require a more
rigorous description to account for these factors that af-
fect transitions. This may involve splitting this event into
smaller, more explicit events that account for other factors
which affect state transition. For example, the event “SEG-
MENT ARRIVES” should be expanded to describe “SEG-
MENT ARRIVES + RST BIT SET” as well as the other
factors that differentiate which state the machine transitions
to discussed previously.

Secondly, some transitions are dependent on a certain
number of events taking place, and the transition is not valid
until all these events have occurred in order. An example of
this is TLS 1.3 [14], as shown in Figure 11

| WAIT_CV
| | Recv CertificateVerify
+> WAIT_FINISHED <+

Recv Finished

[Send EndOfEarlyData]

K_send = handshake

[Send Certificate [+ CertificateVerify]]
Send Finished

K_send = K_recv = application

€ ———

CONNECTED

Figure 11: Part of TLS 1.3 client state machine, highlighting
multiple events leading to one transition [14]

This is an aspect that the current intermediate representa-
tion does not handle. To deal with this, intermediate states
could be represented, splitting the transition currently de-
fined as a singleton into smaller states that reflect the oc-
currence of each event required to arrive at the end state.

Thirdly, most protocols contain optional features. POP3
allows for several authentication methods to be used, TLS
1.3 has optional modes such as 0-RTT/No O-RTT or the
use of PSK/Certificates, and BGP [13] provides several op-
tional events allowing for different functionalities. With the
current design of the intermediate representation, optional
events are not handled. However, this becomes a complex is-
sue, since optional events are not necessarily optional in the
sense that they are not required for the basic functionality
of the protocol. POP3 defines different methods for authen-
tication, all described as optional. However, this does not
imply that the authentication process itself is optional, sim-
ply that the specific method used can vary between imple-
mentations. This highlights that a more explicit definition
of optional events and their requirements is necessary.

Finally, our intermediate representation categorises events
into the types: API calls, incoming messages, outgoing mes-
sages and timers. This is generally descriptive enough for
transport protocols, but for example, BGP [13] presents its
own categorisation of events: Administrative Events, Timer
Events, TCP Connection-Based Events and BGP Message-
Based Events. These categorisations can be adapted to our



type descriptions, with administrative events belonging to
a similar categorisation as API calls, and TCP Connection-
Based as well as BGP Message-Based events describing in-
coming and outgoing messages. However, given that an ex-
plicit difference is made between different types of messaging
events is made, it may be beneficial to provide more flexi-
bility to authors and allow for an optional configuration in
the intermediate representation that allows for custom event
types being defined.

Syntax

Since the intermediate representation we have defined for
the encoding of state machines is built of simple elements,
this allows for the syntax to be simple and easy to use. Key-
words are used for the definition of states, event titles and
the representation of transition sentences. This allows for
definitions of state machines with little addition of formality
to the methods already used, requiring only slight changes to
the format of state and event declarations as well as transi-
tion sentences. Furthermore, the allowance of non-transition
sentences to be present in the event handling description
maintains the human readability of these definitions, and
this text can aid in the understanding of the functionality
of the state machine. This achieves the required balance
between machine and human readability.

Currently the syntax used supports one format for transi-
tion sentences, of the form “enter the STATENAME state”.
Other RFCs contain slight variations of this, such as “the
state changes to the STATENAME state” or “after enter-
ing the STATENAME state”. Because of this, a translation
to our format is required, which is a barrier to adoption.
However, the addition of these options to the grammar is
straightforward, as the grammar supports the addition of
further types of transition sentence types. Therefore, al-
though currently translation is required, small additions can
be made to the grammar to reduce the effort of these trans-
lations.

Finally, as has been discussed in Section 5, the structure
of the syntax defined is based on TCP’s event processing
section, defining state transitions relative to events and how
these affect the states of the machine. Other RFCs do not
follow this structure, but do have similar structures of their
own. For example BGP and POP3 follow a parallel structure
to TCP, describing their state machines relative to states
rather than events. The difference in this structure is that
states are listed instead of events, and following the state
listing each event that affects that state is listed and de-
scribed, declaring the transitions caused. Logically, both of
these structures are similar and translation between the two
is not complicated. However, given the similarity of this
structure style to that of TCP, it would be beneficial for
the usability of the syntax to add support for this structure
style.

Code generation

The development of a syntax and an intermediate rep-
resentation achieved in this project allow for parsing stan-
dards documents and the generation of partial code imple-
mentations. These implementations can aid developers in
the implementation of protocols, providing structure based
on their state machines.

The code generated in this work is a general structure of
the states present in the protocol and the events that trigger

transitions between these states. Event handling is largely
left to the developer, with the code generating providing an
outline of where in the state machine events take place and
the state the machine moves to. This allows for flexibility in
the definition specific details which can vary across different
implementations, whilst still ensuring that the logical struc-
ture of the protocols is identical. Due to the limitations of
the intermediate representation mentioned previously, the
complexity of the code generated is also limited. Additions
to the syntax and intermediate representation could allow
for more detailed code which handles state variables, condi-
tionals and outputs more robustly. However, the trade-off
of this increased complexity in the syntax is that it requires
increased formality, which can reduce its usability.

8. RELATED WORK

In this section we discuss some of the work relating to
the issue of the use of natural language for the definition of
network protocols. While different methods are used within
the field to approach this issue, there is a general agreement
that reducing ambiguities and inconsistencies in standards
documents is becoming increasingly necessary. Zave et al.
[20] discuss in detail the inadequacy of informal methods to
describe protocols, and suggest transitioning towards more
formal descriptions. These, however, are not required to be
fully formal language descriptions, and emphasis is drawn to
the utility of natural language based on formal models that
can be understood by those unfamiliar with formal language.

McQuistin et al. [8] propose a standardised description
language to enable automatic code generation for parsing
network packets. They discuss the tradeoff between the
technical and social aspects of adopting a standardised lan-
guage, as it must be strict enough that documents can be
parsed, but simultaneously not so strict that they have a
formality unusable by those who are not experts in formal
methods . They present the Augmented Packet Header Di-
agrams protocol description language, designed to represent
packet header diagrams. This syntax is machine-readable,
but also similar in format to the diagrams currently used
in RFCs. However, a problem with this approach is that
it only parses and presents a structure for packet header
diagrams. Therefore, it does not have support for state ma-
chines and consequently has some functionality limitations,
such as checking the order in which certain packets arrive.

Another approach taken towards automated code genera-
tion is that of Yen et al. [19]. They develop SAGE, a nat-
ural language processor that parses standards documents.
The aim of this research is to understand the semantics of
a specification and from these semantics automatically gen-
erate code. This research addresses the issue of ambiguity
in the use of natural language for protocol specifications. In
the process of parsing specifications, SAGE highlights any
ambiguities found and allows the user to disambiguate these.
Once no ambiguities remain, it is capable of generating code.
However, SAGE is limited in what it can parse. Currently,
it only fully supports parsing the syntax of header diagrams
and listings, but not yet that of state machine diagrams.

Although Yen et al. do not yet provide functionality for
parsing state machine diagrams, Pacheco et al. [9] propose a
finite state machine (FSM) extraction method, using a data-
driven approach. By having access to state machines that
describe network protocols, certain techniques can be used



to check that they function correctly and safely. Because of
this, Pacheco et al. propose this automated extraction from
RFCs. They show that their approach generalises to several
protocols, generating FSMs for BGPv4, DCCP, LTP, PPTP,
SCTP and TCP. However, it is noted that it is currently not
possible achieve a full translation between canonical FSMs
and those that are generated by their approach due to am-
biguity issues. Therefore, the state machines generated will
not always reflect the correct behaviour of a protocol.

9. CONCLUSIONS

The use of formal methods and natural language for the
definition of network protocols each have advantages and
disadvantages. Mainly, there is a trade-off in the placement
of workload. Whilst natural language is simplifies the au-
thorship process, a larger workload is present when dealing
with the errors and ambiguities inherent to this method.
Formal methods on the other hand allow for automation
and testing after the definition of standards, but can often
have a steeper learning curve. In this project, we motivate
the incorporation of usable formal methods into the stan-
dards writing process, aiming to strike a balance between
formality and familiarity.

‘We have shown that there are observable patterns in state
machines present in RFCs, and that these patterns, whilst
syntactically different, represent the same types of state ma-
chines. We develop a common method for describing net-
work protocol state machines, which maintains similarity
to the process currently used whilst allowing for automated
parsing, in turn allowing for the generation of partial imple-
mentations.

Whilst there are limitations to the complexity this de-
scription of state machines can represent, we have shown
that with further expansion of the syntax and more clear
definitions of the components of state machines in RFCs, it
is possible to use a common structure for their representa-
tion.
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