
TAPS Working Group B. Trammell, Ed.
Internet-Draft Google Switzerland GmbH
Intended status: Standards Track M. Welzl, Ed.
Expires: 8 September 2022 University of Oslo
 T. Enghardt
 Netflix
 G. Fairhurst
 University of Aberdeen
 M. Kuehlewind
 Ericsson
 C. Perkins
 University of Glasgow
 P. Tiesel
 SAP SE
 T. Pauly
 Apple Inc.
 7 March 2022

 An Abstract Application Layer Interface to Transport Services
 draft-ietf-taps-interface-15

Abstract

 This document describes an abstract application programming
 interface, API, to the transport layer that enables the selection of
 transport protocols and network paths dynamically at runtime. This
 API enables faster deployment of new protocols and protocol features
 without requiring changes to the applications. The specified API
 follows the Transport Services architecture by providing
 asynchronous, atomic transmission of messages. It is intended to
 replace the BSD sockets API as the common interface to the transport
 layer, in an environment where endpoints could select from multiple
 interfaces and potential transport protocols.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

Trammell, et al. Expires 8 September 2022 [Page 1]

Internet-Draft TAPS Interface March 2022

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on 8 September 2022.

Copyright Notice

 Copyright (c) 2022 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents (https://trustee.ietf.org/
 license-info) in effect on the date of publication of this document.
 Please review these documents carefully, as they describe your rights
 and restrictions with respect to this document. Code Components
 extracted from this document must include Revised BSD License text as
 described in Section 4.e of the Trust Legal Provisions and are
 provided without warranty as described in the Revised BSD License.

Table of Contents

 1. Introduction . 4
 1.1. Terminology and Notation 5
 1.2. Specification of Requirements 7
 2. Overview of the API Design 7
 3. API Summary . 8
 3.1. Usage Examples . 9
 3.1.1. Server Example 9
 3.1.2. Client Example 10
 3.1.3. Peer Example . 12
 4. Transport Properties . 13
 4.1. Transport Property Names 14
 4.2. Transport Property Types 15
 5. Scope of the API Definition 15
 6. Pre-Establishment Phase 16
 6.1. Specifying Endpoints 17
 6.1.1. Using Multicast Endpoints 19
 6.1.2. Constraining Interfaces for Endpoints 19
 6.1.3. Endpoint Aliases 20
 6.1.4. Endpoint Examples 20
 6.1.5. Multicast Examples 21
 6.2. Specifying Transport Properties 23
 6.2.1. Reliable Data Transfer (Connection) 26
 6.2.2. Preservation of Message Boundaries 27
 6.2.3. Configure Per-Message Reliability 27
 6.2.4. Preservation of Data Ordering 27

Trammell, et al. Expires 8 September 2022 [Page 2]

Internet-Draft TAPS Interface March 2022

 6.2.5. Use 0-RTT Session Establishment with a Safely
 Replayable Message 27
 6.2.6. Multistream Connections in Group 28
 6.2.7. Full Checksum Coverage on Sending 28
 6.2.8. Full Checksum Coverage on Receiving 28
 6.2.9. Congestion control 29
 6.2.10. Keep alive . 29
 6.2.11. Interface Instance or Type 29
 6.2.12. Provisioning Domain Instance or Type 30
 6.2.13. Use Temporary Local Address 31
 6.2.14. Multipath Transport 32
 6.2.15. Advertisement of Alternative Addresses 33
 6.2.16. Direction of communication 33
 6.2.17. Notification of ICMP soft error message arrival . . . 34
 6.2.18. Initiating side is not the first to write 34
 6.3. Specifying Security Parameters and Callbacks 35
 6.3.1. Specifying Security Parameters on a Pre-Connection . 35
 6.3.2. Connection Establishment Callbacks 37
 7. Establishing Connections 37
 7.1. Active Open: Initiate 38
 7.2. Passive Open: Listen 39
 7.3. Peer-to-Peer Establishment: Rendezvous 40
 7.4. Connection Groups . 42
 7.5. Adding and Removing Endpoints on a Connection 44
 8. Managing Connections . 44
 8.1. Generic Connection Properties 46
 8.1.1. Required Minimum Corruption Protection Coverage for
 Receiving . 46
 8.1.2. Connection Priority 47
 8.1.3. Timeout for Aborting Connection 47
 8.1.4. Timeout for keep alive packets 47
 8.1.5. Connection Group Transmission Scheduler 48
 8.1.6. Capacity Profile 48
 8.1.7. Policy for using Multipath Transports 50
 8.1.8. Bounds on Send or Receive Rate 51
 8.1.9. Group Connection Limit 51
 8.1.10. Isolate Session 51
 8.1.11. Read-only Connection Properties 52
 8.2. TCP-specific Properties: User Timeout Option (UTO) . . . 53
 8.2.1. Advertised User Timeout 53
 8.2.2. User Timeout Enabled 53
 8.2.3. Timeout Changeable 54
 8.3. Connection Lifecycle Events 54
 8.3.1. Soft Errors . 54
 8.3.2. Path change . 54
 9. Data Transfer . 54
 9.1. Messages and Framers 55
 9.1.1. Message Contexts 55

Trammell, et al. Expires 8 September 2022 [Page 3]

Internet-Draft TAPS Interface March 2022

 9.1.2. Message Framers 55
 9.1.3. Message Properties 58
 9.2. Sending Data . 64
 9.2.1. Basic Sending . 64
 9.2.2. Send Events . 65
 9.2.3. Partial Sends . 66
 9.2.4. Batching Sends 66
 9.2.5. Send on Active Open: InitiateWithSend 67
 9.2.6. Priority and the Transport Services API 67
 9.3. Receiving Data . 68
 9.3.1. Enqueuing Receives 68
 9.3.2. Receive Events 69
 9.3.3. Receive Message Properties 71
 10. Connection Termination 73
 11. Connection State and Ordering of Operations and Events . . . 74
 12. IANA Considerations . 76
 13. Privacy and Security Considerations 76
 14. Acknowledgements . 78
 15. References . 78
 15.1. Normative References 78
 15.2. Informative References 79
 Appendix A. Implementation Mapping 83
 A.1. Types . 83
 A.2. Events and Errors . 84
 A.3. Time Duration . 84
 Appendix B. Convenience Functions 84
 B.1. Adding Preference Properties 84
 B.2. Transport Property Profiles 84
 B.2.1. reliable-inorder-stream 84
 B.2.2. reliable-message 85
 B.2.3. unreliable-datagram 85
 Appendix C. Relationship to the Minimal Set of Transport Services
 for End Systems . 86
 Authors’ Addresses . 89

1. Introduction

 This document specifies an abstract application programming interface
 (API) that specifies the interface component of the high-level
 Transport Services architecture defined in [I-D.ietf-taps-arch]. A
 Transport Services system supports asynchronous, atomic transmission
 of messages over transport protocols and network paths dynamically
 selected at runtime, in environments where an endpoint selects from
 multiple interfaces and potential transport protocols.

 Applications that adopt this API will benefit from a wide set of
 transport features that can evolve over time. This protocol-
 independent API ensures that the system providing the API can

Trammell, et al. Expires 8 September 2022 [Page 4]

Internet-Draft TAPS Interface March 2022

 optimize its behavior based on the application requirements and
 network conditions, without requiring changes to the applications.
 This flexibility enables faster deployment of new features and
 protocols, and can support applications by offering racing and
 fallback mechanisms, which otherwise need to be separately
 implemented in each application.

 The Transport Services system derives specific path and protocol
 selection properties and supported transport features from the
 analysis provided in [RFC8095], [RFC8923], and [RFC8922]. The
 Transport Services API enables an implementation to dynamically
 choose a transport protocol rather than statically binding
 applications to a protocol at compile time. The Transport Services
 API also provides applications with a way to override transport
 selection and instantiate a specific stack, e.g., to support servers
 wishing to listen to a specific protocol. However, forcing a choice
 to use a specific transport stack is discouraged for general use,
 because it can reduce portability.

1.1. Terminology and Notation

 The Transport Services API is described in terms of

 * Objects with which an application can interact;

 * Actions the application can perform on these Objects;

 * Events, which an Object can send to an application to be processed
 aynchronously; and

 * Parameters associated with these Actions and Events.

 The following notations, which can be combined, are used in this
 document:

 * An Action that creates an Object:

 Object := Action()

 * An Action that creates an array of Objects:

 []Object := Action()

 * An Action that is performed on an Object:

 Object.Action()

 * An Object sends an Event:

Trammell, et al. Expires 8 September 2022 [Page 5]

Internet-Draft TAPS Interface March 2022

 Object -> Event<>

 * An Action takes a set of Parameters; an Event contains a set of
 Parameters. Action and Event parameters whose names are suffixed
 with a question mark are optional.

 Action(param0, param1?, ...) / Event<param0, param1, ...>

 Objects that are passed as parameters to Actions use call-by-value
 behavior. Actions associated with no Object are Actions on the API;
 they are equivalent to Actions on a per-application global context.

 Events are sent to the application or application-supplied code (e.g.
 framers, see Section 9.1.2) for processing; the details of event
 processing are platform- and implementation-specific.

 We also make use of the following basic types:

 * Boolean: Instances take the value true or false.

 * Integer: Instances take positive or negative integer values.

 * Numeric: Instances take positive or negative real number values.

 * Enumeration: A family of types in which each instance takes one of
 a fixed, predefined set of values specific to a given enumerated
 type.

 * Tuple: An ordered grouping of multiple value types, represented as
 a comma-separated list in parentheses, e.g., (Enumeration,
 Preference). Instances take a sequence of values each valid for
 the corresponding value type.

 * Array: Denoted []Type, an instance takes a value for each of zero
 or more elements in a sequence of the given Type. An array may be
 of fixed or variable length.

 * Collection: An unordered grouping of one or more values of the
 same type.

 For guidance on how these abstract concepts may be implemented in
 languages in accordance with native design patterns and language and
 platform features, see Appendix A.

Trammell, et al. Expires 8 September 2022 [Page 6]

Internet-Draft TAPS Interface March 2022

1.2. Specification of Requirements

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP
 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

2. Overview of the API Design

 The design of the API specified in this document is based on a set of
 principles, themselves an elaboration on the architectural design
 principles defined in [I-D.ietf-taps-arch]. The API defined in this
 document provides:

 * A Transport Services system can offer a variety of transport
 protocols, independent of the Protocol Stacks that will be used at
 runtime. All common features of these protocol stacks are made
 available to the application in a transport-independent way to the
 degree possible. This enables applications written to a single
 API to make use of transport protocols in terms of the features
 they provide.

 * A unified API to datagram and stream-oriented transports, allowing
 use of a common API for connection establishment and closing.

 * Message-orientation, as opposed to stream-orientation, using
 application-assisted framing and deframing where the underlying
 transport does not provide these.

 * Asynchronous Connection establishment, transmission, and
 reception. This allows concurrent operations during establishment
 and event-driven application interactions with the transport
 layer;

 * Selection between alternate network paths, using additional
 information about the networks over which a connection can operate
 (e.g. Provisioning Domain (PvD) information [RFC7556]) where
 available.

 * Explicit support for transport-specific features to be applied,
 should that particular transport be part of a chosen Protocol
 Stack.

 * Explicit support for security properties as first-order transport
 features.

Trammell, et al. Expires 8 September 2022 [Page 7]

Internet-Draft TAPS Interface March 2022

 * Explicit support for configuration of cryptographic identities and
 transport security parameters persistent across multiple
 Connections.

 * Explicit support for multistreaming and multipath transport
 protocols, and the grouping of related Connections into Connection
 Groups through "cloning" of Connections (see Section 7.4). This
 function allows applications to take full advantage of new
 transport protocols supporting these features.

3. API Summary

 An application primarily interacts with this API through two Objects:
 Preconnections and Connections. A Preconnection object (Section 6)
 represents a set of properties and constraints on the selection and
 configuration of paths and protocols to establish a Connection with
 an Endpoint. A Connection object represents an instance of a
 transport Protocol Stack on which data can be sent to and/or received
 from a Remote Endpoint (i.e., a logical connection that, depending on
 the kind of transport, can be bi-directional or unidirectional, and
 that can use a stream protocol or a datagram protocol). Connections
 are presented consistently to the application, irrespective of
 whether the underlying transport is connection-less or connection-
 oriented. Connections can be created from Preconnections in three
 ways:

 * by initiating the Preconnection (i.e., actively opening, as in a
 client; Section 7.1),

 * through listening on the Preconnection (i.e., passively opening,
 as in a server Section 7.2),

 * or rendezvousing on the Preconnection (i.e., peer to peer
 establishment; Section 7.3).

 Once a Connection is established, data can be sent and received on it
 in the form of Messages. The API supports the preservation of
 message boundaries both via explicit Protocol Stack support, and via
 application support through a Message Framer that finds message
 boundaries in a stream. Messages are received asynchronously through
 event handlers registered by the application. Errors and other
 notifications also happen asynchronously on the Connection. It is
 not necessary for an application to handle all Events; some Events
 may have implementation-specific default handlers. The application
 should not assume that ignoring Events (e.g., Errors) is always safe.

Trammell, et al. Expires 8 September 2022 [Page 8]

Internet-Draft TAPS Interface March 2022

3.1. Usage Examples

 The following usage examples illustrate how an application might use
 the Transport Services API to:

 * Act as a server, by listening for incoming connections, receiving
 requests, and sending responses, see Section 3.1.1.

 * Act as a client, by connecting to a Remote Endpoint using
 Initiate, sending requests, and receiving responses, see
 Section 3.1.2.

 * Act as a peer, by connecting to a Remote Endpoint using Rendezvous
 while simultaneously waiting for incoming Connections, sending
 Messages, and receiving Messages, see Section 3.1.3.

 The examples in this section presume that a transport protocol is
 available between the Local and Remote Endpoints that provides
 Reliable Data Transfer, Preservation of Data Ordering, and
 Preservation of Message Boundaries. In this case, the application
 can choose to receive only complete messages.

 If none of the available transport protocols provides Preservation of
 Message Boundaries, but there is a transport protocol that provides a
 reliable ordered byte stream, an application could receive this byte
 stream as partial Messages and transform it into application-layer
 Messages. Alternatively, an application might provide a Message
 Framer, which can transform a sequence of Messages into a byte stream
 and vice versa (Section 9.1.2).

3.1.1. Server Example

 This is an example of how an application might listen for incoming
 Connections using the Transport Services API, and receive a request,
 and send a response.

Trammell, et al. Expires 8 September 2022 [Page 9]

Internet-Draft TAPS Interface March 2022

 LocalSpecifier := NewLocalEndpoint()
 LocalSpecifier.WithInterface("any")
 LocalSpecifier.WithService("https")

 TransportProperties := NewTransportProperties()
 TransportProperties.Require(preserve-msg-boundaries)
 // Reliable Data Transfer and Preserve Order are Required by default

 SecurityParameters := NewSecurityParameters()
 SecurityParameters.Set(identity, myIdentity)
 SecurityParameters.Set(key-pair, myPrivateKey, myPublicKey)

 // Specifying a Remote Endpoint is optional when using Listen()
 Preconnection := NewPreconnection(LocalSpecifier,
 TransportProperties,
 SecurityParameters)

 Listener := Preconnection.Listen()

 Listener -> ConnectionReceived<Connection>

 // Only receive complete messages in a Conn.Received handler
 Connection.Receive()

 Connection -> Received<messageDataRequest, messageContext>

 //---- Receive event handler begin ----
 Connection.Send(messageDataResponse)
 Connection.Close()

 // Stop listening for incoming Connections
 // (this example supports only one Connection)
 Listener.Stop()
 //---- Receive event handler end ----

3.1.2. Client Example

 This is an example of how an application might open two Connections
 to a remote application using the Transport Services API, and send a
 request as well as receive a response on each of them.

Trammell, et al. Expires 8 September 2022 [Page 10]

Internet-Draft TAPS Interface March 2022

 RemoteSpecifier := NewRemoteEndpoint()
 RemoteSpecifier.WithHostname("example.com")
 RemoteSpecifier.WithService("https")

 TransportProperties := NewTransportProperties()
 TransportProperties.Require(preserve-msg-boundaries)
 // Reliable Data Transfer and Preserve Order are Required by default

 SecurityParameters := NewSecurityParameters()
 TrustCallback := NewCallback({
 // Verify identity of the Remote Endpoint, return the result
 })
 SecurityParameters.SetTrustVerificationCallback(TrustCallback)

 // Specifying a local endpoint is optional when using Initiate()
 Preconnection := NewPreconnection(RemoteSpecifier,
 TransportProperties,
 SecurityParameters)

 Connection := Preconnection.Initiate()
 Connection2 := Connection.Clone()

 Connection -> Ready<>
 Connection2 -> Ready<>

 //---- Ready event handler for any Connection C begin ----
 C.Send(messageDataRequest)

 // Only receive complete messages
 C.Receive()
 //---- Ready event handler for any Connection C end ----

 Connection -> Received<messageDataResponse, messageContext>
 Connection2 -> Received<messageDataResponse, messageContext>

 // Close the Connection in a Receive event handler
 Connection.Close()
 Connection2.Close()

 Preconnections are reusable after being used to initiate a
 Connection. Hence, for example, after the Connections were closed,
 the following would be correct:

 //.. carry out adjustments to the Preconnection, if desire
 Connection := Preconnection.Initiate()

Trammell, et al. Expires 8 September 2022 [Page 11]

Internet-Draft TAPS Interface March 2022

3.1.3. Peer Example

 This is an example of how an application might establish a connection
 with a peer using Rendezvous(), send a Message, and receive a
 Message.

 // Configure local candidates: a port on the Local Endpoint
 // and via a STUN server
 HostCandidate := NewLocalEndpoint()
 HostCandidate.WithPort(9876)

 StunCandidate := NewLocalEndpoint()
 StunCandidate.WithStunServer(address, port, credentials)

 LocalCandidates = [HostCandidate, StunCandidate]

 // Configure transport and security properties
 TransportProperties := ...
 SecurityParameters := ...

 Preconnection := NewPreconnection(LocalCandidates,
 [], // No remote candidates yet
 TransportProperties,
 SecurityParameters)

 // Resolve the LocalCandidates. The Preconnection.Resolve() call
 // resolves both local and remote candidates but, since the remote
 // candidates have not yet been specified, the ResolvedRemote list
 // returned will be empty and is not used.
 ResolvedLocal, ResolvedRemote = Preconnection.Resolve()

 // ...Send the ResolvedLocal list to peer via signalling channel
 // ...Receive a list of RemoteCandidates from peer via
 // signalling channel

 Preconnection.AddRemote(RemoteCandidates)
 Preconnection.Rendezvous()

 Preconnection -> RendezvousDone<Connection>

 //---- RendezvousDone event handler begin ----
 Connection.Send(messageDataRequest)
 Connection.Receive()
 //---- RendezvousDone event handler end ----

 Connection -> Received<messageDataResponse, messageContext>

 // If new remote endpoint candidates are received from the peer over

Trammell, et al. Expires 8 September 2022 [Page 12]

Internet-Draft TAPS Interface March 2022

 // the signalling channel, for example if using Trickle ICE, then add
 // them to the Connection:
 Connection.AddRemote(NewRemoteCandidates)

 // On a PathChange<> events, resolve the local endpoints to see if a
 // new local endpoint has become available and, if so, send to the peer
 // as a new candidate and add to the connection:
 Connection -> PathChange<>

 //---- PathChange event handler begin ----
 ResolvedLocal, ResolvedRemote = Preconnection.Resolve()
 if ResolvedLocal has changed:
 // ...Send the ResolvedLocal list to peer via signalling channel
 // Add the new local endpoints to the connection:
 Connection.AddLocal(ResolvedLocal)
 //---- PathChange event handler end ----

 // Close the Connection in a Receive event handler
 Connection.Close()

4. Transport Properties

 Each application using the Transport Services API declares its
 preferences for how the Transport Services system should operate.
 This is done by using Transport Properties, as defined in
 [I-D.ietf-taps-arch], at each stage of the lifetime of a connection.

 Transport Properties are divided into Selection, Connection, and
 Message Properties. Selection Properties (see Section 6.2) can only
 be set during pre-establishment. They are only used to specify which
 paths and protocol stacks can be used and are preferred by the
 application. Although Connection Properties (see Section 8.1) can be
 set during pre-establishment, they may be changed later. They are
 used to inform decisions made during establishment and to fine-tune
 the established connection. Calling Initiate on a Preconnection
 creates an outbound Connection or a Listener, and the Selection
 Properties remain readable from the Connection or Listener, but
 become immutable.

 The behavior of the selected protocol stack(s) when sending Messages
 is controlled by Message Properties (see Section 9.1.3).

Trammell, et al. Expires 8 September 2022 [Page 13]

Internet-Draft TAPS Interface March 2022

 Selection Properties can be set on Preconnections, and the effect of
 Selection Properties can be queried on Connections and Messages.
 Connection Properties can be set on Connections and Preconnections;
 when set on Preconnections, they act as an initial default for the
 resulting Connections. Message Properties can be set on Messages,
 Connections, and Preconnections; when set on the latter two, they act
 as an initial default for the Messages sent over those Connections,

 Note that configuring Connection Properties and Message Properties on
 Preconnections is preferred over setting them later. Early
 specification of Connection Properties allows their use as additional
 input to the selection process. Protocol Specific Properties, which
 enable configuration of specialized features of a specific protocol,
 see Section 3.2 of [I-D.ietf-taps-arch], are not used as an input to
 the selection process, but only support configuration if the
 respective protocol has been selected.

4.1. Transport Property Names

 Transport Properties are referred to by property names. For the
 purposes of this document, these names are alphanumeric strings in
 which words may be separated by hyphens. Specifically, the following
 characters are allowed: lowercase letters a-z, uppercase letters A-Z,
 digits 0-9, the hyphen -, and the underscore _. These names serve two
 purposes:

 * Allowing different components of a Transport Services
 implementation to pass Transport Properties, e.g., between a
 language frontend and a policy manager, or as a representation of
 properties retrieved from a file or other storage.

 * Making the code of different Transport Services implementations
 look similar. While individual programming languages may preclude
 strict adherence to the aforementioned naming convention (for
 instance, by prohibiting the use of hyphens in symbols), users
 interacting with multiple implementations will still benefit from
 the consistency resulting from the use of visually similar
 symbols.

 Transport Property Names are hierarchically organized in the form
 [<Namespace>.]<PropertyName>.

 * The Namespace component MUST be empty for well-known, generic
 properties, i.e., for properties that are not specific to a
 protocol and are defined in an RFC.

Trammell, et al. Expires 8 September 2022 [Page 14]

Internet-Draft TAPS Interface March 2022

 * Protocol Specific Properties MUST use the protocol acronym as the
 Namespace, e.g., tcp for TCP specific Transport Properties. For
 IETF protocols, property names under these namespaces SHOULD be
 defined in an RFC.

 * Vendor or implementation specific properties MUST use a string
 identifying the vendor or implementation as the Namespace.

 Namespaces for each of the keywords provided in the IANA protocol
 numbers registry (see https://www.iana.org/assignments/protocol-
 numbers/protocol-numbers.xhtml) are reserved for Protocol Specific
 Properties and MUST NOT be used for vendor or implementation-specific
 properties. Avoid using any of the terms listed as keywords in the
 protocol numbers registry as any part of a vendor- or implementation-
 specific property name.

4.2. Transport Property Types

 Each Transport Property has a one of the basic types described in
 Section 1.1.

 Most Selection Properties (see Section 6.2) are of the Enumeration
 type, and use the Preference Enumeration, which takes one of five
 possible values (Prohibit, Avoid, Ignore, Prefer, or Require)
 denoting the level of preference for a given property during protocol
 selection.

5. Scope of the API Definition

 This document defines a language- and platform-independent API of a
 Transport Services system. Given the wide variety of languages and
 language conventions used to write applications that use the
 transport layer to connect to other applications over the Internet,
 this independence makes this API necessarily abstract.

 There is no interoperability benefit in tightly defining how the API
 is presented to application programmers across diverse platforms.
 However, maintaining the "shape" of the abstract API across different
 platforms reduces the effort for programmers who learn to use the
 Transport Services API to then apply their knowledge to another
 platform.

 We therefore make the following recommendations:

Trammell, et al. Expires 8 September 2022 [Page 15]

Internet-Draft TAPS Interface March 2022

 * Actions, Events, and Errors in implementations of the Transport
 Services API SHOULD use the names given for them in the document,
 subject to capitalization, punctuation, and other typographic
 conventions in the language of the implementation, unless the
 implementation itself uses different names for substantially
 equivalent objects for networking by convention.

 * Transport Services systems SHOULD implement each Selection
 Property, Connection Property, and Message Context Property
 specified in this document. The Transport Services API SHOULD be
 implemented even when in a specific implementation/platform it
 will always result in no operation, e.g. there is no action when
 the API specifies a Property that is not available in a transport
 protocol implemented on a specific platform. For example, if TCP
 is the only underlying transport protocol, the Message Property
 msgOrdered can be implemented (trivially, as a no-op) as disabling
 the requirement for ordering will not have any effect on delivery
 order for Connections over TCP. Similarly, the msg-lifetime
 Message Property can be implemented but ignored, as the
 description of this Property states that "it is not guaranteed
 that a Message will not be sent when its Lifetime has expired".

 * Implementations may use other representations for Transport
 Property Names, e.g., by providing constants, but should provide a
 straight-forward mapping between their representation and the
 property names specified here.

6. Pre-Establishment Phase

 The Pre-Establishment phase allows applications to specify properties
 for the Connections that they are about to make, or to query the API
 about potential Connections they could make.

 A Preconnection Object represents a potential Connection. It is a
 passive Object (a data structure) that merely maintains the state
 that describes the properties of a Connection that might exist in the
 future. This state comprises Local Endpoint and Remote Endpoint
 Objects that denote the endpoints of the potential Connection (see
 Section 6.1), the Selection Properties (see Section 6.2), any
 preconfigured Connection Properties (Section 8.1), and the security
 parameters (see Section 6.3):

 Preconnection := NewPreconnection([]LocalEndpoint,
 []RemoteEndpoint,
 TransportProperties,
 SecurityParameters)

Trammell, et al. Expires 8 September 2022 [Page 16]

Internet-Draft TAPS Interface March 2022

 At least one Local Endpoint MUST be specified if the Preconnection is
 used to Listen() for incoming Connections, but the list of Local
 Endpoints MAY be empty if the Preconnection is used to Initiate()
 connections. If no Local Endpoint is specified, the Transport
 Services system will assign an ephemeral local port to the Connection
 on the appropriate interface(s). At least one Remote Endpoint MUST
 be specified if the Preconnection is used to Initiate() Connections,
 but the list of Remote Endpoints MAY be empty if the Preconnection is
 used to Listen() for incoming Connections. At least one Local
 Endpoint and one Remote Endpoint MUST be specified if a peer-to-peer
 Rendezvous() is to occur based on the Preconnection.

 If more than one Local Endpoint is specified on a Preconnection, then
 all the Local Endpoints on the Preconnection MUST represent the same
 host. For example, they might correspond to different interfaces on
 a multi-homed host, of they might correspond to local interfaces and
 a STUN server that can be resolved to a server reflexive address for
 a Preconnection used to make a peer-to-peer Rendezvous().

 If more than one Remote Endpoint is specified on the Preconnection,
 then all the Remote Endpoints on the Preconnection SHOULD represent
 the same service. For example, the Remote Endpoints might represent
 various network interfaces of a host, or a server reflexive address
 that can be used to reach a host, or a set of hosts that provide
 equivalent local balanced service.

 In most cases, it is expected that a single Remote Endpoint will be
 specified by name, and a later call to Initiate() on the
 Preconnection (see Section 7.1) will internally resolve that name to
 a list of concrete endpoints. Specifying multiple Remote Endpoints
 on a Preconnection allows applications to override this for more
 detailed control.

 If Message Framers are used (see Section 9.1.2), they MUST be added
 to the Preconnection during pre-establishment.

6.1. Specifying Endpoints

 The transport services API uses the Local Endpoint and Remote
 Endpoint Objects to refer to the endpoints of a transport connection.
 Endpoints can be created as either Remote or Local:

 RemoteSpecifier := NewRemoteEndpoint()
 LocalSpecifier := NewLocalEndpoint()

Trammell, et al. Expires 8 September 2022 [Page 17]

Internet-Draft TAPS Interface March 2022

 A single Endpoint Object represents the identity of a network host.
 That endpoint can be more or less specific depending on which
 identifiers are set. For example, an Endpoint that only specifies a
 hostname may in fact end up corresponding to several different IP
 addresses on different hosts.

 An Endpoint Object can be configured with the following identifiers:

 * Hostname (string):

 RemoteSpecifier.WithHostname("example.com")

 * Port (a 16-bit integer):

 RemoteSpecifier.WithPort(443)

 * Service (an identifier that maps to a port; either a the name of a
 well-known service, or a DNS SRV service name to be resolved):

 RemoteSpecifier.WithService("https")

 * IP address (IPv4 or IPv6 address):

 RemoteSpecifier.WithIPv4Address(192.0.2.21)

 RemoteSpecifier.WithIPv6Address(2001:db8:4920:e29d:a420:7461:7073:0a)

 * Interface name (string), e.g., to qualify link-local or multicast
 addresses (see Section 6.1.2 for details):

 LocalSpecifier.WithInterface("en0")

 Note that an IPv6 address specified with a scope (e.g.
 2001:db8:4920:e29d:a420:7461:7073:0a%en0) is equivalent to
 WithIPv6Address with an unscoped address and WithInterface together.

 An Endpoint cannot have multiple identifiers of a same type set.
 That is, an endpoint cannot have two IP addresses specified. Two
 separate IP addresses are represented as two Endpoint Objects. If a
 Preconnection specifies a Remote Endpoint with a specific IP address
 set, it will only establish Connections to that IP address. If, on
 the other hand, the Remote Endpoint specifies a hostname but no
 addresses, the Connection can perform name resolution and attempt
 using any address derived from the original hostname of the Remote
 Endpoint. Note that multiple Remote Endpoints can be added to a
 Preconnection, as discussed in Section 7.5.

Trammell, et al. Expires 8 September 2022 [Page 18]

Internet-Draft TAPS Interface March 2022

 The Transport Services system resolves names internally, when the
 Initiate(), Listen(), or Rendezvous() method is called to establish a
 Connection. Privacy considerations for the timing of this resolution
 are given in Section 13.

 The Resolve() action on a Preconnection can be used by the
 application to force early binding when required, for example with
 some Network Address Translator (NAT) traversal protocols (see
 Section 7.3).

6.1.1. Using Multicast Endpoints

 Specifying a multicast group address on a Local Endpoint will
 indicate to the Transport Services system that the resulting
 connection will be used to receive multicast messages. The Remote
 Endpoint can be used to filter incoming multicast from specific
 senders. Such a Preconnection will only support calling Listen(),
 not Initiate(). Calling Listen() will cause the Transport Services
 system to register for receiving multicast, such as issuing an IGMP
 join [RFC3376] or using MLD for IPV6 [RFC4604]. Any Connections that
 are accepted from this Listener are receive-only.

 Similarly, specifying a multicast group address on the Remote
 Endpoint will indicate that the resulting connection will be used to
 send multicast messages, and that the Preconnection will support
 Initiate() but not Listen(). Any Connections created this way are
 send-only.

 A Rendezvous() call on Preconnections containing group addresses
 results in an EstablishmentError as described in Section 7.3.

 See Section 6.1.5 for more examples.

6.1.2. Constraining Interfaces for Endpoints

 Note that this API has multiple ways to constrain and prioritize
 endpoint candidates based on the network interface:

 * Specifying an interface on a RemoteEndpoint qualifies the scope of
 the remote endpoint, e.g., for link-local addresses.

 * Specifying an interface on a LocalEndpoint explicitly binds all
 candidates derived from this endpoint to use the specified
 interface.

Trammell, et al. Expires 8 September 2022 [Page 19]

Internet-Draft TAPS Interface March 2022

 * Specifying an interface using the interface Selection Property
 (Section 6.2.11) or indirectly via the pvd Selection Property
 (Section 6.2.12) influences the selection among the available
 candidates.

 While specifying an interface on an endpoint restricts the candidates
 available for connection establishment in the Pre-Establishment
 Phase, the Selection Properties prioritize and constrain the
 connection establishment.

6.1.3. Endpoint Aliases

 An Endpoint can have an alternative definition when using different
 protocols. For example, a server that supports both TLS/TCP and QUIC
 may be accessible on two different port numbers depending on which
 protocol is used.

 To support this, Endpoint Objects can specify "aliases". An Endpoint
 can have multiple aliases set.

 RemoteSpecifier.AddAlias(AlternateRemoteSpecifier)

 In order to scope an alias to a specific transport protocol, an
 Endpoint can specify a protocol identifier.

 RemoteSpecifier.WithProtocol(QUIC)

 The following example shows a case where "example.com" has a server
 running on port 443, with an alternate port of 8443 for QUIC.

 RemoteSpecifier := NewRemoteEndpoint()
 RemoteSpecifier.WithHostname("example.com")
 RemoteSpecifier.WithPort(443)

 QUICRemoteSpecifier := NewRemoteEndpoint()
 QUICRemoteSpecifier.WithHostname("example.com")
 QUICRemoteSpecifier.WithPort(8443)
 QUICRemoteSpecifier.WithProtocol(QUIC)

 RemoteSpecifier.AddAlias(QUICRemoteSpecifier)

6.1.4. Endpoint Examples

 The following examples of Endpoints show common usage patterns.

 Specify a Remote Endpoint using a hostname and service name:

Trammell, et al. Expires 8 September 2022 [Page 20]

Internet-Draft TAPS Interface March 2022

 RemoteSpecifier := NewRemoteEndpoint()
 RemoteSpecifier.WithHostname("example.com")
 RemoteSpecifier.WithService("https")

 Specify a Remote Endpoint using an IPv6 address and remote port:

 RemoteSpecifier := NewRemoteEndpoint()
 RemoteSpecifier.WithIPv6Address(2001:db8:4920:e29d:a420:7461:7073:0a)
 RemoteSpecifier.WithPort(443)

 Specify a Remote Endpoint using an IPv4 address and remote port:

 RemoteSpecifier := NewRemoteEndpoint()
 RemoteSpecifier.WithIPv4Address(192.0.2.21)
 RemoteSpecifier.WithPort(443)

 Specify a Local Endpoint using a local interface name and local port:

 LocalSpecifier := NewLocalEndpoint()
 LocalSpecifier.WithInterface("en0")
 LocalSpecifier.WithPort(443)

 As an alternative to specifying an interface name for the Local
 Endpoint, an application can express more fine-grained preferences
 using the Interface Instance or Type Selection Property, see
 Section 6.2.11. However, if the application specifies Selection
 Properties that are inconsistent with the Local Endpoint, this will
 result in an Error once the application attempts to open a
 Connection.

 Specify a Local Endpoint using a STUN server:

 LocalSpecifier := NewLocalEndpoint()
 LocalSpecifier.WithStunServer(address, port, credentials)

6.1.5. Multicast Examples

 Specify a Local Endpoint using an Any-Source Multicast group to join
 on a named local interface:

 LocalSpecifier := NewLocalEndpoint()
 LocalSpecifier.WithIPv4Address(233.252.0.0)
 LocalSpecifier.WithInterface("en0")

 Source-Specific Multicast requires setting both a Local and Remote
 Endpoint:

Trammell, et al. Expires 8 September 2022 [Page 21]

Internet-Draft TAPS Interface March 2022

 LocalSpecifier := NewLocalEndpoint()
 LocalSpecifier.WithIPv4Address(232.1.1.1)
 LocalSpecifier.WithInterface("en0")

 RemoteSpecifier := NewRemoteEndpoint()
 RemoteSpecifier.WithIPv4Address(192.0.2.22)

 One common pattern for multicast is to both send and receive
 multicast. For such cases, an application can set up both a Listener
 and a Connection. The Listener is only used to accept Connections
 that receive inbound multicast. The initiated Connection is only
 used to send multicast.

Trammell, et al. Expires 8 September 2022 [Page 22]

Internet-Draft TAPS Interface March 2022

// Prepare multicast Listener
LocalMulticastSpecifier := NewLocalEndpoint()
LocalMulticastSpecifier.WithIPv4Address(233.252.0.0)
LocalMulticastSpecifier.WithPort(5353)
LocalMulticastSpecifier.WithInterface("en0")

TransportProperties := NewTransportProperties()
TransportProperties.Require(preserve-msg-boundaries)
// Reliable Data Transfer and Preserve Order are Required by default

// Specifying a Remote Endpoint is optional when using Listen()
Preconnection := NewPreconnection(LocalMulticastSpecifier,
 TransportProperties,
 SecurityParameters)

MulticastListener := Preconnection.Listen()

// Handle inbound messages sent to the multicast group
MulticastListener -> ConnectionReceived<MulticastReceiverConnection>
MulticastReceiverConnection.Receive()
MulticastReceiverConnection -> Received<messageDataRequest, messageContext>

// Prepare Connection to send multicast
LocalSpecifier := NewLocalEndpoint()
LocalSpecifier.WithPort(5353)
LocalSpecifier.WithInterface("en0")
RemoteMulticastSpecifier := NewRemoteEndpoint()
RemoteMulticastSpecifier.WithIPv4Address(233.252.0.0)
RemoteMulticastSpecifier.WithPort(5353)
RemoteMulticastSpecifier.WithInterface("en0")

Preconnection2 := NewPreconnection(LocalSpecifier,
 RemoteMulticastSpecifier,
 TransportProperties,
 SecurityParameters)

// Send outbound messages to the multicast group
MulticastSenderConnection := Preconnection.Initiate()
MulticastSenderConnection.Send(messageData)

6.2. Specifying Transport Properties

 A Preconnection Object holds properties reflecting the application’s
 requirements and preferences for the transport. These include
 Selection Properties for selecting protocol stacks and paths, as well
 as Connection Properties and Message Properties for configuration of
 the detailed operation of the selected Protocol Stacks on a per-
 Connection and Message level.

Trammell, et al. Expires 8 September 2022 [Page 23]

Internet-Draft TAPS Interface March 2022

 The protocol(s) and path(s) selected as candidates during
 establishment are determined and configured using these properties.
 Since there could be paths over which some transport protocols are
 unable to operate, or remote endpoints that support only specific
 network addresses or transports, transport protocol selection is
 necessarily tied to path selection. This may involve choosing
 between multiple local interfaces that are connected to different
 access networks.

 When additional information (such as Provisioning Domain (PvD)
 information Path information can include network segment PMTU, set of
 supported DSCPs, expected usage, cost, etc. The usage of this
 information by the Transport Services System is generally independent
 of the specific mechanism/protocol used to receive the information
 (e.g. zero-conf, DHCP, or IPv6 RA).[RFC7556]) is available about the
 networks over which an endpoint can operate, this can inform the
 selection between alternate network paths.

 Most Selection Properties are represented as Preferences, which can
 take one of five values:

 +============+==+
 | Preference | Effect |
 +============+==+
 | Require | Select only protocols/paths providing |
 | | the property, fail otherwise |
 +------------+--+
 | Prefer | Prefer protocols/paths providing the |
 | | property, proceed otherwise |
 +------------+--+
 | Ignore | No preference |
 +------------+--+
 | Avoid | Prefer protocols/paths not providing |
 | | the property, proceed otherwise |
 +------------+--+
 | Prohibit | Select only protocols/paths not |
 | | providing the property, fail otherwise |
 +------------+--+

 Table 1: Selection Property Preference Levels

Trammell, et al. Expires 8 September 2022 [Page 24]

Internet-Draft TAPS Interface March 2022

 The implementation MUST ensure an outcome that is consistent with all
 application requirements expressed using Require and Prohibit. While
 preferences expressed using Prefer and Avoid influence protocol and
 path selection as well, outcomes can vary given the same Selection
 Properties, because the available protocols and paths can differ
 across systems and contexts. However, implementations are
 RECOMMENDED to seek to provide a consistent outcome to an
 application, given the same set of Selection Properties.

 Note that application preferences can conflict with each other. For
 example, if an application indicates a preference for a specific path
 by specifying an interface, but also a preference for a protocol, a
 situation might occur in which the preferred protocol is not
 available on the preferred path. In such cases, applications can
 expect properties that determine path selection to be prioritized
 over properties that determine protocol selection. The transport
 system SHOULD determine the preferred path first, regardless of
 protocol preferences. This ordering is chosen to provide consistency
 across implementations, based on the fact that it is more common for
 the use of a given network path to determine cost to the user (i.e.,
 an interface type preference might be based on a user’s preference to
 avoid being charged more for a cellular data plan).

 Selection and Connection Properties, as well as defaults for Message
 Properties, can be added to a Preconnection to configure the
 selection process and to further configure the eventually selected
 protocol stack(s). They are collected into a TransportProperties
 object to be passed into a Preconnection object:

 TransportProperties := NewTransportProperties()

 Individual properties are then set on the TransportProperties Object.
 Setting a Transport Property to a value overrides the previous value
 of this Transport Property.

 TransportProperties.Set(property, value)

 To aid readability, implementations MAY provide additional
 convenience functions to simplify use of Selection Properties: see
 Appendix B.1 for examples. In addition, implementations MAY provide
 a mechanism to create TransportProperties objects that are
 preconfigured for common use cases as outlined in Appendix B.2.

 Transport Properties for an established connection can be queried via
 the Connection object, as outlined in Section 8.

Trammell, et al. Expires 8 September 2022 [Page 25]

Internet-Draft TAPS Interface March 2022

 A Connection gets its Transport Properties either by being explicitly
 configured via a Preconnection, by configuration after establishment,
 or by inheriting them from an antecedent via cloning; see Section 7.4
 for more.

 Section 8.1 provides a list of Connection Properties, while Selection
 Properties are listed in the subsections below. Many properties are
 only considered during establishment, and can not be changed after a
 Connection is established; however, they can still be queried. The
 return type of a queried Selection Property is Boolean, where true
 means that the Selection Property has been applied and false means
 that the Selection Property has not been applied. Note that true
 does not mean that a request has been honored. For example, if
 Congestion control was requested with preference level Prefer, but
 congestion control could not be supported, querying the
 congestionControl property yields the value false. If the preference
 level Avoid was used for Congestion control, and, as requested, the
 Connection is not congestion controlled, querying the
 congestionControl property also yields the value false.

 An implementation of the Transport Services API must provide sensible
 defaults for Selection Properties. The default values for each
 property below represent a configuration that can be implemented over
 TCP. If these default values are used and TCP is not supported by a
 Transport Services system, then an application using the default set
 of Properties might not succeed in establishing a connection. Using
 the same default values for independent Transport Services
 implementations can be beneficial when applications are ported
 between different implementations/platforms, even if this default
 could lead to a connection failure when TCP is not available. If
 default values other than those suggested below are used, it is
 RECOMMENDED to clearly document any differences.

6.2.1. Reliable Data Transfer (Connection)

 Name: reliability

 Type: Preference

 Default: Require

 This property specifies whether the application needs to use a
 transport protocol that ensures that all data is received at the
 Remote Endpoint without corruption. When reliable data transfer is
 enabled, this also entails being notified when a Connection is closed
 or aborted.

Trammell, et al. Expires 8 September 2022 [Page 26]

Internet-Draft TAPS Interface March 2022

6.2.2. Preservation of Message Boundaries

 Name: preserveMsgBoundaries

 Type: Preference

 Default: Ignore

 This property specifies whether the application needs or prefers to
 use a transport protocol that preserves message boundaries.

6.2.3. Configure Per-Message Reliability

 Name: perMsgReliability

 Type: Preference

 Default: Ignore

 This property specifies whether an application considers it useful to
 specify different reliability requirements for individual Messages in
 a Connection.

6.2.4. Preservation of Data Ordering

 Name: preserveOrder

 Type: Preference

 Default: Require

 This property specifies whether the application wishes to use a
 transport protocol that can ensure that data is received by the
 application on the other end in the same order as it was sent.

6.2.5. Use 0-RTT Session Establishment with a Safely Replayable Message

 Name: zeroRttMsg

 Type: Preference

 Default: Ignore

Trammell, et al. Expires 8 September 2022 [Page 27]

Internet-Draft TAPS Interface March 2022

 This property specifies whether an application would like to supply a
 Message to the transport protocol before Connection establishment
 that will then be reliably transferred to the other side before or
 during Connection establishment. This Message can potentially be
 received multiple times (i.e., multiple copies of the message data
 may be passed to the Remote Endpoint). See also Section 9.1.3.4.

6.2.6. Multistream Connections in Group

 Name: multistreaming

 Type: Preference

 Default: Prefer

 This property specifies that the application would prefer multiple
 Connections within a Connection Group to be provided by streams of a
 single underlying transport connection where possible.

6.2.7. Full Checksum Coverage on Sending

 Name: fullChecksumSend

 Type: Preference

 Default: Require

 This property specifies the application’s need for protection against
 corruption for all data transmitted on this Connection. Disabling
 this property could enable later control of the sender checksum
 coverage (see Section 9.1.3.6).

6.2.8. Full Checksum Coverage on Receiving

 Name: fullChecksumRecv

 Type: Preference

 Default: Require

 This property specifies the application’s need for protection against
 corruption for all data received on this Connection. Disabling this
 property could enable later control of the required minimum receiver
 checksum coverage (see Section 8.1.1).

Trammell, et al. Expires 8 September 2022 [Page 28]

Internet-Draft TAPS Interface March 2022

6.2.9. Congestion control

 Name: congestionControl

 Type: Preference

 Default: Require

 This property specifies whether the application would like the
 Connection to be congestion controlled or not. Note that if a
 Connection is not congestion controlled, an application using such a
 Connection SHOULD itself perform congestion control in accordance
 with [RFC2914] or use a circuit breaker in accordance with [RFC8084],
 whichever is appropriate. Also note that reliability is usually
 combined with congestion control in protocol implementations,
 rendering "reliable but not congestion controlled" a request that is
 unlikely to succeed. If the Connection is congestion controlled,
 performing additional congestion control in the application can have
 negative performance implications.

6.2.10. Keep alive

 Name: keepAlive

 Type: Preference

 Default: Ignore

 This property specifies whether the application would like the
 Connection to send keep-alive packets or not. Note that if a
 Connection determines that keep-alive packets are being sent, the
 applicaton should itself avoid generating additional keep alive
 messages. Note that when supported, the system will use the default
 period for generation of the keep alive-packets. (See also
 Section 8.1.4).

6.2.11. Interface Instance or Type

 Name: interface

 Type: Collection of (Preference, Enumeration)

 Default: Empty (not setting a preference for any interface)

Trammell, et al. Expires 8 September 2022 [Page 29]

Internet-Draft TAPS Interface March 2022

 This property allows the application to select any specific network
 interfaces or categories of interfaces it wants to Require, Prohibit,
 Prefer, or Avoid. Note that marking a specific interface as Require
 strictly limits path selection to that single interface, and often
 leads to less flexible and resilient connection establishment.

 In contrast to other Selection Properties, this property is a tuple
 of an (Enumerated) interface identifier and a preference, and can
 either be implemented directly as such, or for making one preference
 available for each interface and interface type available on the
 system.

 The set of valid interface types is implementation- and system-
 specific. For example, on a mobile device, there may be Wi-Fi and
 Cellular interface types available; whereas on a desktop computer,
 Wi-Fi and Wired Ethernet interface types might be available. An
 implementation should provide all types that are supported on the
 local system, to allow applications to be written generically. For
 example, if a single implementation is used on both mobile devices
 and desktop devices, it should define the Cellular interface type for
 both systems, since an application might wish to always prohibit
 cellular.

 The set of interface types is expected to change over time as new
 access technologies become available. The taxonomy of interface
 types on a given Transport Services system is implementation-
 specific.

 Interface types should not be treated as a proxy for properties of
 interfaces such as metered or unmetered network access. If an
 application needs to prohibit metered interfaces, this should be
 specified via Provisioning Domain attributes (see Section 6.2.12) or
 another specific property.

 Note that this property is not used to specify an interface scope for
 a particular endpoint. Section 6.1.2 provides details about how to
 qualify endpoint candidates on a per-interface basis.

6.2.12. Provisioning Domain Instance or Type

 Name: pvd

 Type: Collection of (Preference, Enumeration)

 Default: Empty (not setting a preference for any PvD)

Trammell, et al. Expires 8 September 2022 [Page 30]

Internet-Draft TAPS Interface March 2022

 Similar to interface instances and types (see Section 6.2.11), this
 property allows the application to control path selection by
 selecting which specific Provisioning Domain (PvD) or categories of
 PVDs it wants to Require, Prohibit, Prefer, or Avoid. Provisioning
 Domains define consistent sets of network properties that may be more
 specific than network interfaces [RFC7556].

 As with interface instances and types, this property is a tuple of an
 (Enumerated) PvD identifier and a preference, and can either be
 implemented directly as such, or for making one preference available
 for each interface and interface type available on the system.

 The identification of a specific PvD is implementation- and system-
 specific, because there is currently no portable standard format for
 a PvD identifier. For example, this identifier might be a string
 name or an integer. As with requiring specific interfaces, requiring
 a specific PvD strictly limits the path selection.

 Categories or types of PvDs are also defined to be implementation-
 and system-specific. These can be useful to identify a service that
 is provided by a PvD. For example, if an application wants to use a
 PvD that provides a Voice-Over-IP service on a Cellular network, it
 can use the relevant PvD type to require a PvD that provides this
 service, without needing to look up a particular instance. While
 this does restrict path selection, it is broader than requiring
 specific PvD instances or interface instances, and should be
 preferred over these options.

6.2.13. Use Temporary Local Address

 Name: useTemporaryLocalAddress

 Type: Preference

 Default: Avoid for Listeners and Rendezvous Connections. Prefer for
 other Connections.

Trammell, et al. Expires 8 September 2022 [Page 31]

Internet-Draft TAPS Interface March 2022

 This property allows the application to express a preference for the
 use of temporary local addresses, sometimes called "privacy"
 addresses [RFC8981]. Temporary addresses are generally used to
 prevent linking connections over time when a stable address,
 sometimes called "permanent" address, is not needed. There are some
 caveats to note when specifying this property. First, if an
 application Requires the use of temporary addresses, the resulting
 Connection cannot use IPv4, because temporary addresses do not exist
 in IPv4. Second, temporary local addresses might involve trading off
 privacy for performance. For instance, temporary addresses can
 interfere with resumption mechanisms that some protocols rely on to
 reduce initial latency.

6.2.14. Multipath Transport

 Name: multipath

 Type: Enumeration

 Default: Disabled for connections created through initiate and
 rendezvous, Passive for listeners

 This property specifies whether and how applications want to take
 advantage of transferring data across multiple paths between the same
 end hosts. Using multiple paths allows connections to migrate
 between interfaces or aggregate bandwidth as availability and
 performance properties change. Possible values are:

 Disabled: The connection will not use multiple paths once
 established, even if the chosen transport supports using multiple
 paths.

 Active: The connection will negotiate the use of multiple paths if
 the chosen transport supports this.

 Passive: The connection will support the use of multiple paths if
 the Remote Endpoint requests it.

 The policy for using multiple paths is specified using the separate
 multipath-policy property, see Section 8.1.7 below. To enable the
 peer endpoint to initiate additional paths towards a local address
 other than the one initially used, it is necessary to set the
 Alternative Addresses property (see Section 6.2.15 below).

Trammell, et al. Expires 8 September 2022 [Page 32]

Internet-Draft TAPS Interface March 2022

 Setting this property to "Active", can have privacy implications: It
 enables the transport to establish connectivity using alternate paths
 that might result in users being linkable across the multiple paths,
 even if the Advertisement of Alternative Addresses property (see
 Section 6.2.15 below) is set to false.

 Note that Multipath Transport has no corresponding Selection Property
 of type Preference. Enumeration values other than "Disabled" are
 interpreted as a preference for choosing protocols that can make use
 of multiple paths. The "Disabled" value implies a requirement not to
 use multiple paths in parallel but does not prevent choosing a
 protocol that is capable of using multiple paths, e.g., it does not
 prevent choosing TCP, but prevents sending the MP_CAPABLE option in
 the TCP handshake.

6.2.15. Advertisement of Alternative Addresses

 Name: advertises-altaddr

 Type: Boolean

 Default: False

 This property specifies whether alternative addresses, e.g., of other
 interfaces, should be advertised to the peer endpoint by the protocol
 stack. Advertising these addresses enables the peer-endpoint to
 establish additional connectivity, e.g., for connection migration or
 using multiple paths.

 Note that this can have privacy implications because it might result
 in users being linkable across the multiple paths. Also, note that
 setting this to false does not prevent the local Transport Services
 system from _establishing_ connectivity using alternate paths (see
 Section 6.2.14 above); it only prevents _proactive advertisement_ of
 addresses.

6.2.16. Direction of communication

 Name: direction

 Type: Enumeration

 Default: Bidirectional

 This property specifies whether an application wants to use the
 connection for sending and/or receiving data. Possible values are:

 Bidirectional: The connection must support sending and receiving

Trammell, et al. Expires 8 September 2022 [Page 33]

Internet-Draft TAPS Interface March 2022

 data

 Unidirectional send: The connection must support sending data, and
 the application cannot use the connection to receive any data

 Unidirectional receive: The connection must support receiving data,
 and the application cannot use the connection to send any data

 Since unidirectional communication can be supported by transports
 offering bidirectional communication, specifying unidirectional
 communication may cause a transport stack that supports bidirectional
 communication to be selected.

6.2.17. Notification of ICMP soft error message arrival

 Name: softErrorNotify

 Type: Preference

 Default: Ignore

 This property specifies whether an application considers it useful to
 be informed when an ICMP error message arrives that does not force
 termination of a connection. When set to true, received ICMP errors
 are available as SoftErrors, see Section 8.3.1. Note that even if a
 protocol supporting this property is selected, not all ICMP errors
 will necessarily be delivered, so applications cannot rely upon
 receiving them [RFC8085].

6.2.18. Initiating side is not the first to write

 Name: activeReadBeforeSend

 Type: Preference

 Default: Ignore

Trammell, et al. Expires 8 September 2022 [Page 34]

Internet-Draft TAPS Interface March 2022

 The most common client-server communication pattern involves the
 client actively opening a connection, then sending data to the
 server. The server listens (passive open), reads, and then answers.
 This property specifies whether an application wants to diverge from
 this pattern - either by actively opening with Initiate(),
 immediately followed by reading, or passively opening with Listen(),
 immediately followed by writing. This property is ignored when
 establishing connections using Rendezvous(). Requiring this property
 limits the choice of mappings to underlying protocols, which can
 reduce efficiency. For example, it prevents the Transport Services
 system from mapping Connections to SCTP streams, where the first
 transmitted data takes the role of an active open signal
 [I-D.ietf-taps-impl].

6.3. Specifying Security Parameters and Callbacks

 Most security parameters, e.g., TLS ciphersuites, local identity and
 private key, etc., may be configured statically. Others are
 dynamically configured during connection establishment. Security
 parameters and callbacks are partitioned based on their place in the
 lifetime of connection establishment. Similar to Transport
 Properties, both parameters and callbacks are inherited during
 cloning (see Section 7.4).

6.3.1. Specifying Security Parameters on a Pre-Connection

 Common security parameters such as TLS ciphersuites are known to
 implementations. Clients should use common safe defaults for these
 values whenever possible. However, as discussed in [RFC8922], many
 transport security protocols require specific security parameters and
 constraints from the client at the time of configuration and actively
 during a handshake. These configuration parameters need to be
 specified in the pre-connection phase and are created as follows:

 SecurityParameters := NewSecurityParameters()

 Security configuration parameters and sample usage follow:

 * Local identity and private keys: Used to perform private key
 operations and prove one’s identity to the Remote Endpoint.
 (Note, if private keys are not available, e.g., since they are
 stored in hardware security modules (HSMs), handshake callbacks
 must be used. See below for details.)

 SecurityParameters.Set(identity, myIdentity)
 SecurityParameters.Set(key-pair, myPrivateKey, myPublicKey)

Trammell, et al. Expires 8 September 2022 [Page 35]

Internet-Draft TAPS Interface March 2022

 * Supported algorithms: Used to restrict what parameters are used by
 underlying transport security protocols. When not specified,
 these algorithms should use known and safe defaults for the
 system. Parameters include: ciphersuites, supported groups, and
 signature algorithms. These parameters take a collection of
 supported algorithms as parameter.

 SecurityParameters.Set(supported-group, "secp256r1")
 SecurityParameters.Set(ciphersuite, "TLS_AES_128_GCM_SHA256")
 SecurityParameters.Set(signature-algorithm, "ecdsa_secp256r1_sha256")

 * Pre-Shared Key import: Used to install pre-shared keying material
 established out-of-band. Each pre-shared keying material is
 associated with some identity that typically identifies its use or
 has some protocol-specific meaning to the Remote Endpoint.

 SecurityParameters.Set(pre-shared-key, key, identity)

 * Session cache management: Used to tune session cache capacity,
 lifetime, and other policies.

 SecurityParameters.Set(max-cached-sessions, 16)
 SecurityParameters.Set(cached-session-lifetime-seconds, 3600)

 Connections that use Transport Services SHOULD use security in
 general. However, for compatibility with endpoints that do not
 support transport security protocols (such as a TCP endpoint that
 does not support TLS), applications can initialize their security
 parameters to indicate that security can be disabled, or can be
 opportunistic. If security is disabled, the Transport Services
 system will not attempt to add transport security automatically. If
 security is opportunistic, it will allow Connections without
 transport security, but will still attempt to use security if
 available.

 SecurityParameters := NewDisabledSecurityParameters()

 SecurityParameters := NewOpportunisticSecurityParameters()

 Representation of Security Parameters in implementations should
 parallel that chosen for Transport Property names as sugggested in
 Section 5.

Trammell, et al. Expires 8 September 2022 [Page 36]

Internet-Draft TAPS Interface March 2022

6.3.2. Connection Establishment Callbacks

 Security decisions, especially pertaining to trust, are not static.
 Once configured, parameters may also be supplied during connection
 establishment. These are best handled as client-provided callbacks.
 Callbacks block the progress of the connection establishment, which
 distinguishes them from other Events in the transport system. How
 callbacks and events are implemented is specific to each
 implementation. Security handshake callbacks that may be invoked
 during connection establishment include:

 * Trust verification callback: Invoked when a Remote Endpoint’s
 trust must be verified before the handshake protocol can continue.
 For example, the application could verify an X.509 certificate as
 described in [RFC5280].

 TrustCallback := NewCallback({
 // Handle trust, return the result
 })
 SecurityParameters.SetTrustVerificationCallback(trustCallback)

 * Identity challenge callback: Invoked when a private key operation
 is required, e.g., when local authentication is requested by a
 Remote Endpoint.

 ChallengeCallback := NewCallback({
 // Handle challenge
 })
 SecurityParameters.SetIdentityChallengeCallback(challengeCallback)

7. Establishing Connections

 Before a Connection can be used for data transfer, it needs to be
 established. Establishment ends the pre-establishment phase; all
 transport properties and cryptographic parameter specification must
 be complete before establishment, as these will be used to select
 candidate Paths and Protocol Stacks for the Connection.
 Establishment may be active, using the Initiate() Action; passive,
 using the Listen() Action; or simultaneous for peer-to-peer, using
 the Rendezvous() Action. These Actions are described in the
 subsections below.

Trammell, et al. Expires 8 September 2022 [Page 37]

Internet-Draft TAPS Interface March 2022

7.1. Active Open: Initiate

 Active open is the Action of establishing a Connection to a Remote
 Endpoint presumed to be listening for incoming Connection requests.
 Active open is used by clients in client-server interactions. Active
 open is supported by the Transport Services API through the Initiate
 Action:

 Connection := Preconnection.Initiate(timeout?)

 The timeout parameter specifies how long to wait before aborting
 Active open. Before calling Initiate, the caller must have populated
 a Preconnection Object with a Remote Endpoint specifier, optionally a
 Local Endpoint specifier (if not specified, the system will attempt
 to determine a suitable Local Endpoint), as well as all properties
 necessary for candidate selection.

 The Initiate() Action returns a Connection object. Once Initiate()
 has been called, any changes to the Preconnection MUST NOT have any
 effect on the Connection. However, the Preconnection can be reused,
 e.g., to Initiate another Connection.

 Once Initiate is called, the candidate Protocol Stack(s) may cause
 one or more candidate transport-layer connections to be created to
 the specified Remote Endpoint. The caller may immediately begin
 sending Messages on the Connection (see Section 9.2) after calling
 Initiate(); note that any data marked Safely Replayable that is sent
 while the Connection is being established may be sent multiple times
 or on multiple candidates.

 The following Events may be sent by the Connection after Initiate()
 is called:

 Connection -> Ready<>

 The Ready Event occurs after Initiate has established a transport-
 layer connection on at least one usable candidate Protocol Stack over
 at least one candidate Path. No Receive Events (see Section 9.3)
 will occur before the Ready Event for Connections established using
 Initiate.

 Connection -> EstablishmentError<reason?>

 An EstablishmentError occurs either when the set of transport
 properties and security parameters cannot be fulfilled on a
 Connection for initiation (e.g., the set of available Paths and/or
 Protocol Stacks meeting the constraints is empty) or reconciled with
 the Local and/or Remote Endpoints; when the remote specifier cannot

Trammell, et al. Expires 8 September 2022 [Page 38]

Internet-Draft TAPS Interface March 2022

 be resolved; or when no transport-layer connection can be established
 to the Remote Endpoint (e.g., because the Remote Endpoint is not
 accepting connections, the application is prohibited from opening a
 Connection by the operating system, or the establishment attempt has
 timed out for any other reason).

 Connection establishment and transmission of the first message can be
 combined in a single action Section 9.2.5.

7.2. Passive Open: Listen

 Passive open is the Action of waiting for Connections from Remote
 Endpoints, commonly used by servers in client-server interactions.
 Passive open is supported by the Transport Services API through the
 Listen Action and returns a Listener object:

 Listener := Preconnection.Listen()

 Before calling Listen, the caller must have initialized the
 Preconnection during the pre-establishment phase with a Local
 Endpoint specifier, as well as all properties necessary for Protocol
 Stack selection. A Remote Endpoint may optionally be specified, to
 constrain what Connections are accepted.

 The Listen() Action returns a Listener object. Once Listen() has
 been called, any changes to the Preconnection MUST NOT have any
 effect on the Listener. The Preconnection can be disposed of or
 reused, e.g., to create another Listener.

 Listener.Stop()

 Listening continues until the global context shuts down, or until the
 Stop action is performed on the Listener object.

 Listener -> ConnectionReceived<Connection>

 The ConnectionReceived Event occurs when a Remote Endpoint has
 established a transport-layer connection to this Listener (for
 Connection-oriented transport protocols), or when the first Message
 has been received from the Remote Endpoint (for Connectionless
 protocols), causing a new Connection to be created. The resulting
 Connection is contained within the ConnectionReceived Event, and is
 ready to use as soon as it is passed to the application via the
 event.

 Listener.SetNewConnectionLimit(value)

Trammell, et al. Expires 8 September 2022 [Page 39]

Internet-Draft TAPS Interface March 2022

 If the caller wants to rate-limit the number of inbound Connections
 that will be delivered, it can set a cap using
 SetNewConnectionLimit(). This mechanism allows a server to protect
 itself from being drained of resources. Each time a new Connection
 is delivered by the ConnectionReceived Event, the value is
 automatically decremented. Once the value reaches zero, no further
 Connections will be delivered until the caller sets the limit to a
 higher value. By default, this value is Infinite. The caller is
 also able to reset the value to Infinite at any point.

 Listener -> EstablishmentError<reason?>

 An EstablishmentError occurs either when the Properties and Security
 Parameters of the Preconnection cannot be fulfilled for listening or
 cannot be reconciled with the Local Endpoint (and/or Remote Endpoint,
 if specified), when the Local Endpoint (or Remote Endpoint, if
 specified) cannot be resolved, or when the application is prohibited
 from listening by policy.

 Listener -> Stopped<>

 A Stopped Event occurs after the Listener has stopped listening.

7.3. Peer-to-Peer Establishment: Rendezvous

 Simultaneous peer-to-peer Connection establishment is supported by
 the Rendezvous() Action:

 Preconnection.Rendezvous()

 A Preconnection Object used in a Rendezvous() MUST have both the
 Local Endpoint candidates and the Remote Endpoint candidates
 specified, along with the transport properties and security
 parameters needed for Protocol Stack selection, before the
 Rendezvous() Action is initiated.

 The Rendezvous() Action listens on the Local Endpoint candidates for
 an incoming Connection from the Remote Endpoint candidates, while
 also simultaneously trying to establish a Connection from the Local
 Endpoint candidates to the Remote Endpoint candidates.

 If there are multiple Local Endpoints or Remote Endpoints configured,
 then initiating a Rendezvous() action will systematically probe the
 reachability of those endpoint candidates following an approach such
 as that used in Interactive Connectivity Establishment (ICE)
 [RFC8445].

Trammell, et al. Expires 8 September 2022 [Page 40]

Internet-Draft TAPS Interface March 2022

 If the endpoints are suspected to be behind a NAT, Rendezvous() can
 be initiated using Local Endpoints that support a method of
 discovering NAT bindings such as Session Traversal Utilities for NAT
 (STUN) [RFC8489] or Traversal Using Relays around NAT (TURN)
 [RFC8656]. In this case, the Local Endpoint will resolve to a
 mixture of local and server reflexive addresses. The Resolve()
 action on the Preconnection can be used to discover these bindings:

 []LocalEndpoint, []RemoteEndpoint := Preconnection.Resolve()

 The Resolve() call returns lists of Local Endpoints and Remote
 Endpoints, that represent the concrete addresses, local and server
 reflexive, on which a Rendezvous() for the Preconnection will listen
 for incoming Connections, and to which it will attempt to establish
 connections.

 Note that the set of LocalEndpoints returned by Resolve() might or
 might not contain information about all possible local interfaces; it
 is valid only for a Rendezvous happening at the same time as the
 resolution. Care should be taken in using these values in any other
 context.

 An application that uses Rendezvous() to establish a peer-to-peer
 connection in the presence of NATs will configure the Preconnection
 object with at least one a Local Endpoint that supports NAT binding
 discovery. It will then Resolve() the Preconnection, and pass the
 resulting list of Local Endpoint candidates to the peer via a
 signalling protocol, for example as part of an ICE [RFC5245] exchange
 within SIP [RFC3261] or WebRTC [RFC7478]. The peer will then, via
 the same signalling channel, return the Remote Endpoint candidates.
 The set of Remote Endpoint candidates are then configured onto the
 Preconnection:

 Preconnection.AddRemote([]RemoteEndpoint)

 The Rendezvous() Action can be initiated once both the Local Endpoint
 candidates and the Remote Endpoint candidates retrieved from the peer
 via the signalling channel have been added to the Preconnection.

 If successful, the Rendezvous() Action returns a Connection object
 via a RendezvousDone<> Event:

 Preconnection -> RendezvousDone<Connection>

 The RendezvousDone<> Event occurs when a Connection is established
 with the Remote Endpoint. For Connection-oriented transports, this
 occurs when the transport-layer connection is established; for
 Connectionless transports, it occurs when the first Message is

Trammell, et al. Expires 8 September 2022 [Page 41]

Internet-Draft TAPS Interface March 2022

 received from the Remote Endpoint. The resulting Connection is
 contained within the RendezvousDone<> Event, and is ready to use as
 soon as it is passed to the application via the Event. Changes made
 to a Preconnection after Rendezvous() has been called do not have any
 effect on existing Connections.

 An EstablishmentError occurs either when the Properties and Security
 Parameters of the Preconnection cannot be fulfilled for rendezvous or
 cannot be reconciled with the Local and/or Remote Endpoints, when the
 Local Endpoint or Remote Endpoint cannot be resolved, when no
 transport-layer connection can be established to the Remote Endpoint,
 or when the application is prohibited from rendezvous by policy:

 Preconnection -> EstablishmentError<reason?>

7.4. Connection Groups

 Connection Groups can be created using the Clone Action:

 Connection := Connection.Clone(framer?)

 Calling Clone on a Connection yields a Connection Group containing
 two Connections: the parent Connection on which Clone was called, and
 a resulting cloned Connection. The new Connection is actively
 openend, and it will send a Ready Event or an EstablishmentError
 Event. Calling Clone on any of these Connections adds another
 Connection to the Connection Group. Connections in a Connection
 Group share all Connection Properties except Connection Priority (see
 Section 8.1.2), and these Connection Properties are entangled:
 Changing one of the Connection Properties on one Connection in the
 Connection Group automatically changes the Connection Property for
 all others. For example, changing Timeout for aborting Connection
 (see Section 8.1.3) on one Connection in a Connection Group will
 automatically make the same change to this Connection Property for
 all other Connections in the Connection Group. Like all other
 Properties, Connection Priority is copied to the new Connection when
 calling Clone(), but in this case, a later change to the Connection
 Priority on one Connection does not change it on the other
 Connections in the same Connection Group.

 Message Properties set on a Connection also apply only to that
 Connection.

Trammell, et al. Expires 8 September 2022 [Page 42]

Internet-Draft TAPS Interface March 2022

 A new Connection created by Clone can have a Message Framer assigned
 via the optional framer parameter of the Clone Action. If this
 parameter is not supplied, the stack of Message Framers associated
 with a Connection is copied to the cloned Connection when calling
 Clone. Then, a cloned Connection has the same stack of Message
 Framers as the Connection from which they are Cloned, but these
 Framers may internally maintain per-Connection state.

 It is also possible to check which Connections belong to the same
 Connection Group. Calling GroupedConnections() on a specific
 Connection returns a set of all Connections in the same group.

 []Connection := Connection.GroupedConnections()

 Connections will belong to the same group if the application
 previously called Clone. Passive Connections can also be added to
 the same group - e.g., when a Listener receives a new Connection that
 is just a new stream of an already active multi-streaming protocol
 instance.

 If the underlying protocol supports multi-streaming, it is natural to
 use this functionality to implement Clone. In that case, Connections
 in a Connection Group are multiplexed together, giving them similar
 treatment not only inside endpoints, but also across the end-to-end
 Internet path.

 Note that calling Clone() can result in on-the-wire signaling, e.g.,
 to open a new transport connection, depending on the underlying
 Protocol Stack. When Clone() leads to the opening of multiple such
 connections, the Transport Services system will ensure consistency of
 Connection Properties by uniformly applying them to all underlying
 connections in a group. Even in such a case, there are possibilities
 for a Transport Services system to implement prioritization within a
 Connection Group [TCP-COUPLING] [RFC8699].

 Attempts to clone a Connection can result in a CloneError:

 Connection -> CloneError<reason?>

 The Connection Priority Connection Property operates on Connections
 in a Connection Group using the same approach as in Section 9.1.3.2:
 when allocating available network capacity among Connections in a
 Connection Group, sends on Connections with higher Priority values
 will be prioritized over sends on Connections that have lower
 Priority values. Capacity will be shared among these Connections
 according to the Connection Group Transmission Scheduler property
 (Section 8.1.5). See Section 9.2.6 for more.

Trammell, et al. Expires 8 September 2022 [Page 43]

Internet-Draft TAPS Interface March 2022

7.5. Adding and Removing Endpoints on a Connection

 Transport protocols that are explicitly multipath aware are expected
 to automatically manage the set of Remote Endpoints that they are
 communicating with, and the paths to those endpoints. A PathChange<>
 event, described in Section 8.3.2, will be generated when the path
 changes.

 In some cases, however, it is necessary to explicitly indicate to a
 Connection that a new remote endpoint has become available for use,
 or to indicate that some remote endpoint is no longer available.
 This is most common in the case of peer to peer connections using
 Trickle ICE [RFC8838].

 The AddRemote() action can be used to add one or more new remote
 endpoints to a Connection:

 Connection.AddRemote([]RemoteEndpoint)

 Endpoints that are already known to the Connection are ignored. A
 call to AddRemote() makes the new remote endpoints available to the
 connection, but whether the Connection makes use of those endpoints
 will depend on the underlying transport protocol.

 Similarly, the RemoveRemote() action can be used to tell a connection
 to stop using one or more remote endpoints:

 Connection.RemoveRemote([]RemoteEndpoint)

 Removing all known remote endpoints can have the effect of aborting
 the connection. The effect of removing the active remote endpoint(s)
 depends on the underlying transport: multipath aware transports might
 be able to switch to a new path if other reachable remote endpoints
 exist, or the connection might abort.

 Similarly, the AddLocal() and RemoveLocal() actions can be used to
 add and remove local endpoints to/from a Connection.

8. Managing Connections

 During pre-establishment and after establishment, connections can be
 configured and queried using Connection Properties, and asynchronous
 information may be available about the state of the connection via
 Soft Errors.

 Connection Properties represent the configuration and state of the
 selected Protocol Stack(s) backing a Connection. These Connection
 Properties may be Generic, applying regardless of transport protocol,

Trammell, et al. Expires 8 September 2022 [Page 44]

Internet-Draft TAPS Interface March 2022

 or Specific, applicable to a single implementation of a single
 transport protocol stack. Generic Connection Properties are defined
 in Section 8.1 below.

 Protocol Specific Properties are defined in a transport- and
 implementation-specific way to permit more specialized protocol
 features to be used. Too much reliance by an application on Protocol
 Specific Properties can significantly reduce the flexibility of a
 transport services implementation to make appropriate selection and
 configuration choices. Therefore, it is RECOMMENDED that Protocol
 Properties are used for properties common across different protocols
 and that Protocol Specific Properties are only used where specific
 protocols or properties are necessary.

 The application can set and query Connection Properties on a per-
 Connection basis. Connection Properties that are not read-only can
 be set during pre-establishment (see Section 6.2), as well as on
 connections directly using the SetProperty action:

 Connection.SetProperty(property, value)

 Note that changing one of the Connection Properties on one Connection
 in a Connection Group will also change it for all other Connections
 of that group; see further Section 7.4.

 At any point, the application can query Connection Properties.

 ConnectionProperties := Connection.GetProperties()
 value := ConnectionProperties.Get(property)
 if ConnectionProperties.Has(boolean_or_preference_property) then ...

 Depending on the status of the connection, the queried Connection
 Properties will include different information:

 * The connection state, which can be one of the following:
 Establishing, Established, Closing, or Closed.

 * Whether the connection can be used to send data. A connection can
 not be used for sending if the connection was created with the
 Selection Property Direction of Communication set to
 unidirectional receive or if a Message marked as Final was sent
 over this connection. See also Section 9.1.3.5.

Trammell, et al. Expires 8 September 2022 [Page 45]

Internet-Draft TAPS Interface March 2022

 * Whether the connection can be used to receive data. A connection
 cannot be used for reading if the connection was created with the
 Selection Property Direction of Communication set to
 unidirectional send or if a Message marked as Final was received.
 See Section 9.3.3.3. The latter is only supported by certain
 transport protocols, e.g., by TCP as half-closed connection.

 * For Connections that are Established, Closing, or Closed:
 Connection Properties (Section 8.1) of the actual protocols that
 were selected and instantiated, and Selection Properties that the
 application specified on the Preconnection. Selection Properties
 of type Preference will be exposed as boolean values indicating
 whether or not the property applies to the selected transport.
 Note that the instantiated protocol stack might not match all
 Protocol Selection Properties that the application specified on
 the Preconnection.

 * For Connections that are Established: information concerning the
 path(s) used by the Protocol Stack. This can be derived from
 local PVD information, measurements by the Protocol Stack, or
 other sources. For example, a TAPS system that is configured to
 receive and process PVD information [RFC7556] could also provide
 network configuration information for the chosen path(s).

8.1. Generic Connection Properties

 Generic Connection Properties are defined independent of the chosen
 protocol stack and therefore available on all Connections.

 Many Connection Properties have a corresponding Selection Property
 that enables applications to express their preference for protocols
 providing a supporting transport feature.

8.1.1. Required Minimum Corruption Protection Coverage for Receiving

 Name: recvChecksumLen

 Type: Integer or Full Coverage

 Default: Full Coverage

 If this property is an Integer, it specifies the minimum number of
 bytes in a received message that need to be covered by a checksum. A
 receiving endpoint will not forward messages that have less coverage
 to the application. The application is responsible for handling any
 corruption within the non-protected part of the message [RFC8085]. A
 special value of 0 means that a received packet may also have a zero
 checksum field.

Trammell, et al. Expires 8 September 2022 [Page 46]

Internet-Draft TAPS Interface March 2022

8.1.2. Connection Priority

 Name: connPriority

 Type: Integer (non-negative)

 Default: 100

 This Property is a non-negative integer representing the priority of
 this Connection relative to other Connections in the same Connection
 Group. A higher value reflects a higher priority. It has no effect
 on Connections not part of a Connection Group. As noted in
 Section 7.4, this property is not entangled when Connections are
 cloned, i.e., changing the Priority on one Connection in a Connection
 Group does not change it on the other Connections in the same
 Connection Group. No guarantees of a specific behavior regarding
 Connection Priority are given; a Transport Services system may ignore
 this property. See Section 9.2.6 for more details.

8.1.3. Timeout for Aborting Connection

 Name: connTimeout

 Type: Numeric or Disabled

 Default: Disabled

 If this property is Numeric, it specifies how long to wait before
 deciding that an active Connection has failed when trying to reliably
 deliver data to the Remote Endpoint. Adjusting this Property will
 only take effect when the underlying stack supports reliability. If
 this property has the enumerated value Disabled, it means that no
 timeout is scheduled.

8.1.4. Timeout for keep alive packets

 Name: keepAliveTimeout

 Type: Numeric or Disabled

 Default: Implementation-defined

 A Transport Services API can request a protocol that supports sending
 keep alive packets Section 6.2.10. If this property is an Integer,
 it specifies the maximum length of time an idle connection (one for
 which no transport packets have been sent) should wait before the
 Local Endpoint sends a keep-alive packet to the Remote Endpoint.
 Adjusting this Property will only take effect when the underlying

Trammell, et al. Expires 8 September 2022 [Page 47]

Internet-Draft TAPS Interface March 2022

 stack supports sending keep-alive packets. Guidance on setting this
 value for datagram transports is provided in [RFC8085]. A value
 greater than the connection timeout (Section 8.1.3) or the enumerated
 value Disabled will disable the sending of keep-alive packets.

8.1.5. Connection Group Transmission Scheduler

 Name: connScheduler

 Type: Enumeration

 Default: Weighted Fair Queueing (see Section 3.6 in [RFC8260])

 This property specifies which scheduler should be used among
 Connections within a Connection Group, see Section 7.4. The set of
 schedulers can be taken from [RFC8260].

8.1.6. Capacity Profile

 Name: connCapacityProfile

 Type: Enumeration

 Default: Default Profile (Best Effort)

 This property specifies the desired network treatment for traffic
 sent by the application and the tradeoffs the application is prepared
 to make in path and protocol selection to receive that desired
 treatment. When the capacity profile is set to a value other than
 Default, z Transport Services system SHOULD select paths and
 configure protocols to optimize the tradeoff between delay, delay
 variation, and efficient use of the available capacity based on the
 capacity profile specified. How this is realized is implementation-
 specific. The Capacity Profile MAY also be used to set markings on
 the wire for Protocol Stacks supporting this. Recommendations for
 use with DSCP are provided below for each profile; note that when a
 Connection is multiplexed, the guidelines in Section 6 of [RFC7657]
 apply.

 The following values are valid for the Capacity Profile:

 Default: The application provides no information about its expected
 capacity profile. Transport Services implementations that map the
 requested capacity profile onto per-connection DSCP signaling
 SHOULD assign the DSCP Default Forwarding [RFC2474] Per Hop
 Behaviour (PHB).

 Scavenger: The application is not interactive. It expects to send

Trammell, et al. Expires 8 September 2022 [Page 48]

Internet-Draft TAPS Interface March 2022

 and/or receive data without any urgency. This can, for example,
 be used to select protocol stacks with scavenger transmission
 control and/or to assign the traffic to a lower-effort service.
 Transport Services implementations that map the requested capacity
 profile onto per-connection DSCP signaling SHOULD assign the DSCP
 Less than Best Effort [RFC8622] PHB.

 Low Latency/Interactive: The application is interactive, and prefers
 loss to latency. Response time should be optimized at the expense
 of delay variation and efficient use of the available capacity
 when sending on this connection. This can be used by the system
 to disable the coalescing of multiple small Messages into larger
 packets (Nagle’s algorithm); to prefer immediate acknowledgment
 from the peer endpoint when supported by the underlying transport;
 and so on. Transport Services implementations that map the
 requested capacity profile onto per-connection DSCP signaling
 without multiplexing SHOULD assign a DSCP Assured Forwarding
 (AF41,AF42,AF43,AF44) [RFC2597] PHB. Inelastic traffic that is
 expected to conform to the configured network service rate could
 be mapped to the DSCP Expedited Forwarding [RFC3246] or [RFC5865]
 PHBs.

 Low Latency/Non-Interactive: The application prefers loss to
 latency, but is not interactive. Response time should be
 optimized at the expense of delay variation and efficient use of
 the available capacity when sending on this connection. Transport
 system implementations that map the requested capacity profile
 onto per-connection DSCP signaling without multiplexing SHOULD
 assign a DSCP Assured Forwarding (AF21,AF22,AF23,AF24) [RFC2597]
 PHB.

 Constant-Rate Streaming: The application expects to send/receive
 data at a constant rate after Connection establishment. Delay and
 delay variation should be minimized at the expense of efficient
 use of the available capacity. This implies that the Connection
 might fail if the Path is unable to maintain the desired rate. A
 transport can interpret this capacity profile as preferring a
 circuit breaker [RFC8084] to a rate-adaptive congestion
 controller. Transport system implementations that map the
 requested capacity profile onto per-connection DSCP signaling
 without multiplexing SHOULD assign a DSCP Assured Forwarding
 (AF31,AF32,AF33,AF34) [RFC2597] PHB.

 Capacity-Seeking: The application expects to send/receive data at

Trammell, et al. Expires 8 September 2022 [Page 49]

Internet-Draft TAPS Interface March 2022

 the maximum rate allowed by its congestion controller over a
 relatively long period of time. Transport Services
 implementations that map the requested capacity profile onto per-
 connection DSCP signaling without multiplexing SHOULD assign a
 DSCP Assured Forwarding (AF11,AF12,AF13,AF14) [RFC2597] PHB per
 Section 4.8 of [RFC4594].

 The Capacity Profile for a selected protocol stack may be modified on
 a per-Message basis using the Transmission Profile Message Property;
 see Section 9.1.3.8.

8.1.7. Policy for using Multipath Transports

 Name: multipath-policy

 Type: Enumeration

 Default: Handover

 This property specifies the local policy for transferring data across
 multiple paths between the same end hosts if Multipath Transport is
 not set to Disabled (see Section 6.2.14). Possible values are:

 Handover: The connection ought only to attempt to migrate between
 different paths when the original path is lost or becomes
 unusable. The thresholds used to declare a path unusable are
 implementation specific.

 Interactive: The connection ought only to attempt to minimize the
 latency for interactive traffic patterns by transmitting data
 across multiple paths when this is beneficial. The goal of
 minimizing the latency will be balanced against the cost of each
 of these paths. Depending on the cost of the lower-latency path,
 the scheduling might choose to use a higher-latency path. Traffic
 can be scheduled such that data may be transmitted on multiple
 paths in parallel to achieve a lower latency. The specific
 scheduling algorithm is implementation-specific.

 Aggregate: The connection ought to attempt to use multiple paths in
 parallel to maximize available capacity and possibly overcome the
 capacity limitations of the individual paths. The actual strategy
 is implementation specific.

 Note that this is a local choice - the Remote Endpoint can choose a
 different policy.

Trammell, et al. Expires 8 September 2022 [Page 50]

Internet-Draft TAPS Interface March 2022

8.1.8. Bounds on Send or Receive Rate

 Name: minSendRate / minRecvRate / maxSendRate / maxRecvRate

 Type: Numeric or Unlimited / Numeric or Unlimited / Numeric or
 Unlimited / Numeric or Unlimited

 Default: Unlimited / Unlimited / Unlimited / Unlimited

 Integer values of this property specify an upper-bound rate that a
 transfer is not expected to exceed (even if flow control and
 congestion control allow higher rates), and/or a lower-bound rate
 below which the application does not deem it will be useful. These
 are specified in bits per second. The enumerated value Unlimited
 indicates that no bound is specified.

8.1.9. Group Connection Limit

 Name: groupConnLimit

 Type: Numeric or Unlimited

 Default: Unlimited

 If this property is an Integer, it controls the number of Connections
 that can be accepted from a peer as new members of the Connection’s
 group. Similar to SetNewConnectionLimit(), this limits the number of
 ConnectionReceived Events that will occur, but constrained to the
 group of the Connection associated with this property. For a multi-
 streaming transport, this limits the number of allowed streams.

8.1.10. Isolate Session

 Name: isolateSession

 Type: Boolean

 Default: false

 When set to true, this property will initiate new Connections using
 as little cached information (such as session tickets or cookies) as
 possible from previous connections that are not in the same
 Connection Group. Any state generated by this Connection will only
 be shared with Connections in the same Connection Group. Cloned
 Connections will use saved state from within the Connection Group.
 This is used for separating Connection Contexts as specified in
 [I-D.ietf-taps-arch].

Trammell, et al. Expires 8 September 2022 [Page 51]

Internet-Draft TAPS Interface March 2022

 Note that this does not guarantee no leakage of information, as
 implementations may not be able to fully isolate all caches (e.g.
 RTT estimates). Note that this property may degrade connection
 performance.

8.1.11. Read-only Connection Properties

 The following generic Connection Properties are read-only, i.e. they
 cannot be changed by an application.

8.1.11.1. Maximum Message Size Concurrent with Connection Establishment

 Name: zeroRttMsgMaxLen

 Type: Integer

 This property represents the maximum Message size that can be sent
 before or during Connection establishment, see also Section 9.1.3.4.
 It is specified as the number of bytes.

8.1.11.2. Maximum Message Size Before Fragmentation or Segmentation

 Name: singularTransmissionMsgMaxLen

 Type: Integer

 This property, if applicable, represents the maximum Message size
 that can be sent without incurring network-layer fragmentation at the
 sender. It is specified as the number of bytes. It exposes a value
 to the application based on the Maximum Packet Size (MPS) as
 described in Datagram PLPMTUD [RFC8899]. This can allow a sending
 stack to avoid unwanted fragmentation at the network-layer or
 segmentation by the transport layer.

8.1.11.3. Maximum Message Size on Send

 Name: sendMsgMaxLen

 Type: Integer

 This property represents the maximum Message size that an application
 can send. It is specified as the nummber of bytes.

8.1.11.4. Maximum Message Size on Receive

 Name: recvMsgMaxLen

 Type: Integer

Trammell, et al. Expires 8 September 2022 [Page 52]

Internet-Draft TAPS Interface March 2022

 This numeric property represents the maximum Message size that an
 application can receive. It specified as the number of bytes.

8.2. TCP-specific Properties: User Timeout Option (UTO)

 These properties specify configurations for the User Timeout Option
 (UTO), in the case that TCP becomes the chosen transport protocol.
 Implementation is optional and useful only if TCP is implemented in
 the Transport Services system.

 These TCP-specific properties are included here because the feature
 Suggest timeout to the peer is part of the minimal set of transport
 services [RFC8923], where this feature was categorized as
 "functional". This means that when an Transport Services
 implementation offers this feature, the Transport Services API has to
 expose an interface to the application. Otherwise, the
 implementation might violate assumptions by the application, which
 could cause the application to fail.

 All of the below properties are optional (e.g., it is possible to
 specify User Timeout Enabled as true, but not specify an Advertised
 User Timeout value; in this case, the TCP default will be used).
 These properties reflect the API extension specified in Section 3 of
 [RFC5482].

8.2.1. Advertised User Timeout

 Name: tcp.userTimeoutValue

 Type: Integer

 Default: the TCP default

 This time value is advertised via the TCP User Timeout Option (UTO)
 [RFC5482] at the Remote Endpoint to adapt its own Timeout for
 aborting Connection (see Section 8.1.3) value.

8.2.2. User Timeout Enabled

 Name: tcp.userTimeoutEnabled

 Type: Boolean

 Default: false

 This property controls whether the UTO option is enabled for a
 connection. This applies to both sending and receiving.

Trammell, et al. Expires 8 September 2022 [Page 53]

Internet-Draft TAPS Interface March 2022

8.2.3. Timeout Changeable

 Name: tcp.userTimeoutChangeable

 Type: Boolean

 Default: true

 This property controls whether the Timeout for aborting Connection
 (see Section 8.1.3) may be changed based on a UTO option received
 from the remote peer. This boolean becomes false when Timeout for
 aborting Connection (see Section 8.1.3) is used.

8.3. Connection Lifecycle Events

 During the lifetime of a connection there are events that can occur
 when configured.

8.3.1. Soft Errors

 Asynchronous introspection is also possible, via the SoftError Event.
 This event informs the application about the receipt and contents of
 an ICMP error message related to the Connection. This will only
 happen if the underlying protocol stack supports access to soft
 errors; however, even if the underlying stack supports it, there is
 no guarantee that a soft error will be signaled.

 Connection -> SoftError<>

8.3.2. Path change

 This event notifies the application when at least one of the paths
 underlying a Connection has changed. Changes occur on a single path
 when the PMTU changes as well as when multiple paths are used and
 paths are added or removed, the set of local endpoints changes, or a
 handover has been performed.

 Connection -> PathChange<>

9. Data Transfer

 Data is sent and received as Messages, which allows the application
 to communicate the boundaries of the data being transferred.

Trammell, et al. Expires 8 September 2022 [Page 54]

Internet-Draft TAPS Interface March 2022

9.1. Messages and Framers

 Each Message has an optional Message Context, which allows to add
 Message Properties, identify Send Events related to a specific
 Message or to inspect meta-data related to the Message sent. Framers
 can be used to extend or modify the message data with additional
 information that can be processed at the receiver to detect message
 boundaries.

9.1.1. Message Contexts

 Using the MessageContext object, the application can set and retrieve
 meta-data of the message, including Message Properties (see
 Section 9.1.3) and framing meta-data (see Section 9.1.2.2).
 Therefore, a MessageContext object can be passed to the Send action
 and is returned by each Send and Receive related event.

 Message Properties can be set and queried using the Message Context:

 MessageContext.add(property, value)
 PropertyValue := MessageContext.get(property)

 These Message Properties may be generic properties or Protocol
 Specific Properties.

 For MessageContexts returned by send Events (see Section 9.2.2) and
 receive Events (see Section 9.3.2), the application can query
 information about the Local and Remote Endpoint:

 RemoteEndpoint := MessageContext.GetRemoteEndpoint()
 LocalEndpoint := MessageContext.GetLocalEndpoint()

9.1.2. Message Framers

 Although most applications communicate over a network using well-
 formed Messages, the boundaries and metadata of the Messages are
 often not directly communicated by the transport protocol itself.
 For example, HTTP applications send and receive HTTP messages over a
 byte-stream transport, requiring that the boundaries of HTTP messages
 be parsed from the stream of bytes.

 Message Framers allow extending a Connection’s Protocol Stack to
 define how to encapsulate or encode outbound Messages, and how to
 decapsulate or decode inbound data into Messages. Message Framers
 allow message boundaries to be preserved when using a Connection
 object, even when using byte-stream transports. This is designed
 based on the fact that many of the current application protocols
 evolved over TCP, which does not provide message boundary

Trammell, et al. Expires 8 September 2022 [Page 55]

Internet-Draft TAPS Interface March 2022

 preservation, and since many of these protocols require message
 boundaries to function, each application layer protocol has defined
 its own framing.

 To use a Message Framer, the application adds it to its Preconnection
 object. Then, the Message Framer can intercept all calls to Send()
 or Receive() on a Connection to add Message semantics, in addition to
 interacting with the setup and teardown of the Connection. A Framer
 can start sending data before the application sends data if the
 framing protocol requires a prefix or handshake (see [RFC8229] for an
 example of such a framing protocol).

 Initiate() Send() Receive() Close()
 | | ^ |
 | | | |
 +----v----------v---------+----------v-----+
 | Connection |
 +----+----------+---------^----------+-----+
 | | | |
 | +-----------------+ |
 | | Messages | |
 | +-----------------+ |
 | | | |
 +----v----------v---------+----------v-----+
 | Framer(s) |
 +----+----------+---------^----------+-----+
 | | | |
 | +-----------------+ |
 | | Byte-stream | |
 | +-----------------+ |
 | | | |
 +----v----------v---------+----------v-----+
 | Transport Protocol Stack |
 +--+

 Figure 1: Protocol Stack showing a Message Framer

 Note that while Message Framers add the most value when placed above
 a protocol that otherwise does not preserve message boundaries, they
 can also be used with datagram- or message-based protocols. In these
 cases, they add an additional transformation to further encode or
 encapsulate, and can potentially support packing multiple
 application-layer Messages into individual transport datagrams.

 The API to implement a Message Framer can vary depending on the
 implementation; guidance on implementing Message Framers can be found
 in [I-D.ietf-taps-impl].

Trammell, et al. Expires 8 September 2022 [Page 56]

Internet-Draft TAPS Interface March 2022

9.1.2.1. Adding Message Framers to Pre-Connections

 The Message Framer object can be added to one or more Preconnections
 to run on top of transport protocols. Multiple Framers may be added
 to a Preconnection; in this case, the Framers operate as a framing
 stack, i.e. the last one added runs first when framing outbound
 messages, and last when parsing inbound data.

 The following example adds a basic HTTP Message Framer to a
 Preconnection:

 framer := NewHTTPMessageFramer()
 Preconnection.AddFramer(framer)

 Since Message Framers pass from Preconnection to Listener or
 Connection, addition of Framers must happen before any operation that
 may result in the creation of a Connection.

9.1.2.2. Framing Meta-Data

 When sending Messages, applications can add Framer-specific
 properties to a MessageContext (Section 9.1.1). In order to set
 these properties, the add and get actions on the MessageContext. To
 avoid naming conflicts, the property names SHOULD be prefixed with a
 namespace referencing the framer implementation or the protocol it
 implements as described in Section 4.1.

 This mechanism can be used, for example, to set the type of a Message
 for a TLV format. The namespace of values is custom for each unique
 Message Framer.

 messageContext := NewMessageContext()
 messageContext.add(framer, key, value)
 Connection.Send(messageData, messageContext)

 When an application receives a MessageContext in a Receive event, it
 can also look to see if a value was set by a specific Message Framer.

 messageContext.get(framer, key) -> value

 For example, if an HTTP Message Framer is used, the values could
 correspond to HTTP headers:

 httpFramer := NewHTTPMessageFramer()
 ...
 messageContext := NewMessageContext()
 messageContext.add(httpFramer, "accept", "text/html")

Trammell, et al. Expires 8 September 2022 [Page 57]

Internet-Draft TAPS Interface March 2022

9.1.3. Message Properties

 Applications needing to annotate the Messages they send with extra
 information (for example, to control how data is scheduled and
 processed by the transport protocols supporting the Connection) can
 include this information in the Message Context passed to the Send
 Action. For other uses of the message context, see Section 9.1.1.

 Message Properties are per-Message, not per-Send if partial Messages
 are sent (Section 9.2.3). All data blocks associated with a single
 Message share properties specified in the Message Contexts. For
 example, it would not make sense to have the beginning of a Message
 expire, but allow the end of a Message to still be sent.

 A MessageContext object contains metadata for the Messages to be sent
 or received.

 messageData := "hello"
 messageContext := NewMessageContext()
 messageContext.add(parameter, value)
 Connection.Send(messageData, messageContext)

 The simpler form of Send, which does not take any messageContext, is
 equivalent to passing a default MessageContext without adding any
 Message Properties.

 If an application wants to override Message Properties for a specific
 message, it can acquire an empty MessageContext Object and add all
 desired Message Properties to that Object. It can then reuse the
 same messageContext Object for sending multiple Messages with the
 same properties.

 Properties can be added to a MessageContext object only before the
 context is used for sending. Once a MessageContext has been used
 with a Send call, further modifications to the MessageContext object
 do not have any effect on this Send call. Message Properties that
 are not added to a MessageContext object before using the context for
 sending will either take a specific default value or be configured
 based on Selection or Connection Properties of the Connection that is
 associated with the Send call. This initialization behavior is
 defined per Message Property below.

 The Message Properties could be inconsistent with the properties of
 the Protocol Stacks underlying the Connection on which a given
 Message is sent. For example, a Protocol Stack must be able to
 provide ordering if the msgOrdered property of a Message is enabled.
 Sending a Message with Message Properties inconsistent with the
 Selection Properties of the Connection yields an error.

Trammell, et al. Expires 8 September 2022 [Page 58]

Internet-Draft TAPS Interface March 2022

 If a Message Property contradicts a Connection Property, and if this
 per-Message behavior can be supported, it overrides the Connection
 Property for the specific Message. For example, if Reliable Data
 Transfer (Connection) is set to Require and a protocol with
 configurable per-Message reliability is used, setting Reliable Data
 Transfer (Message) to false for a particular Message will allow this
 Message to be sent without any reliability guarantees. Changing the
 Reliable Data Transfer property on Messages is only possible for
 Connections that were established enabling the Selection Property
 Configure Per-Message Reliability.

 The following Message Properties are supported:

9.1.3.1. Lifetime

 Name: msgLifetime

 Type: Numeric

 Default: infinite

 The Lifetime specifies how long a particular Message can wait to be
 sent to the Remote Endpoint before it is irrelevant and no longer
 needs to be (re-)transmitted. This is a hint to the Transport
 Services implementation - it is not guaranteed that a Message will
 not be sent when its Lifetime has expired.

 Setting a Message’s Lifetime to infinite indicates that the
 application does not wish to apply a time constraint on the
 transmission of the Message, but it does not express a need for
 reliable delivery; reliability is adjustable per Message via the
 Reliable Data Transfer (Message) property (see Section 9.1.3.7). The
 type and units of Lifetime are implementation-specific.

9.1.3.2. Priority

 Name: msgPriority

 Type: Integer (non-negative)

 Default: 100

 This property specifies the priority of a Message, relative to other
 Messages sent over the same Connection.

Trammell, et al. Expires 8 September 2022 [Page 59]

Internet-Draft TAPS Interface March 2022

 A Message with Priority 0 will yield to a Message with Priority 1,
 which will yield to a Message with Priority 2, and so on. Priorities
 may be used as a sender-side scheduling construct only, or be used to
 specify priorities on the wire for Protocol Stacks supporting
 prioritization.

 Note that this property is not a per-message override of the
 Connection Priority - see Section 8.1.2. The Priority properties may
 interact, but can be used independently and be realized by different
 mechanisms; see Section 9.2.6.

9.1.3.3. Ordered

 Name: msgOrdered

 Type: Boolean

 Default: the queried Boolean value of the Selection Property
 preserveOrder (Section 6.2.4)

 The order in which Messages were submitted for transmission via the
 Send Action will be preserved on delivery via Receive<> events for
 all Messages on a Connection that have this Message Property set to
 true.

 If false, the Message is delivered to the receiving application
 without preserving the ordering. This property is used for protocols
 that support preservation of data ordering, see Section 6.2.4, but
 allow out-of-order delivery for certain messages, e.g., by
 multiplexing independent messages onto different streams.

 If it is not configured by the application before sending, this
 property’s default value will be based on the Selection Property
 preserveOrder of the Connection associated with the Send Action.

9.1.3.4. Safely Replayable

 Name: safelyReplayable

 Type: Boolean

 Default: false

 If true, Safely Replayable specifies that a Message is safe to send
 to the Remote Endpoint more than once for a single Send Action. It
 marks the data as safe for certain 0-RTT establishment techniques,
 where retransmission of the 0-RTT data may cause the remote
 application to receive the Message multiple times.

Trammell, et al. Expires 8 September 2022 [Page 60]

Internet-Draft TAPS Interface March 2022

 For protocols that do not protect against duplicated messages, e.g.,
 UDP, all messages need to be marked as Safely Replayable. To enable
 protocol selection to choose such a protocol, Safely Replayable needs
 to be added to the TransportProperties passed to the Preconnection.
 If such a protocol was chosen, disabling Safely Replayable on
 individual messages MUST result in a SendError.

9.1.3.5. Final

 Name: final

 Type: Boolean

 Default: false

 If true, this indicates a Message is the last that the application
 will send on a Connection. This allows underlying protocols to
 indicate to the Remote Endpoint that the Connection has been
 effectively closed in the sending direction. For example, TCP-based
 Connections can send a FIN once a Message marked as Final has been
 completely sent, indicated by marking endOfMessage. Protocols that
 do not support signalling the end of a Connection in a given
 direction will ignore this property.

 A Final Message must always be sorted to the end of a list of
 Messages. The Final property overrides Priority and any other
 property that would re-order Messages. If another Message is sent
 after a Message marked as Final has already been sent on a
 Connection, the Send Action for the new Message will cause a
 SendError Event.

9.1.3.6. Sending Corruption Protection Length

 Name: msgChecksumLen

 Type: Integer or Full Coverage

 Default: Full Coverage

 If this property is an Integer, it specifies the minimum length of
 the section of a sent Message, starting from byte 0, that the
 application requires to be delivered without corruption due to lower
 layer errors. It is used to specify options for simple integrity
 protection via checksums. A value of 0 means that no checksum needs
 to be calculated, and the enumerated value Full Coverage means that
 the entire Message needs to be protected by a checksum. Only Full
 Coverage is guaranteed, any other requests are advisory, which may
 result in Full Coverage being applied.

Trammell, et al. Expires 8 September 2022 [Page 61]

Internet-Draft TAPS Interface March 2022

9.1.3.7. Reliable Data Transfer (Message)

 Name: msgReliable

 Type: Boolean

 Default: the queried Boolean value of the Selection Property
 reliability (Section 6.2.1)

 When true, this property specifies that a Message should be sent in
 such a way that the transport protocol ensures all data is received
 on the other side without corruption. Changing the Reliable Data
 Transfer property on Messages is only possible for Connections that
 were established enabling the Selection Property Configure Per-
 Message Reliability. When this is not the case, changing msgReliable
 will generate an error.

 Disabling this property indicates that the Transport Services system
 may disable retransmissions or other reliability mechanisms for this
 particular Message, but such disabling is not guaranteed.

 If it is not configured by the application before sending, this
 property’s default value will be based on the Selection Property
 reliability of the Connection associated with the Send Action.

9.1.3.8. Message Capacity Profile Override

 Name: msgCapacityProfile

 Type: Enumeration

 Default: inherited from the Connection Property connCapacityProfile
 (Section 8.1.6)

 This enumerated property specifies the application’s preferred
 tradeoffs for sending this Message; it is a per-Message override of
 the Capacity Profile connection property (see Section 8.1.6). If it
 is not configured by the application before sending, this property’s
 default value will be based on the Connection Property
 connCapacityProfile of the Connection associated with the Send
 Action.

9.1.3.9. No Network-Layer Fragmentation

 Name: noFragmentation

 Type: Boolean

Trammell, et al. Expires 8 September 2022 [Page 62]

Internet-Draft TAPS Interface March 2022

 Default: false

 This property specifies that a message should be sent and received
 without network-layer fragmentation, if possible. It can be used to
 avoid network layer fragmentation when transport segmentation is
 prefered.

 This only takes effect when the transport uses a network layer that
 supports this functionality. When it does take effect, setting this
 property to true will cause the sender to avoid network-layer source
 frgementation. When using IPv4, this will result in the Don’t
 Fragment bit being set in the IP header.

 Attempts to send a message with this property that result in a size
 greater than the transport’s current estimate of its maximum packet
 size (singularTransmissionMsgMaxLen) can result in transport
 segmentation when permitted, or in a SendError.

 Note: noSegmentation should be used when it is desired to only send a
 message within a single network packet.

9.1.3.10. No Segmentation

 Name: noSegmentation

 Type: Boolean

 Default: false

 When set to true, this property requests the transport layer to not
 provide segmentation of messages larger than the maximum size
 permitted by the network layer, and also to avoid network-layer
 source fragmentation of messages. When running over IPv4, setting
 this property to true can result in a sending endpount setting the
 Don’t Fragment bit in the IPv4 header of packets generated by the
 transport layer. An attempt to send a message that results in a size
 greater than the transport’s current estimate of its maximum packet
 size (singularTransmissionMsgMaxLen) will result in a SendError.
 This only takes effect when the transport and network layer support
 this functionality.

Trammell, et al. Expires 8 September 2022 [Page 63]

Internet-Draft TAPS Interface March 2022

9.2. Sending Data

 Once a Connection has been established, it can be used for sending
 Messages. By default, Send enqueues a complete Message, and takes
 optional per-Message properties (see Section 9.2.1). All Send
 actions are asynchronous, and deliver Events (see Section 9.2.2).
 Sending partial Messages for streaming large data is also supported
 (see Section 9.2.3).

 Messages are sent on a Connection using the Send action:

 Connection.Send(messageData, messageContext?, endOfMessage?)

 where messageData is the data object to send, and messageContext
 allows adding Message Properties, identifying Send Events related to
 a specific Message or inspecting meta-data related to the Message
 sent (see Section 9.1.1).

 The optional endOfMessage parameter supports partial sending and is
 described in Section 9.2.3.

9.2.1. Basic Sending

 The most basic form of sending on a connection involves enqueuing a
 single Data block as a complete Message with default Message
 Properties.

 messageData := "hello"
 Connection.Send(messageData)

 The interpretation of a Message to be sent is dependent on the
 implementation, and on the constraints on the Protocol Stacks implied
 by the Connection’s transport properties. For example, a Message may
 be a single datagram for UDP Connections; or an HTTP Request for HTTP
 Connections.

 Some transport protocols can deliver arbitrarily sized Messages, but
 other protocols constrain the maximum Message size. Applications can
 query the Connection Property "Maximum Message size on send"
 (Section 8.1.11.3) to determine the maximum size allowed for a single
 Message. If a Message is too large to fit in the Maximum Message
 Size for the Connection, the Send will fail with a SendError event
 (Section 9.2.2.3). For example, it is invalid to send a Message over
 a UDP connection that is larger than the available datagram sending
 size.

Trammell, et al. Expires 8 September 2022 [Page 64]

Internet-Draft TAPS Interface March 2022

9.2.2. Send Events

 Like all Actions in Transport Services API, the Send Action is
 asynchronous. There are several Events that can be delivered in
 response to Sending a Message. Exactly one Event (Sent, Expired, or
 SendError) will be delivered in response to each call to Send.

 Note that if partial Sends are used (Section 9.2.3), there will still
 be exactly one Send Event delivered for each call to Send. For
 example, if a Message expired while two requests to Send data for
 that Message are outstanding, there will be two Expired events
 delivered.

 The Transport Services API should allow the application to correlate
 which Send Action resulted in a particular Send Event. The manner in
 which this correlation is indicated is implementation-specific.

9.2.2.1. Sent

 Connection -> Sent<messageContext>

 The Sent Event occurs when a previous Send Action has completed,
 i.e., when the data derived from the Message has been passed down or
 through the underlying Protocol Stack and is no longer the
 responsibility of the Transport Services API. The exact disposition
 of the Message (i.e., whether it has actually been transmitted, moved
 into a buffer on the network interface, moved into a kernel buffer,
 and so on) when the Sent Event occurs is implementation-specific.
 The Sent Event contains a reference to the Message Context of the
 Message to which it applies.

 Sent Events allow an application to obtain an understanding of the
 amount of buffering it creates. That is, if an application calls the
 Send Action multiple times without waiting for a Sent Event, it has
 created more buffer inside the Transport Services system than an
 application that always waits for the Sent Event before calling the
 next Send Action.

9.2.2.2. Expired

 Connection -> Expired<messageContext>

 The Expired Event occurs when a previous Send Action expired before
 completion; i.e. when the Message was not sent before its Lifetime
 (see Section 9.1.3.1) expired. This is separate from SendError, as
 it is an expected behavior for partially reliable transports. The
 Expired Event contains a reference to the Message Context of the
 Message to which it applies.

Trammell, et al. Expires 8 September 2022 [Page 65]

Internet-Draft TAPS Interface March 2022

9.2.2.3. SendError

 Connection -> SendError<messageContext, reason?>

 A SendError occurs when a Message was not sent due to an error
 condition: an attempt to send a Message which is too large for the
 system and Protocol Stack to handle, some failure of the underlying
 Protocol Stack, or a set of Message Properties not consistent with
 the Connection’s transport properties. The SendError contains a
 reference to the Message Context of the Message to which it applies.

9.2.3. Partial Sends

 It is not always possible for an application to send all data
 associated with a Message in a single Send Action. The Message data
 may be too large for the application to hold in memory at one time,
 or the length of the Message may be unknown or unbounded.

 Partial Message sending is supported by passing an endOfMessage
 boolean parameter to the Send Action. This value is always true by
 default, and the simpler forms of Send are equivalent to passing true
 for endOfMessage.

 The following example sends a Message in two separate calls to Send.

 messageContext := NewMessageContext()
 messageContext.add(parameter, value)

 messageData := "hel"
 endOfMessage := false
 Connection.Send(messageData, messageContext, endOfMessage)

 messageData := "lo"
 endOfMessage := true
 Connection.Send(messageData, messageContext, endOfMessage)

 All data sent with the same MessageContext object will be treated as
 belonging to the same Message, and will constitute an in-order series
 until the endOfMessage is marked.

9.2.4. Batching Sends

 To reduce the overhead of sending multiple small Messages on a
 Connection, the application could batch several Send Actions
 together. This provides a hint to the system that the sending of
 these Messages ought to be coalesced when possible, and that sending
 any of the batched Messages can be delayed until the last Message in
 the batch is enqueued.

Trammell, et al. Expires 8 September 2022 [Page 66]

Internet-Draft TAPS Interface March 2022

 The semantics for starting and ending a batch can be implementation-
 specific, but need to allow multiple Send Actions to be enqueued.

 Connection.StartBatch()
 Connection.Send(messageData)
 Connection.Send(messageData)
 Connection.EndBatch()

9.2.5. Send on Active Open: InitiateWithSend

 For application-layer protocols where the Connection initiator also
 sends the first message, the InitiateWithSend() action combines
 Connection initiation with a first Message sent:

Connection := Preconnection.InitiateWithSend(messageData, messageContext?, timeou

 Whenever possible, a messageContext should be provided to declare the
 Message passed to InitiateWithSend as Safely Replayable. This allows
 the Transport Services system to make use of 0-RTT establishment in
 case this is supported by the available protocol stacks. When the
 selected stack(s) do not support transmitting data upon connection
 establishment, InitiateWithSend is identical to Initiate() followed
 by Send().

 Neither partial sends nor send batching are supported by
 InitiateWithSend().

 The Events that may be sent after InitiateWithSend() are equivalent
 to those that would be sent by an invocation of Initiate() followed
 immediately by an invocation of Send(), with the caveat that a send
 failure that occurs because the Connection could not be established
 will not result in a SendError separate from the EstablishmentError
 signaling the failure of Connection establishment.

9.2.6. Priority and the Transport Services API

 The Transport Services API provides two properties to allow a sender
 to signal the relative priority of data transmission: the Priority
 Message Property Section 9.1.3.2, and the Connection Priority
 Connection Property Section 8.1.2. These properties are designed to
 allow the expression and implementation of a wide variety of
 approaches to transmission priority in the transport and application
 layer, including those which do not appear on the wire (affecting
 only sender-side transmission scheduling) as well as those that do
 (e.g. [I-D.ietf-httpbis-priority].

Trammell, et al. Expires 8 September 2022 [Page 67]

Internet-Draft TAPS Interface March 2022

 A Transport Services system gives no guarantees about how its
 expression of relative priorities will be realized. However, the
 Transport Services system will seek to ensure that performance of
 relatively-prioritized connections and messages is not worse with
 respect to those connections and messages than an equivalent
 configuration in which all prioritization properties are left at
 their defaults.

 The Transport Services API does order Connection Priority over the
 Priority Message Property. In the absense of other externalities
 (e.g., transport-layer flow control), a priority 1 Message on a
 priority 0 Connection will be sent before a priority 0 Message on a
 priority 1 Connection in the same group.

9.3. Receiving Data

 Once a Connection is established, it can be used for receiving data
 (unless the Direction of Communication property is set to
 unidirectional send). As with sending, the data is received in
 Messages. Receiving is an asynchronous operation, in which each call
 to Receive enqueues a request to receive new data from the
 connection. Once data has been received, or an error is encountered,
 an event will be delivered to complete any pending Receive requests
 (see Section 9.3.2). If Messages arrive at the Transport Services
 system before Receive requests are issued, ensuing Receive requests
 will first operate on these Messages before awaiting any further
 Messages.

9.3.1. Enqueuing Receives

 Receive takes two parameters to specify the length of data that an
 application is willing to receive, both of which are optional and
 have default values if not specified.

 Connection.Receive(minIncompleteLength?, maxLength?)

 By default, Receive will try to deliver complete Messages in a single
 event (Section 9.3.2.1).

 The application can set a minIncompleteLength value to indicate the
 smallest partial Message data size in bytes that should be delivered
 in response to this Receive. By default, this value is infinite,
 which means that only complete Messages should be delivered (see
 Section 9.3.2.2 and Section 9.1.2 for more information on how this is
 accomplished). If this value is set to some smaller value, the
 associated receive event will be triggered only when at least that
 many bytes are available, or the Message is complete with fewer
 bytes, or the system needs to free up memory. Applications should

Trammell, et al. Expires 8 September 2022 [Page 68]

Internet-Draft TAPS Interface March 2022

 always check the length of the data delivered to the receive event
 and not assume it will be as long as minIncompleteLength in the case
 of shorter complete Messages or memory issues.

 The maxLength argument indicates the maximum size of a Message in
 bytes that the application is currently prepared to receive. The
 default value for maxLength is infinite. If an incoming Message is
 larger than the minimum of this size and the maximum Message size on
 receive for the Connection’s Protocol Stack, it will be delivered via
 ReceivedPartial events (Section 9.3.2.2).

 Note that maxLength does not guarantee that the application will
 receive that many bytes if they are available; the Transport Services
 API could return ReceivedPartial events with less data than maxLength
 according to implementation constraints. Note also that maxLength
 and minIncompleteLength are intended only to manage buffering, and
 are not interpreted as a receiver preference for message reordering.

9.3.2. Receive Events

 Each call to Receive will be paired with a single Receive Event,
 which can be a success or an error. This allows an application to
 provide backpressure to the transport stack when it is temporarily
 not ready to receive messages.

 The Transport Services API should allow the application to correlate
 which call to Receive resulted in a particular Receive Event. The
 manner in which this correlation is indicated is implementation-
 specific.

9.3.2.1. Received

 Connection -> Received<messageData, messageContext>

 A Received event indicates the delivery of a complete Message. It
 contains two objects, the received bytes as messageData, and the
 metadata and properties of the received Message as messageContext.

 The messageData object provides access to the bytes that were
 received for this Message, along with the length of the byte array.
 The messageContext is provided to enable retrieving metadata about
 the message and referring to the message. The messageContext object
 ist described in Section 9.1.1.

 See Section 9.1.2 for handling Message framing in situations where
 the Protocol Stack only provides a byte-stream transport.

Trammell, et al. Expires 8 September 2022 [Page 69]

Internet-Draft TAPS Interface March 2022

9.3.2.2. ReceivedPartial

Connection -> ReceivedPartial<messageData, messageContext, endOfMessage>

 If a complete Message cannot be delivered in one event, one part of
 the Message can be delivered with a ReceivedPartial event. To
 continue to receive more of the same Message, the application must
 invoke Receive again.

 Multiple invocations of ReceivedPartial deliver data for the same
 Message by passing the same MessageContext, until the endOfMessage
 flag is delivered or a ReceiveError occurs. All partial blocks of a
 single Message are delivered in order without gaps. This event does
 not support delivering discontiguous partial Messages. If, for
 example, Message A is divided into three pieces (A1, A2, A3) and
 Message B is divided into three pieces (B1, B2, B3), and
 preserveOrder is not Required, the ReceivedPartial may deliver them
 in a sequence like this: A1, B1, B2, A2, A3, B3, because the
 messageContext allows the application to identify the pieces as
 belonging to Message A and B, respectively. However, a sequence
 like: A1, A3 will never occur.

 If the minIncompleteLength in the Receive request was set to be
 infinite (indicating a request to receive only complete Messages),
 the ReceivedPartial event may still be delivered if one of the
 following conditions is true:

 * the underlying Protocol Stack supports message boundary
 preservation, and the size of the Message is larger than the
 buffers available for a single message;

 * the underlying Protocol Stack does not support message boundary
 preservation, and the Message Framer (see Section 9.1.2) cannot
 determine the end of the message using the buffer space it has
 available; or

 * the underlying Protocol Stack does not support message boundary
 preservation, and no Message Framer was supplied by the
 application

 Note that in the absence of message boundary preservation or a
 Message Framer, all bytes received on the Connection will be
 represented as one large Message of indeterminate length.

 In the following example, an application only wants to receive up to
 1000 bytes at a time from a Connection. If a 1500-byte message
 arrives, it would receive the message in two separate ReceivedPartial
 events.

Trammell, et al. Expires 8 September 2022 [Page 70]

Internet-Draft TAPS Interface March 2022

Connection.Receive(1, 1000)

// Receive first 1000 bytes, message is incomplete
Connection -> ReceivedPartial<messageData(1000 bytes), messageContext, false>

Connection.Receive(1, 1000)

// Receive last 500 bytes, message is now complete
Connection -> ReceivedPartial<messageData(500 bytes), messageContext, true>

9.3.2.3. ReceiveError

 Connection -> ReceiveError<messageContext, reason?>

 A ReceiveError occurs when data is received by the underlying
 Protocol Stack that cannot be fully retrieved or parsed, and when it
 is useful for the application to be notified of such errors. For
 example, a ReceiveError can indicate that a Message (identified via
 the MessageContext) that was being partially received previously, but
 had not completed, encountered an error and will not be completed.
 This can be useful for an application, which may want to use this
 error as a hint to remove previously received Message parts from
 memory. As another example, if an incoming Message does not fulfill
 the Required Minimum Corruption Protection Coverage for Receiving
 property (see Section 8.1.1), an application can use this error as a
 hint to inform the peer application to adjust the Sending Corruption
 Protection Length property (see Section 9.1.3.6).

 In contrast, internal protocol reception errors (e.g., loss causing
 retransmissions in TCP) are not signalled by this Event. Conditions
 that irrevocably lead to the termination of the Connection are
 signaled using ConnectionError (see Section 10).

9.3.3. Receive Message Properties

 Each Message Context may contain metadata from protocols in the
 Protocol Stack; which metadata is available is Protocol Stack
 dependent. These are exposed through additional read-only Message
 Properties that can be queried from the MessageContext object (see
 Section 9.1.1) passed by the receive event. The following metadata
 values are supported:

Trammell, et al. Expires 8 September 2022 [Page 71]

Internet-Draft TAPS Interface March 2022

9.3.3.1. UDP(-Lite)-specific Property: ECN

 When available, Message metadata carries the value of the Explicit
 Congestion Notification (ECN) field. This information can be used
 for logging and debugging, and for building applications that need
 access to information about the transport internals for their own
 operation. This property is specific to UDP and UDP-Lite because
 these protocols do not implement congestion control, and hence expose
 this functionality to the application (see [RFC8293], following the
 guidance in [RFC8085])

9.3.3.2. Early Data

 In some cases it can be valuable to know whether data was read as
 part of early data transfer (before connection establishment has
 finished). This is useful if applications need to treat early data
 separately, e.g., if early data has different security properties
 than data sent after connection establishment. In the case of TLS
 1.3, client early data can be replayed maliciously (see [RFC8446]).
 Thus, receivers might wish to perform additional checks for early
 data to ensure it is safely replayable. If TLS 1.3 is available and
 the recipient Message was sent as part of early data, the
 corresponding metadata carries a flag indicating as such. If early
 data is enabled, applications should check this metadata field for
 Messages received during connection establishment and respond
 accordingly.

9.3.3.3. Receiving Final Messages

 The Message Context can indicate whether or not this Message is the
 Final Message on a Connection. For any Message that is marked as
 Final, the application can assume that there will be no more Messages
 received on the Connection once the Message has been completely
 delivered. This corresponds to the Final property that may be marked
 on a sent Message, see Section 9.1.3.5.

 Some transport protocols and peers do not support signaling of the
 Final property. Applications therefore should not rely on receiving
 a Message marked Final to know that the sending endpoint is done
 sending on a connection.

 Any calls to Receive once the Final Message has been delivered will
 result in errors.

Trammell, et al. Expires 8 September 2022 [Page 72]

Internet-Draft TAPS Interface March 2022

10. Connection Termination

 A Connection can be terminated i) by the Local Endpoint (i.e., the
 application calls the Close, CloseGroup, Abort or AbortGroup Action),
 ii) by the Remote Endpoint (i.e., the remote application calls the
 Close, CloseGroup, Abort or AbortGroup Action), or iii) because of an
 error (e.g., a timeout). A local call of the Close Action will cause
 the Connection to either send a Closed Event or a ConnectionError
 Event, and a local call of the CloseGroup Action will cause all of
 the Connections in the group to either send a Closed Event or a
 ConnectionError Event. A local call of the Abort Action will cause
 the Connection to send a ConnectionError Event, indicating local
 Abort as a reason, and a local call of the AbortGroup Action will
 cause all of the Connections in the group to send a ConnectionError
 Event, indicating local Abort as a reason.

 Remote Action calls map to Events similar to local calls (e.g., a
 remote Close causes the Connection to either send a Closed Event or a
 ConnectionError Event), but, different from local Action calls, it is
 not guaranteed that such Events will indeed be invoked. When an
 application needs to free resources associated with a Connection, it
 should therefore not rely on the invocation of such Events due to
 termination calls from the Remote Endpoint, but instead use the local
 termination Actions.

 Close terminates a Connection after satisfying all the requirements
 that were specified regarding the delivery of Messages that the
 application has already given to the Transport Services system. Upon
 successfully satisfying all these requirements, the Connection will
 send the Closed Event. For example, if reliable delivery was
 requested for a Message handed over before calling Close, the Closed
 Event will signify that this Message has indeed been delivered. This
 Action does not affect any other Connection in the same Connection
 Group.

 Connection.Close()

 The Closed Event informs the application that a Close Action has
 successfully completed, or that the Remote Endpoint has closed the
 Connection. There is no guarantee that a remote Close will be
 signaled.

 Connection -> Closed<>

Trammell, et al. Expires 8 September 2022 [Page 73]

Internet-Draft TAPS Interface March 2022

 Abort terminates a Connection without delivering any remaining
 Messages. This action does not affect any other Connection that is
 entangled with this one in a Connection Group. When the Abort Action
 has finished, the Connection will send a ConnectionError Event,
 indicating local Abort as a reason.

 Connection.Abort()

 CloseGroup gracefully terminates a Connection and any other
 Connections in the same Connection Group. For example, all of the
 Connections in a group might be streams of a single session for a
 multistreaming protocol; closing the entire group will close the
 underlying session. See also Section 7.4. All Connections in the
 group will send a Closed Event when the CloseGroup Action was
 successful. As with Close, any Messages remaining to be processed on
 a Connection will be handled prior to closing.

 Connection.CloseGroup()

 AbortGroup terminates a Connection and any other Connections that are
 in the same Connection Group without delivering any remaining
 Messages. When the AbortGroup Action has finished, all Connections
 in the group will send a ConnectionError Event, indicating local
 Abort as a reason.

 Connection.AbortGroup()

 A ConnectionError informs the application that: 1) data could not be
 delivered to the peer after a timeout, or 2) the Connection has been
 aborted (e.g., because the peer has called Abort). There is no
 guarantee that an Abort from the peer will be signaled.

 Connection -> ConnectionError<reason?>

11. Connection State and Ordering of Operations and Events

 This Transport Services API is designed to be independent of an
 implementation’s concurrency model. The details of how exactly
 actions are handled, and how events are dispatched, are
 implementation dependent.

 Each transition of connection state is associated with one of more
 events:

 * Ready<> occurs when a Connection created with Initiate() or
 InitiateWithSend() transitions to Established state.

Trammell, et al. Expires 8 September 2022 [Page 74]

Internet-Draft TAPS Interface March 2022

 * ConnectionReceived<> occurs when a Connection created with
 Listen() transitions to Established state.

 * RendezvousDone<> occurs when a Connection created with
 Rendezvous() transitions to Established state.

 * Closed<> occurs when a Connection transitions to Closed state
 without error.

 * EstablishmentError<> occurs when a Connection created with
 Initiate() transitions from Establishing state to Closed state due
 to an error.

 * ConnectionError<> occurs when a Connection transitions to Closed
 state due to an error in all other circumstances.

 The following diagram shows the possible states of a Connection and
 the events that occur upon a transition from one state to another.

 (*) (**)
 Establishing -----> Established -----> Closing ------> Closed
 | ^
 | |
 +---+
 EstablishmentError<>

 (*) Ready<>, ConnectionReceived<>, RendezvousDone<>
 (**) Closed<>, ConnectionError<>

 Figure 2: Connection State Diagram

 The Transport Services API provides the following guarantees about
 the ordering of operations:

 * Sent<> events will occur on a Connection in the order in which the
 Messages were sent (i.e., delivered to the kernel or to the
 network interface, depending on implementation).

 * Received<> will never occur on a Connection before it is
 Established; i.e. before a Ready<> event on that Connection, or a
 ConnectionReceived<> or RendezvousDone<> containing that
 Connection.

Trammell, et al. Expires 8 September 2022 [Page 75]

Internet-Draft TAPS Interface March 2022

 * No events will occur on a Connection after it is Closed; i.e.,
 after a Closed<> event, an EstablishmentError<> or
 ConnectionError<> will not occur on that connection. To ensure
 this ordering, Closed<> will not occur on a Connection while other
 events on the Connection are still locally outstanding (i.e.,
 known to the Transport Services API and waiting to be dealt with
 by the application).

12. IANA Considerations

 RFC-EDITOR: Please remove this section before publication.

 This document has no Actions for IANA. Later versions of this
 document may create IANA registries for generic transport property
 names and transport property namespaces (see Section 4.1).

13. Privacy and Security Considerations

 This document describes a generic API for interacting with a
 Transport Services system. Part of this API includes configuration
 details for transport security protocols, as discussed in
 Section 6.3. It does not recommend use (or disuse) of specific
 algorithms or protocols. Any API-compatible transport security
 protocol ought to work in a Transport Services system. Security
 considerations for these protocols are discussed in the respective
 specifications.

 The described API is used to exchange information between an
 application and the Transport Services system. While it is not
 necessarily expected that both systems are implemented by the same
 authority, it is expected that the Transport Services system
 implementation is either provided as a library that is selected by
 the application from a trusted party, or that it is part of the
 operating system that the application also relies on for other tasks.

 In either case, the Transport Services API is an internal interface
 that is used to change information locally between two systems.
 However, as the Transport Services system is responsible for network
 communication, it is in the position to potentially share any
 information provided by the application with the network or another
 communication peer. Most of the information provided over the
 Transport Services API are useful to configure and select protocols
 and paths and are not necessarily privacy sensitive. Still, some
 information could be privacy sensitive because it might reveal usage
 characteristics and habits of the user of an application.

Trammell, et al. Expires 8 September 2022 [Page 76]

Internet-Draft TAPS Interface March 2022

 Of course any communication over a network reveals usage
 characteristics, as all packets, as well as their timing and size,
 are part of the network-visible wire image [RFC8546]. However, the
 selection of a protocol and its configuration also impacts which
 information is visible, potentially in clear text, and which other
 entities can access it. In most cases, information provided for
 protocol and path selection should not directly translate to
 information that can be observed by network devices on the path.
 However, there might be specific configuration information that is
 intended for path exposure, e.g., a DiffServ codepoint setting, that
 is either provided directly by the application or indirectly
 configured for a traffic profile.

 Applications should be aware that communication attempts can lead to
 more than one connection establishment. This is the case, for
 example, when the Transport Services system also executes name
 resolution, when support mechanisms such as TURN or ICE are used to
 establish connectivity, if protocols or paths are raised, or if a
 path fails and fallback or re-establishment is supported in the
 Transport Services system.

 Applications should also take care to not assume that all data
 received using the Transport Services API is always complete or well-
 formed. Specifically, messages that are received partially
 Section 9.3.2.2 could be a source of truncation attacks if
 applications do not distinguish between partial messages and complete
 messages.

 The Transport Services API explicitly does not require the
 application to resolve names, though there is a tradeoff between
 early and late binding of addresses to names. Early binding allows
 the API implementation to reduce connection setup latency, at the
 cost of potentially limited scope for alternate path discovery during
 Connection establishment, as well as potential additional information
 leakage about application interest when used with a resolution method
 (such as DNS without TLS) which does not protect query
 confidentiality.

 These communication activities are not different from what is used
 today. However, the goal of a Transport Services system is to
 support such mechanisms as a generic service within the transport
 layer. This enables applications to more dynamically benefit from
 innovations and new protocols in the transport, although it reduces
 transparency of the underlying communication actions to the
 application itself. The Transport Services API is designed such that
 protocol and path selection can be limited to a small and controlled
 set if required by the application for functional or security
 purposes. Further, A Transport Services system should provide an

Trammell, et al. Expires 8 September 2022 [Page 77]

Internet-Draft TAPS Interface March 2022

 interface to poll information about which protocol and path is
 currently in use as well as provide logging about the communication
 events of each connection.

14. Acknowledgements

 This work has received funding from the European Union’s Horizon 2020
 research and innovation programme under grant agreements No. 644334
 (NEAT) and No. 688421 (MAMI).

 This work has been supported by Leibniz Prize project funds of DFG -
 German Research Foundation: Gottfried Wilhelm Leibniz-Preis 2011 (FKZ
 FE 570/4-1).

 This work has been supported by the UK Engineering and Physical
 Sciences Research Council under grant EP/R04144X/1.

 This work has been supported by the Research Council of Norway under
 its "Toppforsk" programme through the "OCARINA" project.

 Thanks to Stuart Cheshire, Josh Graessley, David Schinazi, and Eric
 Kinnear for their implementation and design efforts, including Happy
 Eyeballs, that heavily influenced this work. Thanks to Laurent Chuat
 and Jason Lee for initial work on the Post Sockets interface, from
 which this work has evolved. Thanks to Maximilian Franke for asking
 good questions based on implementation experience and for
 contributing text, e.g., on multicast.

15. References

15.1. Normative References

 [I-D.ietf-taps-arch]
 Pauly, T., Trammell, B., Brunstrom, A., Fairhurst, G., and
 C. Perkins, "An Architecture for Transport Services", Work
 in Progress, Internet-Draft, draft-ietf-taps-arch-12, 3
 January 2022, <https://www.ietf.org/archive/id/draft-ietf-
 taps-arch-12.txt>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC2914] Floyd, S., "Congestion Control Principles", BCP 41,
 RFC 2914, DOI 10.17487/RFC2914, September 2000,
 <https://www.rfc-editor.org/info/rfc2914>.

Trammell, et al. Expires 8 September 2022 [Page 78]

Internet-Draft TAPS Interface March 2022

 [RFC8084] Fairhurst, G., "Network Transport Circuit Breakers",
 BCP 208, RFC 8084, DOI 10.17487/RFC8084, March 2017,
 <https://www.rfc-editor.org/info/rfc8084>.

 [RFC8085] Eggert, L., Fairhurst, G., and G. Shepherd, "UDP Usage
 Guidelines", BCP 145, RFC 8085, DOI 10.17487/RFC8085,
 March 2017, <https://www.rfc-editor.org/info/rfc8085>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [RFC8303] Welzl, M., Tuexen, M., and N. Khademi, "On the Usage of
 Transport Features Provided by IETF Transport Protocols",
 RFC 8303, DOI 10.17487/RFC8303, February 2018,
 <https://www.rfc-editor.org/info/rfc8303>.

 [RFC8446] Rescorla, E., "The Transport Layer Security (TLS) Protocol
 Version 1.3", RFC 8446, DOI 10.17487/RFC8446, August 2018,
 <https://www.rfc-editor.org/info/rfc8446>.

 [RFC8981] Gont, F., Krishnan, S., Narten, T., and R. Draves,
 "Temporary Address Extensions for Stateless Address
 Autoconfiguration in IPv6", RFC 8981,
 DOI 10.17487/RFC8981, February 2021,
 <https://www.rfc-editor.org/info/rfc8981>.

15.2. Informative References

 [I-D.ietf-httpbis-priority]
 Oku, K. and L. Pardue, "Extensible Prioritization Scheme
 for HTTP", Work in Progress, Internet-Draft, draft-ietf-
 httpbis-priority-12, 17 January 2022,
 <https://www.ietf.org/archive/id/draft-ietf-httpbis-
 priority-12.txt>.

 [I-D.ietf-taps-impl]
 Brunstrom, A., Pauly, T., Enghardt, T., Tiesel, P. S., and
 M. Welzl, "Implementing Interfaces to Transport Services",
 Work in Progress, Internet-Draft, draft-ietf-taps-impl-11,
 9 January 2022, <https://www.ietf.org/archive/id/draft-
 ietf-taps-impl-11.txt>.

 [RFC2474] Nichols, K., Blake, S., Baker, F., and D. Black,
 "Definition of the Differentiated Services Field (DS
 Field) in the IPv4 and IPv6 Headers", RFC 2474,
 DOI 10.17487/RFC2474, December 1998,
 <https://www.rfc-editor.org/info/rfc2474>.

Trammell, et al. Expires 8 September 2022 [Page 79]

Internet-Draft TAPS Interface March 2022

 [RFC2597] Heinanen, J., Baker, F., Weiss, W., and J. Wroclawski,
 "Assured Forwarding PHB Group", RFC 2597,
 DOI 10.17487/RFC2597, June 1999,
 <https://www.rfc-editor.org/info/rfc2597>.

 [RFC3246] Davie, B., Charny, A., Bennet, J.C.R., Benson, K., Le
 Boudec, J.Y., Courtney, W., Davari, S., Firoiu, V., and D.
 Stiliadis, "An Expedited Forwarding PHB (Per-Hop
 Behavior)", RFC 3246, DOI 10.17487/RFC3246, March 2002,
 <https://www.rfc-editor.org/info/rfc3246>.

 [RFC3261] Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston,
 A., Peterson, J., Sparks, R., Handley, M., and E.
 Schooler, "SIP: Session Initiation Protocol", RFC 3261,
 DOI 10.17487/RFC3261, June 2002,
 <https://www.rfc-editor.org/info/rfc3261>.

 [RFC3376] Cain, B., Deering, S., Kouvelas, I., Fenner, B., and A.
 Thyagarajan, "Internet Group Management Protocol, Version
 3", RFC 3376, DOI 10.17487/RFC3376, October 2002,
 <https://www.rfc-editor.org/info/rfc3376>.

 [RFC4594] Babiarz, J., Chan, K., and F. Baker, "Configuration
 Guidelines for DiffServ Service Classes", RFC 4594,
 DOI 10.17487/RFC4594, August 2006,
 <https://www.rfc-editor.org/info/rfc4594>.

 [RFC4604] Holbrook, H., Cain, B., and B. Haberman, "Using Internet
 Group Management Protocol Version 3 (IGMPv3) and Multicast
 Listener Discovery Protocol Version 2 (MLDv2) for Source-
 Specific Multicast", RFC 4604, DOI 10.17487/RFC4604,
 August 2006, <https://www.rfc-editor.org/info/rfc4604>.

 [RFC5245] Rosenberg, J., "Interactive Connectivity Establishment
 (ICE): A Protocol for Network Address Translator (NAT)
 Traversal for Offer/Answer Protocols", RFC 5245,
 DOI 10.17487/RFC5245, April 2010,
 <https://www.rfc-editor.org/info/rfc5245>.

 [RFC5280] Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,
 Housley, R., and W. Polk, "Internet X.509 Public Key
 Infrastructure Certificate and Certificate Revocation List
 (CRL) Profile", RFC 5280, DOI 10.17487/RFC5280, May 2008,
 <https://www.rfc-editor.org/info/rfc5280>.

 [RFC5482] Eggert, L. and F. Gont, "TCP User Timeout Option",
 RFC 5482, DOI 10.17487/RFC5482, March 2009,
 <https://www.rfc-editor.org/info/rfc5482>.

Trammell, et al. Expires 8 September 2022 [Page 80]

Internet-Draft TAPS Interface March 2022

 [RFC5865] Baker, F., Polk, J., and M. Dolly, "A Differentiated
 Services Code Point (DSCP) for Capacity-Admitted Traffic",
 RFC 5865, DOI 10.17487/RFC5865, May 2010,
 <https://www.rfc-editor.org/info/rfc5865>.

 [RFC7478] Holmberg, C., Hakansson, S., and G. Eriksson, "Web Real-
 Time Communication Use Cases and Requirements", RFC 7478,
 DOI 10.17487/RFC7478, March 2015,
 <https://www.rfc-editor.org/info/rfc7478>.

 [RFC7556] Anipko, D., Ed., "Multiple Provisioning Domain
 Architecture", RFC 7556, DOI 10.17487/RFC7556, June 2015,
 <https://www.rfc-editor.org/info/rfc7556>.

 [RFC7657] Black, D., Ed. and P. Jones, "Differentiated Services
 (Diffserv) and Real-Time Communication", RFC 7657,
 DOI 10.17487/RFC7657, November 2015,
 <https://www.rfc-editor.org/info/rfc7657>.

 [RFC8095] Fairhurst, G., Ed., Trammell, B., Ed., and M. Kuehlewind,
 Ed., "Services Provided by IETF Transport Protocols and
 Congestion Control Mechanisms", RFC 8095,
 DOI 10.17487/RFC8095, March 2017,
 <https://www.rfc-editor.org/info/rfc8095>.

 [RFC8229] Pauly, T., Touati, S., and R. Mantha, "TCP Encapsulation
 of IKE and IPsec Packets", RFC 8229, DOI 10.17487/RFC8229,
 August 2017, <https://www.rfc-editor.org/info/rfc8229>.

 [RFC8260] Stewart, R., Tuexen, M., Loreto, S., and R. Seggelmann,
 "Stream Schedulers and User Message Interleaving for the
 Stream Control Transmission Protocol", RFC 8260,
 DOI 10.17487/RFC8260, November 2017,
 <https://www.rfc-editor.org/info/rfc8260>.

 [RFC8293] Ghanwani, A., Dunbar, L., McBride, M., Bannai, V., and R.
 Krishnan, "A Framework for Multicast in Network
 Virtualization over Layer 3", RFC 8293,
 DOI 10.17487/RFC8293, January 2018,
 <https://www.rfc-editor.org/info/rfc8293>.

 [RFC8445] Keranen, A., Holmberg, C., and J. Rosenberg, "Interactive
 Connectivity Establishment (ICE): A Protocol for Network
 Address Translator (NAT) Traversal", RFC 8445,
 DOI 10.17487/RFC8445, July 2018,
 <https://www.rfc-editor.org/info/rfc8445>.

Trammell, et al. Expires 8 September 2022 [Page 81]

Internet-Draft TAPS Interface March 2022

 [RFC8489] Petit-Huguenin, M., Salgueiro, G., Rosenberg, J., Wing,
 D., Mahy, R., and P. Matthews, "Session Traversal
 Utilities for NAT (STUN)", RFC 8489, DOI 10.17487/RFC8489,
 February 2020, <https://www.rfc-editor.org/info/rfc8489>.

 [RFC8546] Trammell, B. and M. Kuehlewind, "The Wire Image of a
 Network Protocol", RFC 8546, DOI 10.17487/RFC8546, April
 2019, <https://www.rfc-editor.org/info/rfc8546>.

 [RFC8622] Bless, R., "A Lower-Effort Per-Hop Behavior (LE PHB) for
 Differentiated Services", RFC 8622, DOI 10.17487/RFC8622,
 June 2019, <https://www.rfc-editor.org/info/rfc8622>.

 [RFC8656] Reddy, T., Ed., Johnston, A., Ed., Matthews, P., and J.
 Rosenberg, "Traversal Using Relays around NAT (TURN):
 Relay Extensions to Session Traversal Utilities for NAT
 (STUN)", RFC 8656, DOI 10.17487/RFC8656, February 2020,
 <https://www.rfc-editor.org/info/rfc8656>.

 [RFC8699] Islam, S., Welzl, M., and S. Gjessing, "Coupled Congestion
 Control for RTP Media", RFC 8699, DOI 10.17487/RFC8699,
 January 2020, <https://www.rfc-editor.org/info/rfc8699>.

 [RFC8838] Ivov, E., Uberti, J., and P. Saint-Andre, "Trickle ICE:
 Incremental Provisioning of Candidates for the Interactive
 Connectivity Establishment (ICE) Protocol", RFC 8838,
 DOI 10.17487/RFC8838, January 2021,
 <https://www.rfc-editor.org/info/rfc8838>.

 [RFC8899] Fairhurst, G., Jones, T., TÃ¼xen, M., RÃ¼ngeler, I., and T.
 VÃ¶lker, "Packetization Layer Path MTU Discovery for
 Datagram Transports", RFC 8899, DOI 10.17487/RFC8899,
 September 2020, <https://www.rfc-editor.org/info/rfc8899>.

 [RFC8922] Enghardt, T., Pauly, T., Perkins, C., Rose, K., and C.
 Wood, "A Survey of the Interaction between Security
 Protocols and Transport Services", RFC 8922,
 DOI 10.17487/RFC8922, October 2020,
 <https://www.rfc-editor.org/info/rfc8922>.

 [RFC8923] Welzl, M. and S. Gjessing, "A Minimal Set of Transport
 Services for End Systems", RFC 8923, DOI 10.17487/RFC8923,
 October 2020, <https://www.rfc-editor.org/info/rfc8923>.

Trammell, et al. Expires 8 September 2022 [Page 82]

Internet-Draft TAPS Interface March 2022

 [TCP-COUPLING]
 Islam, S., Welzl, M., Hiorth, K., Hayes, D., Armitage, G.,
 and S. Gjessing, "ctrlTCP: Reducing Latency through
 Coupled, Heterogeneous Multi-Flow TCP Congestion Control",
 IEEE INFOCOM Global Internet Symposium (GI) workshop (GI
 2018) , 2018.

Appendix A. Implementation Mapping

 The way the concepts from this abstract API map into concrete APIs in
 a given language on a given platform largely depends on the features
 and norms of the language and the platform. Actions could be
 implemented as functions or method calls, for instance, and Events
 could be implemented via event queues, handler functions or classes,
 communicating sequential processes, or other asynchronous calling
 conventions.

A.1. Types

 The basic types mentioned in Section 1.1 typically have natural
 correspondences in practical programming languages, perhaps
 constrained by implementation-specific limitations. For example:

 * An Integer can typically be represented in C by an int or long,
 subject to the underlying platform’s ranges for each.

 * In C, a Tuple may be represented as a struct with one member for
 each of the value types in the ordered grouping. In Python, by
 contrast, a Tuple may be represented natively as a tuple, a
 sequence of dynamically-typed elements.

 * A Collection may be represented as a std::set in C++ or as a set
 in Python. In C, it may be represented as an array or as a
 higher-level data structure with appropriate accessors defined.

 The objects described in Section 1.1 can similarly be represented in
 different ways depending on which programming language is used.
 Objects like Preconnections, Connections, and Listeners can be long-
 lived, and benefit from using object-oriented constructs. Note that
 in C, these objects may need to provide a way to release or free
 their underlying memory when the application is done using them. For
 example, since a Preconnection can be used to initiate multiple
 Connections, it is the responsibility of the application to clean up
 the Preconnection memory if necessary.

Trammell, et al. Expires 8 September 2022 [Page 83]

Internet-Draft TAPS Interface March 2022

A.2. Events and Errors

 This specification treats Events and Errors similarly. Errors, just
 as any other Events, may occur asynchronously in network
 applications. However, implementations of this API may report Errors
 synchronously, according to the error handling idioms of the
 implementation platform, where they can be immediately detected, such
 as by generating an exception when attempting to initiate a
 connection with inconsistent Transport Properties. An error can
 provide an optional reason to the application with further details
 about why the error occurred.

A.3. Time Duration

 Time duration types are implementation-specific. For instance, it
 could be a number of seconds, number of milliseconds, or a struct
 timeval in C or a user-defined Duration class in C++.

Appendix B. Convenience Functions

B.1. Adding Preference Properties

 As Selection Properties of type Preference will be set on a
 TransportProperties object quite frequently, implementations can
 provide special actions for adding each preference level i.e,
 TransportProperties.Set(some_property, avoid) is equivalent to
 TransportProperties.Avoid(some_property):

 TransportProperties.Require(property)
 TransportProperties.Prefer(property)
 TransportProperties.Ignore(property)
 TransportProperties.Avoid(property)
 TransportProperties.Prohibit(property)

B.2. Transport Property Profiles

 To ease the use of the Transport Services API specified by this
 document, implementations can provide a mechanism to create Transport
 Property objects (see Section 6.2) that are pre-configured with
 frequently used sets of properties; the following are in common use
 in current applications:

B.2.1. reliable-inorder-stream

 This profile provides reliable, in-order transport service with
 congestion control. TCP is an example of a protocol that provides
 this service. It should consist of the following properties:

Trammell, et al. Expires 8 September 2022 [Page 84]

Internet-Draft TAPS Interface March 2022

 +=======================+=========+
 | Property | Value |
 +=======================+=========+
 | reliability | require |
 +-----------------------+---------+
 | preserveOrder | require |
 +-----------------------+---------+
 | congestionControl | require |
 +-----------------------+---------+
 | preserveMsgBoundaries | ignore |
 +-----------------------+---------+

 Table 2: reliable-inorder-
 stream preferences

B.2.2. reliable-message

 This profile provides message-preserving, reliable, in-order
 transport service with congestion control. SCTP is an example of a
 protocol that provides this service. It should consist of the
 following properties:

 +=======================+=========+
 | Property | Value |
 +=======================+=========+
 | reliability | require |
 +-----------------------+---------+
 | preserveOrder | require |
 +-----------------------+---------+
 | congestionControl | require |
 +-----------------------+---------+
 | preserveMsgBoundaries | require |
 +-----------------------+---------+

 Table 3: reliable-message
 preferences

B.2.3. unreliable-datagram

 This profile provides a datagram transport service without any
 reliability guarantee. An example of a protocol that provides this
 service is UDP. It consists of the following properties:

Trammell, et al. Expires 8 September 2022 [Page 85]

Internet-Draft TAPS Interface March 2022

 +=======================+=========+
 | Property | Value |
 +=======================+=========+
 | reliability | avoid |
 +-----------------------+---------+
 | preserveOrder | avoid |
 +-----------------------+---------+
 | congestionControl | ignore |
 +-----------------------+---------+
 | preserveMsgBoundaries | require |
 +-----------------------+---------+
 | safely replayable | true |
 +-----------------------+---------+

 Table 4: unreliable-datagram
 preferences

 Applications that choose this Transport Property Profile would avoid
 the additional latency that could be introduced by retransmission or
 reordering in a transport protocol.

 Applications that choose this Transport Property Profile to reduce
 latency should also consider setting an appropriate Capacity Profile
 Property, see Section 8.1.6 and might benefit from controlling
 checksum coverage, see Section 6.2.7 and Section 6.2.8.

Appendix C. Relationship to the Minimal Set of Transport Services for
 End Systems

 [RFC8923] identifies a minimal set of transport services that end
 systems should offer. These services make all non-security-related
 transport features of TCP, MPTCP, UDP, UDP-Lite, SCTP and LEDBAT
 available that 1) require interaction with the application, and 2) do
 not get in the way of a possible implementation over TCP (or, with
 limitations, UDP). The following text explains how this minimal set
 is reflected in the present API. For brevity, it is based on the
 list in Section 4.1 of [RFC8923], updated according to the discussion
 in Section 5 of [RFC8923]. The present API covers all elements of
 this section. This list is a subset of the transport features in
 Appendix A of [RFC8923], which refers to the primitives in "pass 2"
 (Section 4) of [RFC8303] for further details on the implementation
 with TCP, MPTCP, UDP, UDP-Lite, SCTP and LEDBAT.

 * Connect: Initiate Action (Section 7.1).

 * Listen: Listen Action (Section 7.2).

Trammell, et al. Expires 8 September 2022 [Page 86]

Internet-Draft TAPS Interface March 2022

 * Specify number of attempts and/or timeout for the first
 establishment message: timeout parameter of Initiate (Section 7.1)
 or InitiateWithSend Action (Section 9.2.5).

 * Disable MPTCP: multipath Property (Section 6.2.14).

 * Hand over a message to reliably transfer (possibly multiple times)
 before connection establishment: InitiateWithSend Action
 (Section 9.2.5).

 * Change timeout for aborting connection (using retransmit limit or
 time value): connTimeout property, using a time value
 (Section 8.1.3).

 * Timeout event when data could not be delivered for too long:
 ConnectionError Event (Section 10).

 * Suggest timeout to the peer: See "TCP-specific Properties: User
 Timeout Option (UTO)" (Section 8.2).

 * Notification of ICMP error message arrival: softErrorNotify
 (Section 6.2.17) and SoftError Event (Section 8.3.1).

 * Choose a scheduler to operate between streams of an association:
 connScheduler property (Section 8.1.5).

 * Configure priority or weight for a scheduler: connPriority
 property (Section 8.1.2).

 * "Specify checksum coverage used by the sender" and "Disable
 checksum when sending": msgChecksumLen property (Section 9.1.3.6)
 and fullChecksumSend property (Section 6.2.7).

 * "Specify minimum checksum coverage required by receiver" and
 "Disable checksum requirement when receiving": recvChecksumLen
 property (Section 8.1.1) and fullChecksumRecv property
 (Section 6.2.8).

 * "Specify DF field": noFragmentation property (Section 9.1.3.9).

 * Get max. transport-message size that may be sent using a non-
 fragmented IP packet from the configured interface:
 singularTransmissionMsgMaxLen property (Section 8.1.11.2).

 * Get max. transport-message size that may be received from the
 configured interface: recvMsgMaxLen property (Section 8.1.11.4).

Trammell, et al. Expires 8 September 2022 [Page 87]

Internet-Draft TAPS Interface March 2022

 * Obtain ECN field: This is a read-only Message Property of the
 MessageContext object (see "UDP(-Lite)-specific Property: ECN"
 Section 9.3.3.1).

 * "Specify DSCP field", "Disable Nagle algorithm", "Enable and
 configure a Low Extra Delay Background Transfer": as suggested in
 Section 5.5 of [RFC8923], these transport features are
 collectively offered via the connCapacityProfile property
 (Section 8.1.6). Per-Message control ("Request not to bundle
 messages") is offered via the msgCapacityProfile property
 (Section 9.1.3.8).

 * Close after reliably delivering all remaining data, causing an
 event informing the application on the other side: this is offered
 by the Close Action with slightly changed semantics in line with
 the discussion in Section 5.2 of [RFC8923] (Section 10).

 * "Abort without delivering remaining data, causing an event
 informing the application on the other side" and "Abort without
 delivering remaining data, not causing an event informing the
 application on the other side": this is offered by the Abort
 action without promising that this is signaled to the other side.
 If it is, a ConnectionError Event will be invoked at the peer
 (Section 10).

 * "Reliably transfer data, with congestion control", "Reliably
 transfer a message, with congestion control" and "Unreliably
 transfer a message": data is transferred via the Send action
 (Section 9.2). Reliability is controlled via the reliability
 (Section 6.2.1) property and the msgReliable Message Property
 (Section 9.1.3.7). Transmitting data as a message or without
 delimiters is controlled via Message Framers (Section 9.1.2). The
 choice of congestion control is provided via the congestionControl
 property (Section 6.2.9).

 * Configurable Message Reliability: the msgLifetime Message Property
 implements a time-based way to configure message reliability
 (Section 9.1.3.1).

 * "Ordered message delivery (potentially slower than unordered)" and
 "Unordered message delivery (potentially faster than ordered)":
 these two transport features are controlled via the Message
 Property msgOrdered (Section 9.1.3.3).

Trammell, et al. Expires 8 September 2022 [Page 88]

Internet-Draft TAPS Interface March 2022

 * Request not to delay the acknowledgement (SACK) of a message:
 should the protocol support it, this is one of the transport
 features the Transport Services system can apply when an
 application uses the connCapacityProfile Property (Section 8.1.6)
 or the msgCapacityProfile Message Property (Section 9.1.3.8) with
 value Low Latency/Interactive.

 * Receive data (with no message delimiting): Receive Action
 (Section 9.3) and Received Event (Section 9.3.2.1).

 * Receive a message: Receive Action (Section 9.3) and Received Event
 (Section 9.3.2.1), using Message Framers (Section 9.1.2).

 * Information about partial message arrival: Receive Action
 (Section 9.3) and ReceivedPartial Event (Section 9.3.2.2).

 * Notification of send failures: Expired Event (Section 9.2.2.2) and
 SendError Event (Section 9.2.2.3).

 * Notification that the stack has no more user data to send:
 applications can obtain this information via the Sent Event
 (Section 9.2.2.1).

 * Notification to a receiver that a partial message delivery has
 been aborted: ReceiveError Event (Section 9.3.2.3).

 * Notification of Excessive Retransmissions (early warning below
 abortion threshold): SoftError Event (Section 8.3.1).

Authors’ Addresses

 Brian Trammell (editor)
 Google Switzerland GmbH
 Gustav-Gull-Platz 1
 CH- 8004 Zurich
 Switzerland
 Email: ietf@trammell.ch

 Michael Welzl (editor)
 University of Oslo
 PO Box 1080 Blindern
 0316 Oslo
 Norway
 Email: michawe@ifi.uio.no

Trammell, et al. Expires 8 September 2022 [Page 89]

Internet-Draft TAPS Interface March 2022

 Theresa Enghardt
 Netflix
 121 Albright Way
 Los Gatos, CA 95032,
 United States of America
 Email: ietf@tenghardt.net

 Godred Fairhurst
 University of Aberdeen
 Fraser Noble Building
 Aberdeen, AB24 3UE
 Email: gorry@erg.abdn.ac.uk
 URI: http://www.erg.abdn.ac.uk/

 Mirja Kuehlewind
 Ericsson
 Ericsson-Allee 1
 Herzogenrath
 Germany
 Email: mirja.kuehlewind@ericsson.com

 Colin Perkins
 University of Glasgow
 School of Computing Science
 Glasgow G12 8QQ
 United Kingdom
 Email: csp@csperkins.org

 Philipp S. Tiesel
 SAP SE
 Konrad-Zuse-Ring 10
 14469 Potsdam
 Germany
 Email: philipp@tiesel.net

 Tommy Pauly
 Apple Inc.
 One Apple Park Way
 Cupertino, California 95014,
 United States of America
 Email: tpauly@apple.com

Trammell, et al. Expires 8 September 2022 [Page 90]

