
Network Working Group C. Perkins

Internet-Draft University of Glasgow

Intended status: Standards Track M. Westerlund

Expires: April 25, 2013 Ericsson

 J. Ott

 Aalto University

 October 22, 2012

 Web Real-Time Communication (WebRTC): Media Transport and Use of RTP

 draft-ietf-rtcweb-rtp-usage-05

Abstract

 The Web Real-Time Communication (WebRTC) framework provides support

 for direct interactive rich communication using audio, video, text,

 collaboration, games, etc. between two peers’ web-browsers. This

 memo describes the media transport aspects of the WebRTC framework.

 It specifies how the Real-time Transport Protocol (RTP) is used in

 the WebRTC context, and gives requirements for which RTP features,

 profiles, and extensions need to be supported.

Status of this Memo

 This Internet-Draft is submitted in full conformance with the

 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering

 Task Force (IETF). Note that other groups may also distribute

 working documents as Internet-Drafts. The list of current Internet-

 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months

 and may be updated, replaced, or obsoleted by other documents at any

 time. It is inappropriate to use Internet-Drafts as reference

 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on April 25, 2013.

Copyright Notice

 Copyright (c) 2012 IETF Trust and the persons identified as the

 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal

 Provisions Relating to IETF Documents

 (http://trustee.ietf.org/license-info) in effect on the date of

 publication of this document. Please review these documents

Perkins, et al. Expires April 25, 2013 [Page 1]

Internet-Draft RTP for WebRTC October 2012

 carefully, as they describe your rights and restrictions with respect

 to this document. Code Components extracted from this document must

 include Simplified BSD License text as described in Section 4.e of

 the Trust Legal Provisions and are provided without warranty as

 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 4

 2. Rationale . 4

 3. Terminology . 5

 4. WebRTC Use of RTP: Core Protocols 6

 4.1. RTP and RTCP . 6

 4.2. Choice of the RTP Profile 7

 4.3. Choice of RTP Payload Formats 8

 4.4. RTP Session Multiplexing 8

 4.5. RTP and RTCP Multiplexing 9

 4.6. Reduced Size RTCP . 10

 4.7. Symmetric RTP/RTCP . 10

 4.8. Choice of RTP Synchronisation Source (SSRC) 10

 4.9. Generation of the RTCP Canonical Name (CNAME) 11

 5. WebRTC Use of RTP: Extensions 11

 5.1. Conferencing Extensions 11

 5.1.1. Full Intra Request (FIR) 12

 5.1.2. Picture Loss Indication (PLI) 12

 5.1.3. Slice Loss Indication (SLI) 13

 5.1.4. Reference Picture Selection Indication (RPSI) 13

 5.1.5. Temporal-Spatial Trade-off Request (TSTR) 13

 5.1.6. Temporary Maximum Media Stream Bit Rate Request

 (TMMBR) . 13

 5.2. Header Extensions . 14

 5.2.1. Rapid Synchronisation 14

 5.2.2. Client-to-Mixer Audio Level 14

 5.2.3. Mixer-to-Client Audio Level 15

 6. WebRTC Use of RTP: Improving Transport Robustness 15

 6.1. Negative Acknowledgements and RTP Retransmission 15

 6.2. Forward Error Correction (FEC) 16

 7. WebRTC Use of RTP: Rate Control and Media Adaptation 16

 7.1. Boundary Conditions and Circuit Breakers 17

 7.2. RTCP Limitations for Congestion Control 18

 7.3. Congestion Control Interoperability With Legacy Systems . 19

 8. WebRTC Use of RTP: Performance Monitoring 19

 9. WebRTC Use of RTP: Future Extensions 20

 10. Signalling Considerations 20

 11. WebRTC API Considerations 21

 11.1. API MediaStream to RTP Mapping 21

 12. RTP Implementation Considerations 22

Perkins, et al. Expires April 25, 2013 [Page 2]

Internet-Draft RTP for WebRTC October 2012

 12.1. RTP Sessions and PeerConnection 22

 12.2. Multiple Sources . 24

 12.3. Multiparty . 24

 12.4. SSRC Collision Detection 25

 12.5. Contributing Sources 26

 12.6. Media Synchronization 27

 12.7. Multiple RTP End-points 27

 12.8. Simulcast . 28

 12.9. Differentiated Treatment of Flows 29

 13. Open Issues . 30

 14. IANA Considerations . 31

 15. Security Considerations 31

 16. Acknowledgements . 32

 17. References . 32

 17.1. Normative References 32

 17.2. Informative References 35

 Appendix A. Supported RTP Topologies 36

 A.1. Point to Point . 37

 A.2. Multi-Unicast (Mesh) 40

 A.3. Mixer Based . 43

 A.3.1. Media Mixing . 43

 A.3.2. Media Switching 46

 A.3.3. Media Projecting 49

 A.4. Translator Based . 52

 A.4.1. Transcoder . 52

 A.4.2. Gateway / Protocol Translator 53

 A.4.3. Relay . 55

 A.5. End-point Forwarding 59

 A.6. Simulcast . 60

 Authors’ Addresses . 61

Perkins, et al. Expires April 25, 2013 [Page 3]

Internet-Draft RTP for WebRTC October 2012

1. Introduction

 The Real-time Transport Protocol (RTP) [RFC3550] provides a framework

 for delivery of audio and video teleconferencing data and other real-

 time media applications. Previous work has defined the RTP protocol,

 along with numerous profiles, payload formats, and other extensions.

 When combined with appropriate signalling, these form the basis for

 many teleconferencing systems.

 The Web Real-Time communication (WebRTC) framework provides the

 protocol building blocks to support direct, interactive, real-time

 communication using audio, video, collaboration, games, etc., between

 two peers’ web-browsers. This memo describes how the RTP framework

 is to be used in the WebRTC context. It proposes a baseline set of

 RTP features that are to be implemented by all WebRTC-aware end-

 points, along with suggested extensions for enhanced functionality.

 The WebRTC overview [I-D.ietf-rtcweb-overview] outlines the complete

 WebRTC framework, of which this memo is a part.

 The structure of this memo is as follows. Section 2 outlines our

 rationale in preparing this memo and choosing these RTP features.

 Section 3 defines requirement terminology. Requirements for core RTP

 protocols are described in Section 4 and suggested RTP extensions are

 described in Section 5. Section 6 outlines mechanisms that can

 increase robustness to network problems, while Section 7 describes

 congestion control and rate adaptation mechanisms. The discussion of

 mandated RTP mechanisms concludes in Section 8 with a review of

 performance monitoring and network management tools that can be used

 in the WebRTC context. Section 9 gives some guidelines for future

 incorporation of other RTP and RTP Control Protocol (RTCP) extensions

 into this framework. Section 10 describes requirements placed on the

 signalling channel. Section 11 discusses the relationship between

 features of the RTP framework and the WebRTC application programming

 interface (API), and Section 12 discusses RTP implementation

 considerations. This memo concludes with an appendix discussing

 several different RTP Topologies, and how they affect the RTP

 session(s) and various implementation details of possible realization

 of central nodes.

2. Rationale

 The RTP framework comprises the RTP data transfer protocol, the RTP

 control protocol, and numerous RTP payload formats, profiles, and

 extensions. This range of add-ons has allowed RTP to meet various

 needs that were not envisaged by the original protocol designers, and

 to support many new media encodings, but raises the question of what

Perkins, et al. Expires April 25, 2013 [Page 4]

Internet-Draft RTP for WebRTC October 2012

 extensions are to be supported by new implementations. The

 development of the WebRTC framework provides an opportunity for us to

 review the available RTP features and extensions, and to define a

 common baseline feature set for all WebRTC implementations of RTP.

 This builds on the past 15 years development of RTP to mandate the

 use of extensions that have shown widespread utility, while still

 remaining compatible with the wide installed base of RTP

 implementations where possible.

 Other RTP and RTCP extensions not discussed in this document can be

 implemented by WebRTC end-points if they are beneficial for new use

 cases. However, they are not necessary to address the WebRTC use

 cases and requirements identified to date

 [I-D.ietf-rtcweb-use-cases-and-requirements].

 While the baseline set of RTP features and extensions defined in this

 memo is targeted at the requirements of the WebRTC framework, it is

 expected to be broadly useful for other conferencing-related uses of

 RTP. In particular, it is likely that this set of RTP features and

 extensions will be appropriate for other desktop or mobile video

 conferencing systems, or for room-based high-quality telepresence

 applications.

3. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this

 document are to be interpreted as described in [RFC2119]. The RFC

 2119 interpretation of these key words applies only when written in

 ALL CAPS. Lower- or mixed-case uses of these key words are not to be

 interpreted as carrying special significance in this memo.

 We define the following terms:

 RTP Media Stream: A sequence of RTP packets, and associated RTCP

 packets, using a single synchronisation source (SSRC) that

 together carries part or all of the content of a specific Media

 Type from a specific sender source within a given RTP session.

 RTP Session: As defined by [RFC3550], the endpoints belonging to the

 same RTP Session are those that share a single SSRC space. That

 is, those endpoints can see an SSRC identifier transmitted by any

 one of the other endpoints. An endpoint can see an SSRC either

 directly in RTP and RTCP packets, or as a contributing source

 (CSRC) in RTP packets from a mixer. The RTP Session scope is

 hence decided by the endpoints’ network interconnection topology,

 in combination with RTP and RTCP forwarding strategies deployed by

Perkins, et al. Expires April 25, 2013 [Page 5]

Internet-Draft RTP for WebRTC October 2012

 endpoints and any interconnecting middle nodes.

 WebRTC MediaStream: The MediaStream concept defined by the W3C in

 the API.

 Other terms are used according to their definitions from the RTP

 Specification [RFC3550] and WebRTC overview

 [I-D.ietf-rtcweb-overview] documents.

4. WebRTC Use of RTP: Core Protocols

 The following sections describe the core features of RTP and RTCP

 that need to be implemented, along with the mandated RTP profiles and

 payload formats. Also described are the core extensions providing

 essential features that all WebRTC implementations need to implement

 to function effectively on today’s networks.

4.1. RTP and RTCP

 The Real-time Transport Protocol (RTP) [RFC3550] is REQUIRED to be

 implemented as the media transport protocol for WebRTC. RTP itself

 comprises two parts: the RTP data transfer protocol, and the RTP

 control protocol (RTCP). RTCP is a fundamental and integral part of

 RTP, and MUST be implemented in all WebRTC applications.

 The following RTP and RTCP features are sometimes omitted in limited

 functionality implementations of RTP, but are REQUIRED in all WebRTC

 implementations:

 o Support for use of multiple simultaneous SSRC values in a single

 RTP session, including support for RTP end-points that send many

 SSRC values simultaneously.

 o Random choice of SSRC on joining a session; collision detection

 and resolution for SSRC values (but see also Section 4.8).

 o Support for reception of RTP data packets containing CSRC lists,

 as generated by RTP mixers, and RTCP packets relating to CSRCs.

 o Support for sending correct synchronization information in the

 RTCP Sender Reports, to allow a receiver to implement lip-sync,

 with RECOMMENDED support for the rapid RTP synchronisation

 extensions (see Section 5.2.1).

 o Support for sending and receiving RTCP SR, RR, SDES, and BYE

 packet types, with OPTIONAL support for other RTCP packet types;

 implementations MUST ignore unknown RTCP packet types.

Perkins, et al. Expires April 25, 2013 [Page 6]

Internet-Draft RTP for WebRTC October 2012

 o Support for multiple end-points in a single RTP session, and for

 scaling the RTCP transmission interval according to the number of

 participants in the session; support for randomised RTCP

 transmission intervals to avoid synchronisation of RTCP reports;

 support for RTCP timer reconsideration.

 o Support for configuring the RTCP bandwidth as a fraction of the

 media bandwidth, and for configuring the fraction of the RTCP

 bandwidth allocated to senders, e.g., using the SDP "b=" line.

 It is known that a significant number of legacy RTP implementations,

 especially those targeted at VoIP-only systems, do not support all of

 the above features, and in some cases do not support RTCP at all.

 Implementers are advised to consider the requirements for graceful

 degradation when interoperating with legacy implementations.

 Other implementation considerations are discussed in Section 12.

4.2. Choice of the RTP Profile

 The complete specification of RTP for a particular application domain

 requires the choice of an RTP Profile. For WebRTC use, the "Extended

 Secure RTP Profile for Real-time Transport Control Protocol (RTCP)-

 Based Feedback (RTP/SAVPF)" [RFC5124] as extended by

 [I-D.terriberry-avp-codecs] MUST be implemented. This builds on the

 basic RTP/AVP profile [RFC3551], the RTP profile for RTCP-based

 feedback (RTP/AVPF) [RFC4585], and the secure RTP profile (RTP/SAVP)

 [RFC3711].

 The RTCP-based feedback extensions [RFC4585] are needed for the

 improved RTCP timer model, that allows more flexible transmission of

 RTCP packets in response to events, rather than strictly according to

 bandwidth. This is vital for being able to report congestion events.

 These extensions also save RTCP bandwidth, and will commonly only use

 the full RTCP bandwidth allocation if there are many events that

 require feedback. They are also needed to make use of the RTP

 conferencing extensions discussed in Section 5.1.

 Note: The enhanced RTCP timer model defined in the RTP/AVPF

 profile is backwards compatible with legacy systems that implement

 only the base RTP/AVP profile, given some constraints on parameter

 configuration such as the RTCP bandwidth value and "trr-int" (the

 most important factor for interworking with RTP/AVP end-points via

 a gateway is to set the trr-int parameter to a value representing

 4 seconds).

 The secure RTP profile [RFC3711] is needed to provide media

 encryption, integrity protection, replay protection and a limited

Perkins, et al. Expires April 25, 2013 [Page 7]

Internet-Draft RTP for WebRTC October 2012

 form of source authentication. WebRTC implementations MUST NOT send

 packets using the basic RTP/AVP profile or the RTP/AVPF profile; they

 MUST employ the full RTP/SAVPF profile to protect all RTP and RTCP

 packets that are generated. The default and mandatory to implement

 transforms listed in Section 5 of [RFC3711] SHALL apply.

 Implementations MUST support DTLS-SRTP [RFC5764] for key-management.

 Other key management schemes MAY be supported.

4.3. Choice of RTP Payload Formats

 Implementations MUST follow the WebRTC Audio Codec and Processing

 Requirements [I-D.ietf-rtcweb-audio] and SHOULD follow the updated

 recommendations for audio codecs in the RTP/AVP Profile

 [I-D.terriberry-avp-codecs]. Support for other audio codecs is

 OPTIONAL.

 (tbd: the mandatory to implement video codec is not yet decided)

 Endpoints MAY signal support for multiple RTP payload formats, or

 multiple configurations of a single RTP payload format, provided each

 payload format uses a different RTP payload type number. An endpoint

 that has signalled support for multiple RTP payload formats SHOULD

 accept data in any of those payload formats at any time, unless it

 has previously signalled limitations on its decoding capability.

 This requirement is constrained if several media types are sent in

 the same RTP session. In such a case, a source (SSRC) is restricted

 to switching only between the RTP payload formats signalled for the

 media type that is being sent by that source; see Section 4.4. To

 support rapid rate adaptation by changing codec, RTP does not require

 advance signalling for changes between RTP payload formats that were

 signalled during session set-up.

 An RTP sender that changes between two RTP payload types that use

 different RTP clock rates MUST follow the recommendations in Section

 4.1 of [I-D.ietf-avtext-multiple-clock-rates]. RTP receivers MUST

 follow the recommendations in Section 4.3 of

 [I-D.ietf-avtext-multiple-clock-rates], in order to support sources

 that switch between clock rates in an RTP session (these

 recommendations for receivers are backwards compatible with the case

 where senders use only a single clock rate).

4.4. RTP Session Multiplexing

 An association amongst a set of participants communicating with RTP

 is known as an RTP session. A participant can be involved in

 multiple RTP sessions at the same time. In a multimedia session,

 each medium has typically been carried in a separate RTP session with

Perkins, et al. Expires April 25, 2013 [Page 8]

Internet-Draft RTP for WebRTC October 2012

 its own RTCP packets (i.e., one RTP session for the audio, with a

 separate RTP session using a different transport address for the

 video; if SDP is used, this corresponds to one RTP session for each

 "m=" line in the SDP). WebRTC implementations of RTP are REQUIRED to

 implement support for multimedia sessions in this way, for

 compatibility with legacy systems.

 In today’s networks, however, with the widespread use of Network

 Address/Port Translators (NAT/NAPT) and Firewalls (FW), it is

 desirable to reduce the number of transport addresses used by real-

 time media applications using RTP by combining multimedia traffic in

 a single RTP session. (Details of how this is to be done are tbd,

 but see [I-D.lennox-rtcweb-rtp-media-type-mux],

 [I-D.holmberg-mmusic-sdp-bundle-negotiation] and

 [I-D.westerlund-avtcore-multiplex-architecture].) Using a single RTP

 session also effects the possibility for differentiated treatment of

 media flows. This is further discussed in Section 12.9.

 WebRTC implementations of RTP are REQUIRED to support multiplexing of

 a multimedia session onto a single RTP session according to (tbd).

 If such RTP session multiplexing is to be used, this MUST be

 negotiated during the signalling phase. Support for multiple RTP

 sessions over a single UDP flow as defined by

 [I-D.westerlund-avtcore-transport-multiplexing] is RECOMMENDED/

 OPTIONAL.

 (tbd: No consensus on the level of including support of Multiple RTP

 sessions over a single UDP flow.)

4.5. RTP and RTCP Multiplexing

 Historically, RTP and RTCP have been run on separate transport layer

 addresses (e.g., two UDP ports for each RTP session, one port for RTP

 and one port for RTCP). With the increased use of Network Address/

 Port Translation (NAPT) this has become problematic, since

 maintaining multiple NAT bindings can be costly. It also complicates

 firewall administration, since multiple ports need to be opened to

 allow RTP traffic. To reduce these costs and session set-up times,

 support for multiplexing RTP data packets and RTCP control packets on

 a single port for each RTP session is REQUIRED, as specified in

 [RFC5761]. For backwards compatibility, implementations are also

 REQUIRED to support sending of RTP and RTCP to separate destination

 ports.

 Note that the use of RTP and RTCP multiplexed onto a single transport

 port ensures that there is occasional traffic sent on that port, even

 if there is no active media traffic. This can be useful to keep NAT

 bindings alive, and is the recommend method for application level

Perkins, et al. Expires April 25, 2013 [Page 9]

Internet-Draft RTP for WebRTC October 2012

 keep-alives of RTP sessions [RFC6263].

4.6. Reduced Size RTCP

 RTCP packets are usually sent as compound RTCP packets, and [RFC3550]

 requires that those compound packets start with an Sender Report (SR)

 or Receiver Report (RR) packet. When using frequent RTCP feedback

 messages under the RTP/AVPF Profile [RFC4585] these statistics are

 not needed in every packet, and unnecessarily increase the mean RTCP

 packet size. This can limit the frequency at which RTCP packets can

 be sent within the RTCP bandwidth share.

 To avoid this problem, [RFC5506] specifies how to reduce the mean

 RTCP message size and allow for more frequent feedback. Frequent

 feedback, in turn, is essential to make real-time applications

 quickly aware of changing network conditions, and to allow them to

 adapt their transmission and encoding behaviour. Support for sending

 RTCP feedback packets as [RFC5506] non-compound packets is REQUIRED,

 but MUST be negotiated using the signalling channel before use. For

 backwards compatibility, implementations are also REQUIRED to support

 the use of compound RTCP feedback packets if the remote endpoint does

 not agree to the use of non-compound RTCP in the signalling exchange.

4.7. Symmetric RTP/RTCP

 To ease traversal of NAT and firewall devices, implementations are

 REQUIRED to implement and use Symmetric RTP [RFC4961]. This requires

 that the IP address and port used for sending and receiving RTP and

 RTCP packets are identical. The reasons for using symmetric RTP is

 primarily to avoid issues with NAT and Firewalls by ensuring that the

 flow is actually bi-directional and thus kept alive and registered as

 flow the intended recipient actually wants. In addition, it saves

 resources, specifically ports at the end-points, but also in the

 network as NAT mappings or firewall state is not unnecessary bloated.

 Also the amount of QoS state is reduced.

4.8. Choice of RTP Synchronisation Source (SSRC)

 Implementations are REQUIRED to support signalled RTP SSRC values,

 using the "a=ssrc:" SDP attribute defined in Sections 4.1 and 5 of

 [RFC5576], and MUST also support the "previous-ssrc" source attribute

 defined in Section 6.2 of [RFC5576]. Other attributes defined in

 [RFC5576] MAY be supported.

 Use of the "a=ssrc:" attribute is OPTIONAL. Implementations MUST

 support random SSRC assignment, and MUST support SSRC collision

 detection and resolution, both according to [RFC3550].

Perkins, et al. Expires April 25, 2013 [Page 10]

Internet-Draft RTP for WebRTC October 2012

4.9. Generation of the RTCP Canonical Name (CNAME)

 The RTCP Canonical Name (CNAME) provides a persistent transport-level

 identifier for an RTP endpoint. While the Synchronisation Source

 (SSRC) identifier for an RTP endpoint can change if a collision is

 detected, or when the RTP application is restarted, its RTCP CNAME is

 meant to stay unchanged, so that RTP endpoints can be uniquely

 identified and associated with their RTP media streams within a set

 of related RTP sessions. For proper functionality, each RTP endpoint

 needs to have a unique RTCP CNAME value.

 The RTP specification [RFC3550] includes guidelines for choosing a

 unique RTP CNAME, but these are not sufficient in the presence of NAT

 devices. In addition, long-term persistent identifiers can be

 problematic from a privacy viewpoint. Accordingly, support for

 generating a short-term persistent RTCP CNAMEs following

 [I-D.rescorla-avtcore-6222bis] is RECOMMENDED.

 An WebRTC end-point MUST support reception of any CNAME that matches

 the syntax limitations specified by the RTP specification [RFC3550]

 and cannot assume that any CNAME will be chosen according to the form

 suggested above.

5. WebRTC Use of RTP: Extensions

 There are a number of RTP extensions that are either needed to obtain

 full functionality, or extremely useful to improve on the baseline

 performance, in the WebRTC application context. One set of these

 extensions is related to conferencing, while others are more generic

 in nature. The following subsections describe the various RTP

 extensions mandated or suggested for use within the WebRTC context.

5.1. Conferencing Extensions

 RTP is inherently a group communication protocol. Groups can be

 implemented using a centralised server, multi-unicast, or using IP

 multicast. While IP multicast was popular in early deployments, in

 today’s practice, overlay-based conferencing dominates, typically

 using one or more central servers to connect endpoints in a star or

 flat tree topology. These central servers can be implemented in a

 number of ways as discussed in Appendix A, and in the memo on RTP

 Topologies [I-D.westerlund-avtcore-rtp-topologies-update].

 As discussed in Section 3.7 of

 [I-D.westerlund-avtcore-rtp-topologies-update], the use of a video

 switching MCU makes the use of RTCP for congestion control, or any

 type of quality reports, very problematic. Also, as discussed in

Perkins, et al. Expires April 25, 2013 [Page 11]

Internet-Draft RTP for WebRTC October 2012

 section 3.8 of [I-D.westerlund-avtcore-rtp-topologies-update], the

 use of a content modifying MCU with RTCP termination breaks RTP loop

 detection and removes the ability for receivers to identify active

 senders. RTP Transport Translators (Topo-Translator) are not of

 immediate interest to WebRTC, although the main difference compared

 to point to point is the possibility of seeing multiple different

 transport paths in any RTCP feedback. Accordingly, only Point to

 Point (Topo-Point-to-Point), Multiple concurrent Point to Point

 (Mesh) and RTP Mixers (Topo-Mixer) topologies are needed to achieve

 the use-cases to be supported in WebRTC initially. These RECOMMENDED

 topologies are expected to be supported by all WebRTC end-points

 (these topologies require no special RTP-layer support in the end-

 point if the RTP features mandated in this memo are implemented).

 The RTP extensions described below to be used with centralised

 conferencing -- where one RTP Mixer (e.g., a conference bridge)

 receives a participant’s RTP media streams and distributes them to

 the other participants -- are not necessary for interoperability; an

 RTP endpoint that does not implement these extensions will work

 correctly, but might offer poor performance. Support for the listed

 extensions will greatly improve the quality of experience and, to

 provide a reasonable baseline quality, some these extensions are

 mandatory to be supported by WebRTC end-points.

 The RTCP conferencing extensions are defined in Extended RTP Profile

 for Real-time Transport Control Protocol (RTCP)-Based Feedback (RTP/

 AVPF) [RFC4585] and the "Codec Control Messages in the RTP Audio-

 Visual Profile with Feedback (AVPF)" (CCM) [RFC5104] and are fully

 usable by the Secure variant of this profile (RTP/SAVPF) [RFC5124].

5.1.1. Full Intra Request (FIR)

 The Full Intra Request is defined in Sections 3.5.1 and 4.3.1 of the

 Codec Control Messages [RFC5104]. This message is used to make the

 mixer request a new Intra picture from a participant in the session.

 This is used when switching between sources to ensure that the

 receivers can decode the video or other predictive media encoding

 with long prediction chains. It is REQUIRED that WebRTC senders

 understand the react to this feedback message since it greatly

 improves the user experience when using centralised mixer-based

 conferencing; support for sending the FIR message is OPTIONAL.

5.1.2. Picture Loss Indication (PLI)

 The Picture Loss Indication is defined in Section 6.3.1 of the RTP/

 AVPF profile [RFC4585]. It is used by a receiver to tell the sending

 encoder that it lost the decoder context and would like to have it

 repaired somehow. This is semantically different from the Full Intra

Perkins, et al. Expires April 25, 2013 [Page 12]

Internet-Draft RTP for WebRTC October 2012

 Request above as there there could be multiple ways to fulfil the

 request. It is REQUIRED that WebRTC senders understand and react to

 this feedback message as a loss tolerance mechanism; receivers MAY

 send PLI messages.

5.1.3. Slice Loss Indication (SLI)

 The Slice Loss Indicator is defined in Section 6.3.2 of the RTP/AVPF

 profile [RFC4585]. It is used by a receiver to tell the encoder that

 it has detected the loss or corruption of one or more consecutive

 macro blocks, and would like to have these repaired somehow. The use

 of this feedback message is OPTIONAL as a loss tolerance mechanism.

5.1.4. Reference Picture Selection Indication (RPSI)

 Reference Picture Selection Indication (RPSI) is defined in Section

 6.3.3 of the RTP/AVPF profile [RFC4585]. Some video coding standards

 allow the use of older reference pictures than the most recent one

 for predictive coding. If such a codec is in used, and if the

 encoder has learned about a loss of encoder-decoder synchronisation,

 a known-as-correct reference picture can be used for future coding.

 The RPSI message allows this to be signalled. Support for RPSI

 messages is OPTIONAL.

5.1.5. Temporal-Spatial Trade-off Request (TSTR)

 The temporal-spatial trade-off request and notification are defined

 in Sections 3.5.2 and 4.3.2 of [RFC5104]. This request can be used

 to ask the video encoder to change the trade-off it makes between

 temporal and spatial resolution, for example to prefer high spatial

 image quality but low frame rate. Support for TSTR requests and

 notifications is OPTIONAL.

5.1.6. Temporary Maximum Media Stream Bit Rate Request (TMMBR)

 This feedback message is defined in Sections 3.5.4 and 4.2.1 of the

 Codec Control Messages [RFC5104]. This message and its notification

 message are used by a media receiver to inform the sending party that

 there is a current limitation on the amount of bandwidth available to

 this receiver. This can be various reasons for this: for example, an

 RTP mixer can use this message to limit the media rate of the sender

 being forwarded by the mixer (without doing media transcoding) to fit

 the bottlenecks existing towards the other session participants. It

 is REQUIRED that this feedback message is supported. WebRTC senders

 are REQUIRED to implement support for TMMBR messages, and MUST follow

 bandwidth limitations set by a TMMBR message received for their SSRC.

 The sending of TMMBR requests is OPTIONAL.

Perkins, et al. Expires April 25, 2013 [Page 13]

Internet-Draft RTP for WebRTC October 2012

5.2. Header Extensions

 The RTP specification [RFC3550] provides the capability to include

 RTP header extensions containing in-band data, but the format and

 semantics of the extensions are poorly specified. The use of header

 extensions is OPTIONAL in the WebRTC context, but if they are used,

 they MUST be formatted and signalled following the general mechanism

 for RTP header extensions defined in [RFC5285], since this gives

 well-defined semantics to RTP header extensions.

 As noted in [RFC5285], the requirement from the RTP specification

 that header extensions are "designed so that the header extension may

 be ignored" [RFC3550] stands. To be specific, header extensions MUST

 only be used for data that can safely be ignored by the recipient

 without affecting interoperability, and MUST NOT be used when the

 presence of the extension has changed the form or nature of the rest

 of the packet in a way that is not compatible with the way the stream

 is signalled (e.g., as defined by the payload type). Valid examples

 might include metadata that is additional to the usual RTP

 information.

5.2.1. Rapid Synchronisation

 Many RTP sessions require synchronisation between audio, video, and

 other content. This synchronisation is performed by receivers, using

 information contained in RTCP SR packets, as described in the RTP

 specification [RFC3550]. This basic mechanism can be slow, however,

 so it is RECOMMENDED that the rapid RTP synchronisation extensions

 described in [RFC6051] be implemented. The rapid synchronisation

 extensions use the general RTP header extension mechanism [RFC5285],

 which requires signalling, but are otherwise backwards compatible.

5.2.2. Client-to-Mixer Audio Level

 The Client to Mixer Audio Level extension [RFC6464] is an RTP header

 extension used by a client to inform a mixer about the level of audio

 activity in the packet to which the header is attached. This enables

 a central node to make mixing or selection decisions without decoding

 or detailed inspection of the payload, reducing the complexity in

 some types of central RTP nodes. It can also save decoding resources

 in receivers, which can choose to decode only the most relevant RTP

 media streams based on audio activity levels.

 The Client-to-Mixer Audio Level [RFC6464] extension is RECOMMENDED to

 be implemented. If it is implemented, it is REQUIRED that the header

 extensions are encrypted according to

 [I-D.ietf-avtcore-srtp-encrypted-header-ext] since the information

 contained in these header extensions can be considered sensitive.

Perkins, et al. Expires April 25, 2013 [Page 14]

Internet-Draft RTP for WebRTC October 2012

5.2.3. Mixer-to-Client Audio Level

 The Mixer to Client Audio Level header extension [RFC6465] provides

 the client with the audio level of the different sources mixed into a

 common mix by a RTP mixer. This enables a user interface to indicate

 the relative activity level of each session participant, rather than

 just being included or not based on the CSRC field. This is a pure

 optimisations of non critical functions, and is hence OPTIONAL to

 implement. If it is implemented, it is REQUIRED that the header

 extensions are encrypted according to

 [I-D.ietf-avtcore-srtp-encrypted-header-ext] since the information

 contained in these header extensions can be considered sensitive.

6. WebRTC Use of RTP: Improving Transport Robustness

 There are some tools that can make RTP flows robust against Packet

 loss and reduce the impact on media quality. However, they all add

 extra bits compared to a non-robust stream. These extra bits need to

 be considered, and the aggregate bit-rate MUST be rate-controlled.

 Thus, improving robustness might require a lower base encoding

 quality, but has the potential to deliver that quality with fewer

 errors. The mechanisms described in the following sub-sections can

 be used to improve tolerance to packet loss.

6.1. Negative Acknowledgements and RTP Retransmission

 As a consequence of supporting the RTP/SAVPF profile, implementations

 will support negative acknowledgements (NACKs) for RTP data packets

 [RFC4585]. This feedback can be used to inform a sender of the loss

 of particular RTP packets, subject to the capacity limitations of the

 RTCP feedback channel. A sender can use this information to optimise

 the user experience by adapting the media encoding to compensate for

 known lost packets, for example.

 Senders are REQUIRED to understand the Generic NACK message defined

 in Section 6.2.1 of [RFC4585], but MAY choose to ignore this feedback

 (following Section 4.2 of [RFC4585]). Receivers MAY send NACKs for

 missing RTP packets; [RFC4585] provides some guidelines on when to

 send NACKs. It is not expected that a receiver will send a NACK for

 every lost RTP packet, rather it needs to consider the cost of

 sending NACK feedback, and the importance of the lost packet, to make

 an informed decision on whether it is worth telling the sender about

 a packet loss event.

 The RTP Retransmission Payload Format [RFC4588] offers the ability to

 retransmit lost packets based on NACK feedback. Retransmission needs

 to be used with care in interactive real-time applications to ensure

Perkins, et al. Expires April 25, 2013 [Page 15]

Internet-Draft RTP for WebRTC October 2012

 that the retransmitted packet arrives in time to be useful, but can

 be effective in environments with relatively low network RTT (an RTP

 sender can estimate the RTT to the receivers using the information in

 RTCP SR and RR packets). The use of retransmissions can also

 increase the forward RTP bandwidth, and can potentially worsen the

 problem if the packet loss was caused by network congestion. We

 note, however, that retransmission of an important lost packet to

 repair decoder state can have lower cost than sending a full intra

 frame. It is not appropriate to blindly retransmit RTP packets in

 response to a NACK. The importance of lost packets and the

 likelihood of them arriving in time to be useful needs to be

 considered before RTP retransmission is used.

 Receivers are REQUIRED to implement support for RTP retransmission

 packets [RFC4588]. Senders MAY send RTP retransmission packets in

 response to NACKs if the RTP retransmission payload format has been

 negotiated for the session, and if the sender believes it is useful

 to send a retransmission of the packet(s) referenced in the NACK. An

 RTP sender is not expected to retransmit every NACKed packet.

6.2. Forward Error Correction (FEC)

 The use of Forward Error Correction (FEC) can provide an effective

 protection against some degree of packet loss, at the cost of steady

 bandwidth overhead. There are several FEC schemes that are defined

 for use with RTP. Some of these schemes are specific to a particular

 RTP payload format, others operate across RTP packets and can be used

 with any payload format. It needs to be noted that using redundant

 encoding or FEC will lead to increased play out delay, which needs to

 be considered when choosing the redundancy or FEC formats and their

 respective parameters.

 If an RTP payload format negotiated for use in a WebRTC session

 supports redundant transmission or FEC as a standard feature of that

 payload format, then that support MAY be used in the WebRTC session,

 subject to any appropriate signalling.

 There are several block-based FEC schemes that are designed for use

 with RTP independent of the chosen RTP payload format. At the time

 of this writing there is no consensus on which, if any, of these FEC

 schemes is appropriate for use in the WebRTC context. Accordingly,

 this memo makes no recommendation on the choice of block-based FEC

 for WebRTC use.

7. WebRTC Use of RTP: Rate Control and Media Adaptation

 WebRTC will be used in heterogeneous network environments using a

Perkins, et al. Expires April 25, 2013 [Page 16]

Internet-Draft RTP for WebRTC October 2012

 variety set of link technologies, including both wired and wireless

 links, to interconnect potentially large groups of users around the

 world. As a result, the network paths between users can have widely

 varying one-way delays, available bit-rates, load levels, and traffic

 mixtures. Individual end-points can open one or more RTP sessions to

 each participant in a WebRTC conference, and there can be several

 participants. Each of these RTP sessions can contain different types

 of media, and the type of media, bit rate, and number of flows can be

 highly asymmetric. Non-RTP traffic can share the network paths RTP

 flows. Since the network environment is not predictable or stable,

 WebRTC endpoints MUST ensure that the RTP traffic they generate can

 adapt to match changes in the available network capacity.

 The quality of experience for users of WebRTC implementation is very

 dependent on effective adaptation of the media to the limitations of

 the network. End-points have to be designed so they do not transmit

 significantly more data than the network path can support, except for

 very short time periods, otherwise high levels of network packet loss

 or delay spikes will occur, causing media quality degradation. The

 limiting factor on the capacity of the network path might be the link

 bandwidth, or it might be competition with other traffic on the link

 (this can be non-WebRTC traffic, traffic due to other WebRTC flows,

 or even competition with other WebRTC flows in the same session).

 An effective media congestion control algorithm is therefore an

 essential part of the WebRTC framework. However, at the time of this

 writing, there is no standard congestion control algorithm that can

 be used for interactive media applications such as WebRTC flows.

 Some requirements for congestion control algorithms for WebRTC

 sessions are discussed in [I-D.jesup-rtp-congestion-reqs], and it is

 expected that a future version of this memo will mandate the use of a

 congestion control algorithm that satisfies these requirements.

7.1. Boundary Conditions and Circuit Breakers

 In the absence of a concrete congestion control algorithm, all WebRTC

 implementations MUST implement the RTP circuit breaker algorithm that

 is in described [I-D.ietf-avtcore-rtp-circuit-breakers]. The circuit

 breaker defines a conservative boundary condition for safe operation,

 chosen such that applications that trigger the circuit breaker will

 almost certainly be causing severe network congestion. Any future

 RTP congestion control algorithms are expected to operate within the

 envelope allowed by the circuit breaker.

 The session establishment signalling will also necessarily establish

 boundaries to which the media bit-rate will conform. The choice of

 media codecs provides upper- and lower-bounds on the supported bit-

 rates that the application can utilise to provide useful quality, and

Perkins, et al. Expires April 25, 2013 [Page 17]

Internet-Draft RTP for WebRTC October 2012

 the packetization choices that exist. In addition, the signalling

 channel can establish maximum media bit-rate boundaries using the SDP

 "b=AS:" or "b=CT:" lines, and the RTP/AVPF Temporary Maximum Media

 Stream Bit Rate (TMMBR) Requests (see Section 5.1.6 of this memo).

 The combination of media codec choice and signalled bandwidth limits

 SHOULD be used to limit traffic based on known bandwidth limitations,

 for example the capacity of the edge links, to the extent possible.

7.2. RTCP Limitations for Congestion Control

 Experience with the congestion control algorithms of TCP [RFC5681],

 TFRC [RFC5348], and DCCP [RFC4341], [RFC4342], [RFC4828], has shown

 that feedback on packet arrivals needs to be sent roughly once per

 round trip time. We note that the real-time media traffic might not

 have to adapt to changing path conditions as rapidly as needed for

 the elastic applications TCP was designed for, but frequent feedback

 is still needed to allow the congestion control algorithm to track

 the path dynamics.

 The total RTCP bandwidth is limited in its transmission rate to a

 fraction of the RTP traffic (by default 5%). RTCP packets are larger

 than, e.g., TCP ACKs (even when non-compound RTCP packets are used).

 The RTP media stream bit rate thus limits the maximum feedback rate

 as a function of the mean RTCP packet size.

 Interactive communication might not be able to afford waiting for

 packet losses to occur to indicate congestion, because an increase in

 play out delay due to queuing (most prominent in wireless networks)

 can easily lead to packets being dropped due to late arrival at the

 receiver. Therefore, more sophisticated cues might need to be

 reported -- to be defined in a suitable congestion control framework

 as noted above -- which, in turn, increase the report size again.

 For example, different RTCP XR report blocks (jointly) provide the

 necessary details to implement a variety of congestion control

 algorithms, but the (compound) report size grows quickly.

 In group communication, the share of RTCP bandwidth needs to be

 shared by all group members, reducing the capacity and thus the

 reporting frequency per node.

 Example: assuming 512 kbit/s video yields 3200 bytes/s RTCP

 bandwidth, split across two entities in a point-to-point session. An

 endpoint could thus send a report of 100 bytes about every 70ms or

 for every other frame in a 30 fps video.

Perkins, et al. Expires April 25, 2013 [Page 18]

Internet-Draft RTP for WebRTC October 2012

7.3. Congestion Control Interoperability With Legacy Systems

 There are legacy implementations that do not implement RTCP, and

 hence do not provide any congestion feedback. Congestion control

 cannot be performed with these end-points. WebRTC implementations

 that need to interwork with such end-points MUST limit their

 transmission to a low rate, equivalent to a VoIP call using a low

 bandwidth codec, that is unlikely to cause any significant

 congestion.

 When interworking with legacy implementations that support RTCP using

 the RTP/AVP profile [RFC3551], congestion feedback is provided in

 RTCP RR packets every few seconds. Implementations that have to

 interwork with such end-points MUST ensure that they keep within the

 RTP circuit breaker [I-D.ietf-avtcore-rtp-circuit-breakers]

 constraints to limit the congestion they can cause.

 If a legacy end-point supports RTP/AVPF, this enables negotiation of

 important parameters for frequent reporting, such as the "trr-int"

 parameter, and the possibility that the end-point supports some

 useful feedback format for congestion control purpose such as TMMBR

 [RFC5104]. Implementations that have to interwork with such end-

 points MUST ensure that they stay within the RTP circuit breaker

 [I-D.ietf-avtcore-rtp-circuit-breakers] constraints to limit the

 congestion they can cause, but might find that they can achieve

 better congestion response depending on the amount of feedback that

 is available.

8. WebRTC Use of RTP: Performance Monitoring

 RTCP does contains a basic set of RTP flow monitoring metrics like

 packet loss and jitter. There are a number of extensions that could

 be included in the set to be supported. However, in most cases which

 RTP monitoring that is needed depends on the application, which makes

 it difficult to select which to include when the set of applications

 is very large.

 Exposing some metrics in the WebRTC API needs to be considered

 allowing the application to gather the measurements of interest.

 However, security implications for the different data sets exposed

 will need to be considered in this.

 (tbd: If any RTCP XR metrics need to be added is still an open

 question, but possible to extend at a later stage)

Perkins, et al. Expires April 25, 2013 [Page 19]

Internet-Draft RTP for WebRTC October 2012

9. WebRTC Use of RTP: Future Extensions

 It is possible that the core set of RTP protocols and RTP extensions

 specified in this memo will prove insufficient for the future needs

 of WebRTC applications. In this case, future updates to this memo

 MUST be made following the Guidelines for Writers of RTP Payload

 Format Specifications [RFC2736] and Guidelines for Extending the RTP

 Control Protocol [RFC5968], and SHOULD take into account any future

 guidelines for extending RTP and related protocols that have been

 developed.

 Authors of future extensions are urged to consider the wide range of

 environments in which RTP is used when recommending extensions, since

 extensions that are applicable in some scenarios can be problematic

 in others. Where possible, the WebRTC framework will adopt RTP

 extensions that are of general utility, to enable easy implementation

 of a gateway to other applications using RTP, rather than adopt

 mechanisms that are narrowly targeted at specific WebRTC use cases.

10. Signalling Considerations

 RTP is built with the assumption of an external signalling channel

 that can be used to configure the RTP sessions and their features.

 The basic configuration of an RTP session consists of the following

 parameters:

 RTP Profile: The name of the RTP profile to be used in session. The

 RTP/AVP [RFC3551] and RTP/AVPF [RFC4585] profiles can interoperate

 on basic level, as can their secure variants RTP/SAVP [RFC3711]

 and RTP/SAVPF [RFC5124]. The secure variants of the profiles do

 not directly interoperate with the non-secure variants, due to the

 presence of additional header fields in addition to any

 cryptographic transformation of the packet content. As WebRTC

 requires the usage of the RTP/SAVPF profile this can be inferred

 as there is only a single profile, but in SDP this is still

 information that has to be signalled. Interworking functions

 might transform this into RTP/SAVP for a legacy use case by

 indicating to the WebRTC end-point a RTP/SAVPF end-point and

 limiting the usage of the a=rtcp attribute to indicate a trr-int

 value of 4 seconds.

 Transport Information: Source and destination IP address(s) and

 ports for RTP and RTCP MUST be signalled for each RTP session. In

 WebRTC these transport addresses will be provided by ICE that

 signals candidates and arrives at nominated candidate address

 pairs. If RTP and RTCP multiplexing [RFC5761] is to be used, such

 that a single port is used for RTP and RTCP flows, this MUST be

Perkins, et al. Expires April 25, 2013 [Page 20]

Internet-Draft RTP for WebRTC October 2012

 signalled (see Section 4.5). If several RTP sessions are to be

 multiplexed onto a single transport layer flow, this MUST also be

 signalled (see Section 4.4).

 RTP Payload Types, media formats, and media format

 parameters: The mapping between media type names (and hence the RTP

 payload formats to be used) and the RTP payload type numbers MUST

 be signalled. Each media type MAY also have a number of media

 type parameters that MUST also be signalled to configure the codec

 and RTP payload format (the "a=fmtp:" line from SDP).

 RTP Extensions: The RTP extensions to be used SHOULD be agreed upon,

 including any parameters for each respective extension. At the

 very least, this will help avoiding using bandwidth for features

 that the other end-point will ignore. But for certain mechanisms

 there is requirement for this to happen as interoperability

 failure otherwise happens.

 RTCP Bandwidth: Support for exchanging RTCP Bandwidth values to the

 end-points will be necessary. This SHALL be done as described in

 "Session Description Protocol (SDP) Bandwidth Modifiers for RTP

 Control Protocol (RTCP) Bandwidth" [RFC3556], or something

 semantically equivalent. This also ensures that the end-points

 have a common view of the RTCP bandwidth, this is important as too

 different view of the bandwidths can lead to failure to

 interoperate.

 These parameters are often expressed in SDP messages conveyed within

 an offer/answer exchange. RTP does not depend on SDP or on the

 offer/answer model, but does require all the necessary parameters to

 be agreed upon, and provided to the RTP implementation. We note that

 in the WebRTC context it will depend on the signalling model and API

 how these parameters need to be configured but they will be need to

 either set in the API or explicitly signalled between the peers.

11. WebRTC API Considerations

 The following sections describe how the WebRTC API features map onto

 the RTP mechanisms described in this memo.

11.1. API MediaStream to RTP Mapping

 The WebRTC API and its media function have the concept of a WebRTC

 MediaStream that consists of zero or more tracks. A track is an

 individual stream of media from any type of media source like a

 microphone or a camera, but also conceptual sources, like a audio mix

 or a video composition, are possible. The tracks within a WebRTC

Perkins, et al. Expires April 25, 2013 [Page 21]

Internet-Draft RTP for WebRTC October 2012

 MediaStream are expected to be synchronized.

 A track correspond to the media received with one particular SSRC.

 There might be additional SSRCs associated with that SSRC, like for

 RTP retransmission or Forward Error Correction. However, one SSRC

 will identify an RTP media stream and its timing.

 As a result, a WebRTC MediaStream is a collection of SSRCs carrying

 the different media included in the synchronised aggregate.

 Therefore, also the synchronization state associated with the

 included SSRCs are part of concept. It is important to consider that

 there can be multiple different WebRTC MediaStreams containing a

 given Track (SSRC). To avoid unnecessary duplication of media at the

 transport level in such cases, a need arises for a binding defining

 which WebRTC MediaStreams a given SSRC is associated with at the

 signalling level.

 A proposal for how the binding between WebRTC MediaStreams and SSRC

 can be done is specified in "Cross Session Stream Identification in

 the Session Description Protocol" [I-D.alvestrand-rtcweb-msid].

 (tbd: This text needs to be improved and achieved consensus on.

 Interim meeting in June 2012 shows large differences in opinions.)

12. RTP Implementation Considerations

 The following provide some guidance on the implementation of the RTP

 features described in this memo.

 This section discusses RTP functionality that is part of the RTP

 standard, needed by decisions made, or to enable use cases raised and

 their motivations. This discussion is from an WebRTC end-point

 perspective. It will occasionally talk about central nodes, but as

 this specification is for an end-point, this is where the focus lies.

 For more discussion on the central nodes and details about RTP

 topologies please see Appendix A.

 The section will touch on the relation with certain RTP/RTCP

 extensions, but will focus on the RTP core functionality. The

 definition of what functionalities and the level of requirement on

 implementing it is defined in Section 2.

12.1. RTP Sessions and PeerConnection

 An RTP session is an association among RTP nodes, which have one

 common SSRC space. An RTP session can include any number of end-

 points and nodes sourcing, sinking, manipulating or reporting on the

Perkins, et al. Expires April 25, 2013 [Page 22]

Internet-Draft RTP for WebRTC October 2012

 RTP media streams being sent within the RTP session. A

 PeerConnection being a point-to-point association between an end-

 point and another node. That peer node can be both an end-point or

 centralized processing node of some type; thus, the RTP session can

 terminate immediately on the far end of the PeerConnection, but it

 might also continue as further discussed below in Multiparty

 (Section 12.3) and Multiple RTP End-points (Section 12.7).

 A PeerConnection can contain one or more RTP session depending on how

 it is setup and how many UDP flows it uses. A common usage has been

 to have one RTP session per media type, e.g. one for audio and one

 for video, each sent over different UDP flows. However, the default

 usage in WebRTC will be to use one RTP session for all media types.

 This usage then uses only one UDP flow, as also RTP and RTCP

 multiplexing is mandated (Section 4.5). However, for legacy

 interworking and network prioritization (Section 12.9) based on

 flows, a WebRTC end-point needs to support a mode of operation where

 one RTP session per media type is used. Currently, each RTP session

 has to use its own UDP flow. Discussions are ongoing if a solution

 enabling multiple RTP sessions over a single UDP flow, see

 Section 4.4.

 The multi-unicast- or mesh-based multi-party topology (Figure 1) is a

 good example for this section as it concerns the relation between RTP

 sessions and PeerConnections. In this topology, each participant

 sends individual unicast RTP/UDP/IP flows to each of the other

 participants using independent PeerConnections in a full mesh. This

 topology has the benefit of not requiring central nodes. The

 downside is that it increases the used bandwidth at each sender by

 requiring one copy of the RTP media streams for each participant that

 are part of the same session beyond the sender itself. Hence, this

 topology is limited to scenarios with few participants unless the

 media is very low bandwidth.

 +---+ +---+

 | A |<---->| B |

 +---+ +---+

 ^ ^

 \ /

 \ /

 v v

 +---+

 | C |

 +---+

 Figure 1: Multi-unicast

 The multi-unicast topology could be implemented as a single RTP

Perkins, et al. Expires April 25, 2013 [Page 23]

Internet-Draft RTP for WebRTC October 2012

 session, spanning multiple peer-to-peer transport layer connections,

 or as several pairwise RTP sessions, one between each pair of peers.

 To maintain a coherent mapping between the relation between RTP

 sessions and PeerConnections we recommend that one implements this as

 individual RTP sessions. The only downside is that end-point A will

 not learn of the quality of any transmission happening between B and

 C based on RTCP. This has not been seen as a significant downside as

 no one has yet seen a clear need for why A would need to know about

 the B’s and C’s communication. An advantage of using separate RTP

 sessions is that it enables using different media bit-rates to the

 different peers, thus not forcing B to endure the same quality

 reductions if there are limitations in the transport from A to C as C

 will.

12.2. Multiple Sources

 A WebRTC end-point might have multiple cameras, microphones or audio

 inputs and thus a single end-point can source multiple RTP media

 streams of the same media type concurrently. Even if an end-point

 does not have multiple media sources of the same media type it has to

 support transmission using multiple SSRCs concurrently in the same

 RTP session. This is due to the requirement on an WebRTC end-point

 to support multiple media types in one RTP session. For example, one

 audio and one video source can result in the end-point sending with

 two different SSRCs in the same RTP session. As multi-party

 conferences are supported, as discussed below in Section 12.3, a

 WebRTC end-point will need to be capable of receiving, decoding and

 play out multiple RTP media streams of the same type concurrently.

 tbd: Are any mechanism needed to signal limitations in the number of

 active SSRC that an end-point can handle?

12.3. Multiparty

 There are numerous situations and clear use cases for WebRTC

 supporting RTP sessions supporting multi-party. This can be realized

 in a number of ways using a number of different implementation

 strategies. In the following, the focus is on the different set of

 WebRTC end-point requirements that arise from different sets of

 multi-party topologies.

 The multi-unicast mesh (Figure 1)-based multi-party topology

 discussed above provides a non-centralized solution but can incur a

 heavy tax on the end-points’ outgoing paths. It can also consume

 large amount of encoding resources if each outgoing stream is

 specifically encoded. If an encoding is transmitted to multiple

 parties, as in some implementations of the mesh case, a requirement

 on the end-point becomes to be able to create RTP media streams

Perkins, et al. Expires April 25, 2013 [Page 24]

Internet-Draft RTP for WebRTC October 2012

 suitable for multiple destinations requirements. These requirements

 can both be dependent on transport path and the different end-points

 preferences related to play out of the media.

 +---+ +------------+ +---+

 | A |<---->| |<---->| B |

 +---+ | | +---+

 | Mixer |

 +---+ | | +---+

 | C |<---->| |<---->| D |

 +---+ +------------+ +---+

 Figure 2: RTP Mixer with Only Unicast Paths

 A Mixer (Figure 2) is an RTP end-point that optimizes the

 transmission of RTP media streams from certain perspectives, either

 by only sending some of the received RTP media stream to any given

 receiver or by providing a combined RTP media stream out of a set of

 contributing streams. There are various methods of implementation as

 discussed in Appendix A.3. A common aspect is that these central

 nodes can use a number of tools to control the media encoding

 provided by a WebRTC end-point. This includes functions like

 requesting breaking the encoding chain and have the encoder produce a

 so called Intra frame. Another is limiting the bit-rate of a given

 stream to better suit the mixer view of the multiple down-streams.

 Others are controlling the most suitable frame-rate, picture

 resolution, the trade-off between frame-rate and spatial quality.

 A mixer gets a significant responsibility to correctly perform

 congestion control, source identification, manage synchronization

 while providing the application with suitable media optimizations.

 Mixers also need to be trusted nodes when it comes to security as it

 manipulates either RTP or the media itself before sending it on

 towards the end-point(s), thus they need to be able to decrypt and

 then encrypt it before sending it out.

12.4. SSRC Collision Detection

 The RTP standard [RFC3550] requires any RTP implementation to have

 support for detecting and handling SSRC collisions, i.e., resolve the

 conflict when two different end-points use the same SSRC value. This

 requirement also applies to WebRTC end-points. There are several

 scenarios where SSRC collisions can occur.

 In a point-to-point session where each SSRC is associated with either

 of the two end-points and where the main media carrying SSRC

 identifier will be announced in the signalling channel, a collision

Perkins, et al. Expires April 25, 2013 [Page 25]

Internet-Draft RTP for WebRTC October 2012

 is less likely to occur due to the information about used SSRCs

 provided by Source-Specific SDP Attributes [RFC5576]. Still if both

 end-points start uses an new SSRC identifier prior to having

 signalled it to the peer and received acknowledgement on the

 signalling message, there can be collisions. The Source-Specific SDP

 Attributes [RFC5576] contains no mechanism to resolve SSRC collisions

 or reject a end-points usage of an SSRC.

 There could also appear SSRC values that are not signalled. This is

 more likely than it appears as certain RTP functions need extra SSRCs

 to provide functionality related to another (the "main") SSRC, for

 example, SSRC multiplexed RTP retransmission [RFC4588]. In those

 cases, an end-point can create a new SSRC that strictly doesn’t need

 to be announced over the signalling channel to function correctly on

 both RTP and PeerConnection level.

 The more likely case for SSRC collision is that multiple end-points

 in a multiparty conference create new sources and signals those

 towards the central server. In cases where the SSRC/CSRC are

 propagated between the different end-points from the central node

 collisions can occur.

 Another scenario is when the central node manages to connect an end-

 point’s PeerConnection to another PeerConnection the end-point

 already has, thus forming a loop where the end-point will receive its

 own traffic. While is is clearly considered a bug, it is important

 that the end-point is able to recognise and handle the case when it

 occurs.

12.5. Contributing Sources

 Contributing Sources (CSRC) is a functionality in the RTP header that

 allows an RTP node to combine media packets from multiple sources

 into one and to identify which sources yielded the result. For

 WebRTC end-points, supporting contributing sources is trivial. The

 set of CSRCs is provided in a given RTP packet. This information can

 then be exposed to the applications using some form of API, possibly

 a mapping back into WebRTC MediaStream identities to avoid having to

 expose two name spaces and the handling of SSRC collision handling to

 the JavaScript.

 (tbd: does the API need to provide the ability to add a CSRC list to

 an outgoing packet? this is only useful if the sender is mixing

 content)

 There are also at least one extension that depends on the CSRC list

 being used: the Mixer-to-client audio level [RFC6465], which enhances

 the information provided by the CSRC to actual energy levels for

Perkins, et al. Expires April 25, 2013 [Page 26]

Internet-Draft RTP for WebRTC October 2012

 audio for each contributing source.

12.6. Media Synchronization

 When an end-point sends media from more than one media source, it

 needs to consider if (and which of) these media sources are to be

 synchronized. In RTP/RTCP, synchronisation is provided by having a

 set of RTP media streams be indicated as coming from the same

 synchronisation context and logical end-point by using the same CNAME

 identifier.

 The next provision is that the internal clocks of all media sources,

 i.e., what drives the RTP timestamp, can be correlated to a system

 clock that is provided in RTCP Sender Reports encoded in an NTP

 format. By correlating all RTP timestamps to a common system clock

 for all sources, the timing relation of the different RTP media

 streams, also across multiple RTP sessions can be derived at the

 receiver and, if desired, the streams can be synchronized. The

 requirement is for the media sender to provide the correlation

 information; it is up to the receiver to use it or not.

12.7. Multiple RTP End-points

 Some usages of RTP beyond the recommend topologies result in that an

 WebRTC end-point sending media in an RTP session out over a single

 PeerConnection will receive receiver reports from multiple RTP

 receivers. Note that receiving multiple receiver reports is expected

 because any RTP node that has multiple SSRCs has to report to the

 media sender. The difference here is that they are multiple nodes,

 and thus will likely have different path characteristics.

 RTP Mixers can create a situation where an end-point experiences a

 situation in-between a session with only two end-points and multiple

 end-points. Mixers are expected to not forward RTCP reports

 regarding RTP media streams across themselves. This is due to the

 difference in the RTP media streams provided to the different end-

 points. The original media source lacks information about a mixer’s

 manipulations prior to sending it the different receivers. This

 scenario also results in that an end-point’s feedback or requests

 goes to the mixer. When the mixer can’t act on this by itself, it is

 forced to go to the original media source to fulfil the receivers

 request. This will not necessarily be explicitly visible any RTP and

 RTCP traffic, but the interactions and the time to complete them will

 indicate such dependencies.

 The topologies in which an end-point receives receiver reports from

 multiple other end-points are the centralized relay, multicast and an

 end-point forwarding an RTP media stream. Having multiple RTP nodes

Perkins, et al. Expires April 25, 2013 [Page 27]

Internet-Draft RTP for WebRTC October 2012

 receive an RTP flow and send reports and feedback about it has

 several impacts. As previously discussed (Section 12.3) any codec

 control and rate control needs to be capable of merging the

 requirements and preferences to provide a single best encoding

 according to the situation RTP media stream. Specifically, when it

 comes to congestion control it needs to be capable of identifying the

 different end-points to form independent congestion state information

 for each different path.

 Providing source authentication in multi-party scenarios is a

 challenge. In the mixer-based topologies, end-points source

 authentication is based on, firstly, verifying that media comes from

 the mixer by cryptographic verification and, secondly, trust in the

 mixer to correctly identify any source towards the end-point. In RTP

 sessions where multiple end-points are directly visible to an end-

 point, all end-points will have knowledge about each others’ master

 keys, and can thus inject packets claimed to come from another end-

 point in the session. Any node performing relay can perform non-

 cryptographic mitigation by preventing forwarding of packets that

 have SSRC fields that came from other end-points before. For

 cryptographic verification of the source SRTP would require

 additional security mechanisms, like TESLA for SRTP [RFC4383].

12.8. Simulcast

 This section discusses simulcast in the meaning of providing a node,

 for example a Mixer, with multiple different encoded versions of the

 same media source. In the WebRTC context, this could be accomplished

 in two ways. One is to establish multiple PeerConnection all being

 feed the same set of WebRTC MediaStreams. Another method is to use

 multiple WebRTC MediaStreams that are differently configured when it

 comes to the media parameters. This would result in that multiple

 different RTP Media Streams (SSRCs) being in used with different

 encoding based on the same media source (camera, microphone).

 When intending to use simulcast it is important that this is made

 explicit so that the end-points don’t automatically try to optimize

 away the different encodings and provide a single common version.

 Thus, some explicit indications that the intent really is to have

 different media encodings is likely needed. It is to be noted that

 it might be a central node, rather than an WebRTC end-point that

 would benefit from receiving simulcast media sources.

 tbd: How to perform simulcast needs to be determined and the

 appropriate API or signalling for its usage needs to be defined.

Perkins, et al. Expires April 25, 2013 [Page 28]

Internet-Draft RTP for WebRTC October 2012

12.9. Differentiated Treatment of Flows

 There are use cases for differentiated treatment of RTP media

 streams. Such differentiation can happen at several places in the

 system. First of all is the prioritization within the end-point

 sending the media, which controls, both which RTP media streams that

 will be sent, and their allocation of bit-rate out of the current

 available aggregate as determined by the congestion control.

 Secondly, the network can prioritize packet flows, including RTP

 media streams. Typically, differential treatment includes two steps,

 the first being identifying whether an IP packet belongs to a class

 that has to be treated differently, the second the actual mechanism

 to prioritize packets. This is done according to three methods;

 DiffServ: The end-point marks a packet with a DiffServ code point to

 indicate to the network that the packet belongs to a particular

 class.

 Flow based: Packets that need to be given a particular treatment are

 identified using a combination of IP and port address.

 Deep Packet Inspection: A network classifier (DPI) inspects the

 packet and tries to determine if the packet represents a

 particular application and type that is to be prioritized.

 With the exception of DiffServ both flow based and DPI have issues

 with running multiple media types and flows on a single UDP flow,

 especially when combined with data transport (SCTP/DTLS). DPI has

 issues because multiple types of flows are aggregated and thus it

 becomes more difficult to analyse them. The flow-based

 differentiation will provide the same treatment to all packets within

 the flow, i.e., relative prioritization is not possible. Moreover,

 if the resources are limited it might not be possible to provide

 differential treatment compared to best-effort for all the flows in a

 WebRTC application.

 When flow-based differentiation is available the WebRTC application

 needs to know about it so that it can provide the separation of the

 RTP media streams onto different UDP flows to enable a more granular

 usage of flow based differentiation.

 DiffServ assumes that either the end-point or a classifier can mark

 the packets with an appropriate DSCP so that the packets are treated

 according to that marking. If the end-point is to mark the traffic

 two requirements arise in the WebRTC context: 1) The WebRTC

 application or browser has to know which DSCP to use and that it can

 use them on some set of RTP media streams. 2) The information needs

Perkins, et al. Expires April 25, 2013 [Page 29]

Internet-Draft RTP for WebRTC October 2012

 to be propagated to the operating system when transmitting the

 packet. These issues are discussed in DSCP and other packet markings

 for RTCWeb QoS [I-D.ietf-rtcweb-qos].

 tbd: The model for providing differentiated treatment needs to be

 evolved. Most of this is not the responsibility of this memo.

 However, this memo could include:

 1. How can the application can prioritize MediaStreamTracks

 differently in the API?

 2. How MediaStreamTrack prioritization maps to the RTP level, and

 what type of marking behaviour can occur on the RTP media stream

 and its datagram?

13. Open Issues

 This section contains a summary of the open issues or to be done

 things noted in the document:

 1. Need to add references to the RTP payload format for the Video

 Codec chosen in Section 4.3.

 2. The methods and solutions for RTP multiplexing over a single

 transport is not yet finalized in Section 4.4.

 3. RTP congestion control algorithms will probably require some

 feedback information to be conveyed in RTCP. Are the tools that

 are mandated by this memo sufficient, or do we need additional

 information?

 4. RTP congestion control could be implementing using either a

 sender-based algorithm or a receiver-based algorithm. To ensure

 interoperability, does this memo need to mandate which end is in

 charge of congestion control for a path?

 5. Still open if any RTCP XR performance metrics are needed, as

 discussed in Section 8.

 6. The API mapping to RTP level concepts has to be agreed and

 documented in Section 11.

 7. An open question if any requirements are needed to agree and

 limit the number of simultaneously used media sources (SSRCs)

 within an RTP session. See Section 12.2.

Perkins, et al. Expires April 25, 2013 [Page 30]

Internet-Draft RTP for WebRTC October 2012

 8. Is an API needed for expressing any application level media

 mixing of an RTP media stream so that the correct CSRC list can

 be set as discussed in Section 12.5?

 9. The method for achieving simulcast of a media source has to be

 decided as discussed in Section 12.8.

 10. Possible documentation of what support for differentiated

 treatment that are needed on RTP level as the API and the

 network level specification matures as discussed in

 Section 12.9.

 11. Editing of Appendix A to remove redundancy between this and the

 update of RTP Topologies

 [I-D.westerlund-avtcore-rtp-topologies-update].

14. IANA Considerations

 This memo makes no request of IANA.

 Note to RFC Editor: this section is to be removed on publication as

 an RFC.

15. Security Considerations

 The security considerations for the WebRTC framework are described in

 [I-D.ietf-rtcweb-security]. The overall security architecture for

 WebRTC is described in [I-D.ietf-rtcweb-security-arch].

 The security considerations of the RTP specification, the RTP/SAVPF

 profile, and the various RTP/RTCP extensions and RTP payload formats

 that form the complete protocol suite described in this memo apply.

 We do not believe there are any new security considerations resulting

 from the combination of these various protocol extensions.

 The Extended Secure RTP Profile for Real-time Transport Control

 Protocol (RTCP)-Based Feedback [RFC5124] (RTP/SAVPF) provides

 handling of fundamental issues by offering confidentiality, integrity

 and partial source authentication. A mandatory to implement media

 security solution is (tbd).

 tbd: Privacy concerns, and the generation of untraceable CNAMEs, are

 under discussion.

 The guidelines in [RFC6562] apply when using variable bit rate (VBR)

 audio codecs, e.g., Opus or the Mixer audio level header extensions.

Perkins, et al. Expires April 25, 2013 [Page 31]

Internet-Draft RTP for WebRTC October 2012

16. Acknowledgements

 The authors would like to thank Harald Alvestrand, Cary Bran, Charles

 Eckel and Cullen Jennings for valuable feedback.

17. References

17.1. Normative References

 [I-D.holmberg-mmusic-sdp-bundle-negotiation]

 Holmberg, C. and H. Alvestrand, "Multiplexing Negotiation

 Using Session Description Protocol (SDP) Port Numbers",

 draft-holmberg-mmusic-sdp-bundle-negotiation-00 (work in

 progress), October 2011.

 [I-D.ietf-avtcore-rtp-circuit-breakers]

 Perkins, C. and V. Singh, "RTP Congestion Control: Circuit

 Breakers for Unicast Sessions",

 draft-ietf-avtcore-rtp-circuit-breakers-00 (work in

 progress), October 2012.

 [I-D.ietf-avtcore-srtp-encrypted-header-ext]

 Lennox, J., "Encryption of Header Extensions in the Secure

 Real-Time Transport Protocol (SRTP)",

 draft-ietf-avtcore-srtp-encrypted-header-ext-02 (work in

 progress), July 2012.

 [I-D.ietf-avtext-multiple-clock-rates]

 Petit-Huguenin, M. and G. Zorn, "Support for Multiple

 Clock Rates in an RTP Session",

 draft-ietf-avtext-multiple-clock-rates-06 (work in

 progress), October 2012.

 [I-D.ietf-rtcweb-audio]

 Valin, J. and C. Bran, "WebRTC Audio Codec and Processing

 Requirements", draft-ietf-rtcweb-audio-00 (work in

 progress), September 2012.

 [I-D.ietf-rtcweb-overview]

 Alvestrand, H., "Overview: Real Time Protocols for Brower-

 based Applications", draft-ietf-rtcweb-overview-04 (work

 in progress), June 2012.

 [I-D.ietf-rtcweb-security]

 Rescorla, E., "Security Considerations for RTC-Web",

 draft-ietf-rtcweb-security-03 (work in progress),

 June 2012.

Perkins, et al. Expires April 25, 2013 [Page 32]

Internet-Draft RTP for WebRTC October 2012

 [I-D.ietf-rtcweb-security-arch]

 Rescorla, E., "RTCWEB Security Architecture",

 draft-ietf-rtcweb-security-arch-05 (work in progress),

 October 2012.

 [I-D.lennox-rtcweb-rtp-media-type-mux]

 Rosenberg, J. and J. Lennox, "Multiplexing Multiple Media

 Types In a Single Real-Time Transport Protocol (RTP)

 Session", draft-lennox-rtcweb-rtp-media-type-mux-00 (work

 in progress), October 2011.

 [I-D.rescorla-avtcore-6222bis]

 Rescorla, E. and A. Begen, "Guidelines for Choosing RTP

 Control Protocol (RTCP) Canonical Names (CNAMEs)",

 draft-rescorla-avtcore-6222bis-00 (work in progress),

 October 2012.

 [I-D.terriberry-avp-codecs]

 Terriberry, T., "Update to Recommended Codecs for the AVP

 RTP Profile", draft-terriberry-avp-codecs-00 (work in

 progress), August 2012.

 [I-D.westerlund-avtcore-transport-multiplexing]

 Westerlund, M. and C. Perkins, "Multiple RTP Sessions on a

 Single Lower-Layer Transport",

 draft-westerlund-avtcore-transport-multiplexing-04 (work

 in progress), October 2012.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate

 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC2736] Handley, M. and C. Perkins, "Guidelines for Writers of RTP

 Payload Format Specifications", BCP 36, RFC 2736,

 December 1999.

 [RFC3550] Schulzrinne, H., Casner, S., Frederick, R., and V.

 Jacobson, "RTP: A Transport Protocol for Real-Time

 Applications", STD 64, RFC 3550, July 2003.

 [RFC3551] Schulzrinne, H. and S. Casner, "RTP Profile for Audio and

 Video Conferences with Minimal Control", STD 65, RFC 3551,

 July 2003.

 [RFC3556] Casner, S., "Session Description Protocol (SDP) Bandwidth

 Modifiers for RTP Control Protocol (RTCP) Bandwidth",

 RFC 3556, July 2003.

 [RFC3711] Baugher, M., McGrew, D., Naslund, M., Carrara, E., and K.

Perkins, et al. Expires April 25, 2013 [Page 33]

Internet-Draft RTP for WebRTC October 2012

 Norrman, "The Secure Real-time Transport Protocol (SRTP)",

 RFC 3711, March 2004.

 [RFC4585] Ott, J., Wenger, S., Sato, N., Burmeister, C., and J. Rey,

 "Extended RTP Profile for Real-time Transport Control

 Protocol (RTCP)-Based Feedback (RTP/AVPF)", RFC 4585,

 July 2006.

 [RFC4588] Rey, J., Leon, D., Miyazaki, A., Varsa, V., and R.

 Hakenberg, "RTP Retransmission Payload Format", RFC 4588,

 July 2006.

 [RFC4961] Wing, D., "Symmetric RTP / RTP Control Protocol (RTCP)",

 BCP 131, RFC 4961, July 2007.

 [RFC5104] Wenger, S., Chandra, U., Westerlund, M., and B. Burman,

 "Codec Control Messages in the RTP Audio-Visual Profile

 with Feedback (AVPF)", RFC 5104, February 2008.

 [RFC5124] Ott, J. and E. Carrara, "Extended Secure RTP Profile for

 Real-time Transport Control Protocol (RTCP)-Based Feedback

 (RTP/SAVPF)", RFC 5124, February 2008.

 [RFC5285] Singer, D. and H. Desineni, "A General Mechanism for RTP

 Header Extensions", RFC 5285, July 2008.

 [RFC5506] Johansson, I. and M. Westerlund, "Support for Reduced-Size

 Real-Time Transport Control Protocol (RTCP): Opportunities

 and Consequences", RFC 5506, April 2009.

 [RFC5761] Perkins, C. and M. Westerlund, "Multiplexing RTP Data and

 Control Packets on a Single Port", RFC 5761, April 2010.

 [RFC5764] McGrew, D. and E. Rescorla, "Datagram Transport Layer

 Security (DTLS) Extension to Establish Keys for the Secure

 Real-time Transport Protocol (SRTP)", RFC 5764, May 2010.

 [RFC6051] Perkins, C. and T. Schierl, "Rapid Synchronisation of RTP

 Flows", RFC 6051, November 2010.

 [RFC6464] Lennox, J., Ivov, E., and E. Marocco, "A Real-time

 Transport Protocol (RTP) Header Extension for Client-to-

 Mixer Audio Level Indication", RFC 6464, December 2011.

 [RFC6465] Ivov, E., Marocco, E., and J. Lennox, "A Real-time

 Transport Protocol (RTP) Header Extension for Mixer-to-

 Client Audio Level Indication", RFC 6465, December 2011.

Perkins, et al. Expires April 25, 2013 [Page 34]

Internet-Draft RTP for WebRTC October 2012

 [RFC6562] Perkins, C. and JM. Valin, "Guidelines for the Use of

 Variable Bit Rate Audio with Secure RTP", RFC 6562,

 March 2012.

17.2. Informative References

 [I-D.alvestrand-rtcweb-msid]

 Alvestrand, H., "Cross Session Stream Identification in

 the Session Description Protocol",

 draft-alvestrand-rtcweb-msid-02 (work in progress),

 May 2012.

 [I-D.ietf-avt-srtp-ekt]

 Wing, D., McGrew, D., and K. Fischer, "Encrypted Key

 Transport for Secure RTP", draft-ietf-avt-srtp-ekt-03

 (work in progress), October 2011.

 [I-D.ietf-rtcweb-qos]

 Dhesikan, S., Druta, D., Jones, P., and J. Polk, "DSCP and

 other packet markings for RTCWeb QoS",

 draft-ietf-rtcweb-qos-00 (work in progress), October 2012.

 [I-D.ietf-rtcweb-use-cases-and-requirements]

 Holmberg, C., Hakansson, S., and G. Eriksson, "Web Real-

 Time Communication Use-cases and Requirements",

 draft-ietf-rtcweb-use-cases-and-requirements-09 (work in

 progress), June 2012.

 [I-D.jesup-rtp-congestion-reqs]

 Jesup, R. and H. Alvestrand, "Congestion Control

 Requirements For Real Time Media",

 draft-jesup-rtp-congestion-reqs-00 (work in progress),

 March 2012.

 [I-D.westerlund-avtcore-multiplex-architecture]

 Westerlund, M., Burman, B., Perkins, C., and H.

 Alvestrand, "Guidelines for using the Multiplexing

 Features of RTP",

 draft-westerlund-avtcore-multiplex-architecture-02 (work

 in progress), July 2012.

 [I-D.westerlund-avtcore-rtp-topologies-update]

 Westerlund, M. and S. Wenger, "RTP Topologies",

 draft-westerlund-avtcore-rtp-topologies-update-01 (work in

 progress), October 2012.

 [RFC4341] Floyd, S. and E. Kohler, "Profile for Datagram Congestion

 Control Protocol (DCCP) Congestion Control ID 2: TCP-like

Perkins, et al. Expires April 25, 2013 [Page 35]

Internet-Draft RTP for WebRTC October 2012

 Congestion Control", RFC 4341, March 2006.

 [RFC4342] Floyd, S., Kohler, E., and J. Padhye, "Profile for

 Datagram Congestion Control Protocol (DCCP) Congestion

 Control ID 3: TCP-Friendly Rate Control (TFRC)", RFC 4342,

 March 2006.

 [RFC4383] Baugher, M. and E. Carrara, "The Use of Timed Efficient

 Stream Loss-Tolerant Authentication (TESLA) in the Secure

 Real-time Transport Protocol (SRTP)", RFC 4383,

 February 2006.

 [RFC4828] Floyd, S. and E. Kohler, "TCP Friendly Rate Control

 (TFRC): The Small-Packet (SP) Variant", RFC 4828,

 April 2007.

 [RFC5348] Floyd, S., Handley, M., Padhye, J., and J. Widmer, "TCP

 Friendly Rate Control (TFRC): Protocol Specification",

 RFC 5348, September 2008.

 [RFC5576] Lennox, J., Ott, J., and T. Schierl, "Source-Specific

 Media Attributes in the Session Description Protocol

 (SDP)", RFC 5576, June 2009.

 [RFC5681] Allman, M., Paxson, V., and E. Blanton, "TCP Congestion

 Control", RFC 5681, September 2009.

 [RFC5968] Ott, J. and C. Perkins, "Guidelines for Extending the RTP

 Control Protocol (RTCP)", RFC 5968, September 2010.

 [RFC6263] Marjou, X. and A. Sollaud, "Application Mechanism for

 Keeping Alive the NAT Mappings Associated with RTP / RTP

 Control Protocol (RTCP) Flows", RFC 6263, June 2011.

Appendix A. Supported RTP Topologies

 RTP supports both unicast and group communication, with participants

 being connected using wide range of transport-layer topologies. Some

 of these topologies involve only the end-points, while others use RTP

 translators and mixers to provide in-network processing. Properties

 of some RTP topologies are discussed in

 [I-D.westerlund-avtcore-rtp-topologies-update], and we further

 describe those expected to be useful for WebRTC in the following. We

 also goes into important RTP session aspects that the topology or

 implementation variant can place on a WebRTC end-point.

 This section includes RTP topologies beyond the RECOMMENDED ones.

Perkins, et al. Expires April 25, 2013 [Page 36]

Internet-Draft RTP for WebRTC October 2012

 This in an attempt to highlight the differences and the in many case

 small differences in implementation to support a larger set of

 possible topologies.

 (tbd: This section needs reworking and clearer relation to

 [I-D.westerlund-avtcore-rtp-topologies-update].)

A.1. Point to Point

 The point-to-point RTP topology (Figure 3) is the simplest scenario

 for WebRTC applications. This is going to be very common for user to

 user calls.

 +---+ +---+

 | A |<------->| B |

 +---+ +---+

 Figure 3: Point to Point

 This being the basic one lets use the topology to high-light a couple

 of details that are common for all RTP usage in the WebRTC context.

 First is the intention to multiplex RTP and RTCP over the same UDP-

 flow. Secondly is the question of using only a single RTP session or

 one per media type for legacy interoperability. Thirdly is the

 question of using multiple sender sources (SSRCs) per end-point.

 Historically, RTP and RTCP have been run on separate UDP ports. With

 the increased use of Network Address/Port Translation (NAPT) this has

 become problematic, since maintaining multiple NAT bindings can be

 costly. It also complicates firewall administration, since multiple

 ports need to be opened to allow RTP traffic. To reduce these costs

 and session set-up times, support for multiplexing RTP data packets

 and RTCP control packets on a single port [RFC5761] will be

 supported.

 In cases where there is only one type of media (e.g., a voice-only

 call) this topology will be implemented as a single RTP session, with

 bidirectional flows of RTP and RTCP packets, all then multiplexed

 onto a single 5-tuple. If multiple types of media are to be used

 (e.g., audio and video), then each type media can be sent as a

 separate RTP session using a different 5-tuple, allowing for separate

 transport level treatment of each type of media. Alternatively, all

 types of media can be multiplexed onto a single 5-tuple as a single

 RTP session, or as several RTP sessions if using a demultiplexing

 shim. Multiplexing different types of media onto a single 5-tuple

 places some limitations on how RTP is used, as described in "RTP

 Multiplexing Architecture"

 [I-D.westerlund-avtcore-multiplex-architecture]. It is not expected

Perkins, et al. Expires April 25, 2013 [Page 37]

Internet-Draft RTP for WebRTC October 2012

 that these limitations will significantly affect the scenarios

 targeted by WebRTC, but they can impact interoperability with legacy

 systems.

 An RTP session have good support for simultaneously transport

 multiple media sources. Each media source uses an unique SSRC

 identifier and each SSRC has independent RTP sequence number and

 timestamp spaces. This is being utilized in WebRTC for several

 cases. One is to enable multiple media sources of the same type, an

 end-point that has two video cameras can potentially transmit video

 from both to its peer(s). Another usage is when a single RTP session

 is being used for both multiple media types, thus an end-point can

 transmit both audio and video to the peer(s). Thirdly to support

 multi-party cases as will be discussed below support for multiple

 SSRC of the same media type is needed.

 Thus we can introduce a couple of different notations in the below

 two alternate figures of a single peer connection in a point to point

 set-up. The first depicting a setup where the peer connection

 established has two different RTP sessions, one for audio and one for

 video. The second one using a single RTP session. In both cases A

 has two video streams to send and one audio stream. B has only one

 audio and video stream. These are used to illustrate the relation

 between a peerConnection, the UDP flow(s), the RTP session(s) and the

 SSRCs that will be used in the later cases also. In the below

 figures RTCP flows are not included. They will flow bi-directionally

 between any RTP session instances in the different nodes.

Perkins, et al. Expires April 25, 2013 [Page 38]

Internet-Draft RTP for WebRTC October 2012

 +-A-------------+ +-B-------------+

 | +-PeerC1------| |-PeerC1------+ |

 | | +-UDP1------| |-UDP1------+ | |

 | | | +-RTP1----| |-RTP1----+ | | |

 | | | | +-Audio-| |-Audio-+ | | | |

 | | | | | AA1|---------------->| | | | | |

 | | | | | |<----------------|BA1 | | | | |

 | | | | +-------| |-------+ | | | |

 | | | +---------| |---------+ | | |

 | | +-----------| |-----------+ | |

 | | | | | |

 | | +-UDP2------| |-UDP2------+ | |

 | | | +-RTP2----| |-RTP1----+ | | |

 | | | | +-Video-| |-Video-+ | | | |

 | | | | | AV1|---------------->| | | | | |

 | | | | | AV2|---------------->| | | | | |

 | | | | | |<----------------|BV1 | | | | |

 | | | | +-------| |-------+ | | | |

 | | | +---------| |---------+ | | |

 | | +-----------| |-----------+ | |

 | +-------------| |-------------+ |

 +---------------+ +---------------+

 Figure 4: Point to Point: Multiple RTP sessions

 As can be seen above in the Point to Point: Multiple RTP sessions

 (Figure 4) the single Peer Connection contains two RTP sessions over

 different UDP flows UDP 1 and UDP 2, i.e. their 5-tuples will be

 different, normally on source and destination ports. The first RTP

 session (RTP1) carries audio, one stream in each direction AA1 and

 BA1. The second RTP session contains two video streams from A (AV1

 and AV2) and one from B to A (BV1).

Perkins, et al. Expires April 25, 2013 [Page 39]

Internet-Draft RTP for WebRTC October 2012

 +-A-------------+ +-B-------------+

 | +-PeerC1------| |-PeerC1------+ |

 | | +-UDP1------| |-UDP1------+ | |

 | | | +-RTP1----| |-RTP1----+ | | |

 | | | | +-Audio-| |-Audio-+ | | | |

 | | | | | AA1|---------------->| | | | | |

 | | | | | |<----------------|BA1 | | | | |

 | | | | +-------| |-------+ | | | |

 | | | | | | | | | |

 | | | | +-Video-| |-Video-+ | | | |

 | | | | | AV1|---------------->| | | | | |

 | | | | | AV2|---------------->| | | | | |

 | | | | | |<----------------|BV1 | | | | |

 | | | | +-------| |-------+ | | | |

 | | | +---------| |---------+ | | |

 | | +-----------| |-----------+ | |

 | +-------------| |-------------+ |

 +---------------+ +---------------+

 Figure 5: Point to Point: Single RTP session.

 In (Figure 5) there is only a single UDP flow and RTP session (RTP1).

 This RTP session carries a total of five (5) RTP media streams

 (SSRCs). From A to B there is Audio (AA1) and two video (AV1 and

 AV2). From B to A there is Audio (BA1) and Video (BV1).

A.2. Multi-Unicast (Mesh)

 For small multiparty calls, it is practical to set up a multi-unicast

 topology (Figure 6). In this topology, each participant sends

 individual unicast RTP/UDP/IP flows to each of the other participants

 using independent PeerConnections in a full mesh.

 +---+ +---+

 | A |<---->| B |

 +---+ +---+

 ^ ^

 \ /

 \ /

 v v

 +---+

 | C |

 +---+

 Figure 6: Multi-unicast

 This topology has the benefit of not requiring central nodes. The

 downside is that it increases the used bandwidth at each sender by

Perkins, et al. Expires April 25, 2013 [Page 40]

Internet-Draft RTP for WebRTC October 2012

 requiring one copy of the RTP media streams for each participant that

 are part of the same session beyond the sender itself. Hence, this

 topology is limited to scenarios with few participants unless the

 media is very low bandwidth. The multi-unicast topology could be

 implemented as a single RTP session, spanning multiple peer-to-peer

 transport layer connections, or as several pairwise RTP sessions, one

 between each pair of peers. To maintain a coherent mapping between

 the relation between RTP sessions and PeerConnections we recommend

 that one implements this as individual RTP sessions. The only

 downside is that end-point A will not learn of the quality of any

 transmission happening between B and C based on RTCP. This has not

 been seen as a significant downside as now one has yet seen a need

 for why A would need to know about the B’s and C’s communication. An

 advantage of using separate RTP sessions is that it enables using

 different media bit-rates to the different peers, thus not forcing B

 to endure the same quality reductions if there are limitations in the

 transport from A to C as C will.

 +-A------------------------+ +-B-------------+

 |+---+ +-PeerC1------| |-PeerC1------+ |

 ||MIC| | +-UDP1------| |-UDP1------+ | |

 |+---+ | | +-RTP1----| |-RTP1----+ | | |

 | | +----+ | | | +-Audio-| |-Audio-+ | | | |

 | +->|ENC1|--+-+-+-+--->AA1|------------->| | | | | |

 | | +----+ | | | | |<-------------|BA1 | | | | |

 | | | | | +-------| |-------+ | | | |

 | | | | +---------| |---------+ | | |

 | | | +-----------| |-----------+ | |

 | | +-------------| |-------------+ |

 | | | |---------------+

 | | |

 | | | +-C-------------+

 | | +-PeerC2------| |-PeerC2------+ |

 | | | +-UDP2------| |-UDP2------+ | |

 | | | | +-RTP2----| |-RTP2----+ | | |

 | | +----+ | | | +-Audio-| |-Audio-+ | | | |

 | +->|ENC2|--+-+-+-+--->AA2|------------->| | | | | |

 | +----+ | | | | |<-------------|CA1 | | | | |

 | | | | +-------| |-------+ | | | |

 | | | +---------| |---------+ | | |

 | | +-----------| |-----------+ | |

 | +-------------| |-------------+ |

 +--------------------------+ +---------------+

 Figure 7: Session structure for Multi-Unicast Setup

 Lets review how the RTP sessions looks from A’s perspective by

 considering both how the media is a handled and what PeerConnections

Perkins, et al. Expires April 25, 2013 [Page 41]

Internet-Draft RTP for WebRTC October 2012

 and RTP sessions that are set-up in Figure 7. A’s microphone is

 captured and the digital audio can then be feed into two different

 encoder instances each beeing associated with two different

 PeerConnections (PeerC1 and PeerC2) each containing independent RTP

 sessions (RTP1 and RTP2). The SSRCs in each RTP session will be

 completely independent and the media bit-rate produced by the encoder

 can also be tuned to address any congestion control requirements

 between A and B differently then for the path A to C.

 For media encodings which are more resource consuming, like video,

 one could expect that it will be common that end-points that are

 resource constrained will use a different implementation strategy

 where the encoder is shared between the different PeerConnections as

 shown below Figure 8.

 +-A----------------------+ +-B-------------+

 |+---+ | | |

 ||CAM| +-PeerC1------| |-PeerC1------+ |

 |+---+ | +-UDP1------| |-UDP1------+ | |

 | | | | +-RTP1----| |-RTP1----+ | | |

 | V | | | +-Video-| |-Video-+ | | | |

 |+----+ | | | | |<----------------|BV1 | | | | |

 ||ENC |----+-+-+-+--->AV1|---------------->| | | | | |

 |+----+ | | | +-------| |-------+ | | | |

 | | | | +---------| |---------+ | | |

 | | | +-----------| |-----------+ | |

 | | +-------------| |-------------+ |

 | | | |---------------+

 | | |

 | | | +-C-------------+

 | | +-PeerC2------| |-PeerC2------+ |

 | | | +-UDP2------| |-UDP2------+ | |

 | | | | +-RTP2----| |-RTP2----+ | | |

 | | | | | +-Video-| |-Video-+ | | | |

 | +-------+-+-+-+--->AV2|---------------->| | | | | |

 | | | | | |<----------------|CV1 | | | | |

 | | | | +-------| |-------+ | | | |

 | | | +---------| |---------+ | | |

 | | +-----------| |-----------+ | |

 | +-------------| |-------------+ |

 +------------------------+ +---------------+

 Figure 8: Single Encoder Multi-Unicast Setup

 This will clearly save resources consumed by encoding but does

 introduce the need for the end-point A to make decisions on how it

 encodes the media so it suites delivery to both B and C. This is not

 limited to congestion control, also preferred resolution to receive

 based on dispaly area available is another aspect requiring

Perkins, et al. Expires April 25, 2013 [Page 42]

Internet-Draft RTP for WebRTC October 2012

 consideration. The need for this type of decision logic does arise

 in several different topologies and implementation.

A.3. Mixer Based

 An mixer (Figure 9) is a centralised point that selects or mixes

 content in a conference to optimise the RTP session so that each end-

 point only needs connect to one entity, the mixer. The mixer can

 also reduce the bit-rate needed from the mixer down to a conference

 participants as the media sent from the mixer to the end-point can be

 optimised in different ways. These optimisations include methods

 like only choosing media from the currently most active speaker or

 mixing together audio so that only one audio stream is needed instead

 of 3 in the depicted scenario (Figure 9).

 +---+ +------------+ +---+

 | A |<---->| |<---->| B |

 +---+ | | +---+

 | Mixer |

 +---+ | | +---+

 | C |<---->| |<---->| D |

 +---+ +------------+ +---+

 Figure 9: RTP Mixer with Only Unicast Paths

 Mixers have two downsides, the first is that the mixer has to be a

 trusted node as they either performs media operations or at least re-

 packetize the media. Both type of operations requires when using

 SRTP that the mixer verifies integrity, decrypts the content, perform

 its operation and form new RTP packets, encrypts and integrity

 protect them. This applies to all types of mixers described below.

 The second downside is that all these operations and optimization of

 the session requires processing. How much depends on the

 implementation as will become evident below.

 The implementation of an mixer can take several different forms and

 we will discuss the main themes available that doesn’t break RTP.

 Please note that a Mixer could also contain translator

 functionalities, like a media transcoder to adjust the media bit-rate

 or codec used on a particular RTP media stream.

A.3.1. Media Mixing

 This type of mixer is one which clearly can be called RTP mixer is

 likely the one that most thinks of when they hear the term mixer.

 Its basic patter of operation is that it will receive the different

Perkins, et al. Expires April 25, 2013 [Page 43]

Internet-Draft RTP for WebRTC October 2012

 participants RTP media stream. Select which that are to be included

 in a media domain mix of the incoming RTP media streams. Then create

 a single outgoing stream from this mix.

 Audio mixing is straight forward and commonly possible to do for a

 number of participants. Lets assume that you want to mix N number of

 streams from different participants. Then the mixer need to perform

 decoding N times. Then it needs to produce N or N+1 mixes, the

 reasons that different mixes are needed are so that each contributing

 source get a mix which don’t contain themselves, as this would result

 in an echo. When N is lower than the number of all participants one

 can produce a Mix of all N streams for the group that are curently

 not included in the mix, thus N+1 mixes. These audio streams are

 then encoded again, RTP packetized and sent out.

 Video can’t really be "mixed" and produce something particular useful

 for the users, however creating an composition out of the contributed

 video streams can be done. In fact it can be done in a number of

 ways, tiling the different streams creating a chessboard, selecting

 someone as more important and showing them large and a number of

 other sources as smaller is another. Also here one commonly need to

 produce a number of different compositions so that the contributing

 part doesn’t need to see themselves. Then the mixer re-encodes the

 created video stream, RTP packetize it and send it out

 The problem with media mixing is that it both consume large amount of

 media processing and encoding resources. The second is the quality

 degradation created by decoding and re-encoding the RTP media stream.

 Its advantage is that it is quite simplistic for the clients to

 handle as they don’t need to handle local mixing and composition.

Perkins, et al. Expires April 25, 2013 [Page 44]

Internet-Draft RTP for WebRTC October 2012

 +-A-------------+ +-MIXER--------------------------+

 | +-PeerC1------| |-PeerC1--------+ |

 | | +-UDP1------| |-UDP1--------+ | |

 | | | +-RTP1----| |-RTP1------+ | | +-----+ |

 | | | | +-Audio-| |-Audio---+ | | | +---+ | | |

 | | | | | AA1|------------>|---------+-+-+-+-|DEC|->| | |

 | | | | | |<------------|MA1 <----+ | | | +---+ | | |

 | | | | | | |(BA1+CA1)|\| | | +---+ | | |

 | | | | +-------| |---------+ +-+-+-|ENC|<-| B+C | |

 | | | +---------| |-----------+ | | +---+ | | |

 | | +-----------| |-------------+ | | M | |

 | +-------------| |---------------+ | E | |

 +---------------+ | | D | |

 | | I | |

 +-B-------------+ | | A | |

 | +-PeerC2------| |-PeerC2--------+ | | |

 | | +-UDP2------| |-UDP2--------+ | | M | |

 | | | +-RTP2----| |-RTP2------+ | | | I | |

 | | | | +-Audio-| |-Audio---+ | | | +---+ | X | |

 | | | | | BA1|------------>|---------+-+-+-+-|DEC|->| E | |

 | | | | | |<------------|MA2 <----+ | | | +---+ | R | |

 | | | | +-------| |(BA1+CA1)|\| | | +---+ | | |

 | | | +---------| |---------+ +-+-+-|ENC|<-| A+C | |

 | | +-----------| |-----------+ | | +---+ | | |

 | +-------------| |-------------+ | | | |

 +---------------+ |---------------+ | | |

 | | | |

 +-C-------------+ | | | |

 | +-PeerC3------| |-PeerC3--------+ | | |

 | | +-UDP3------| |-UDP3--------+ | | | |

 | | | +-RTP3----| |-RTP3------+ | | | | |

 | | | | +-Audio-| |-Audio---+ | | | +---+ | | |

 | | | | | CA1|------------>|---------+-+-+-+-|DEC|->| | |

 | | | | | |<------------|MA3 <----+ | | | +---+ | | |

 | | | | +-------| |(BA1+CA1)|\| | | +---+ | | |

 | | | +---------| |---------+ +-+-+-|ENC|<-| A+B | |

 | | +-----------| |-----------+ | | +---+ | | |

 | +-------------| |-------------+ | +-----+ |

 +---------------+ |---------------+ |

 +--------------------------------+

 Figure 10: Session and SSRC details for Media Mixer

 From an RTP perspective media mixing can be very straight forward as

 can be seen in Figure 10. The mixer present one SSRC towards the

 peer client, e.g. MA1 to Peer A, which is the media mix of the other

 participants. As each peer receives a different version produced by

 the mixer there are no actual relation between the different RTP

Perkins, et al. Expires April 25, 2013 [Page 45]

Internet-Draft RTP for WebRTC October 2012

 sessions in the actual media or the transport level information.

 There is however one connection between RTP1-RTP3 in this figure. It

 has to do with the SSRC space and the identity information. When A

 receives the MA1 stream which is a combination of BA1 and CA1 streams

 in the other PeerConnections RTP could enable the mixer to include

 CSRC information in the MA1 stream to identify the contributing

 source BA1 and CA1.

 The CSRC has in its turn utility in RTP extensions, like the in

 Section 5.2.3 discussed Mixer to Client audio levels RTP header

 extension [RFC6465]. If the SSRC from one PeerConnection are used as

 CSRC in another PeerConnection then RTP1, RTP2 and RTP3 becomes one

 joint session as they have a common SSRC space. At this stage one

 also need to consider which RTCP information one need to expose in

 the different legs. For the above situation commonly nothing more

 than the Source Description (SDES) information and RTCP BYE for CSRC

 need to be exposed. The main goal would be to enable the correct

 binding against the application logic and other information sources.

 This also enables loop detection in the RTP session.

A.3.1.1. RTP Session Termination

 There exist an possible implementation choice to have the RTP

 sessions being separated between the different legs in the multi-

 party communication session and only generate RTP media streams in

 each without carrying on RTP/RTCP level any identity information

 about the contributing sources. This removes both the functionality

 that CSRC can provide and the possibility to use any extensions that

 build on CSRC and the loop detection. It might appear a

 simplification if SSRC collision would occur between two different

 end-points as they can be avoided to be resolved and instead remapped

 between the independent sessions if at all exposed. However, SSRC/

 CSRC remapping requires that SSRC/CSRC are never exposed to the

 WebRTC JavaScript client to use as reference. This as they only have

 local importance if they are used on a multi-party session scope the

 result would be mis-referencing. Also SSRC collision handling will

 still be needed as it can occur between the mixer and the end-point.

 Session termination might appear to resolve some issues, it however

 creates other issues that needs resolving, like loop detection,

 identification of contributing sources and the need to handle mapped

 identities and ensure that the right one is used towards the right

 identities and never used directly between multiple end-points.

A.3.2. Media Switching

 An RTP Mixer based on media switching avoids the media decoding and

 encoding cycle in the mixer, but not the decryption and re-encryption

Perkins, et al. Expires April 25, 2013 [Page 46]

Internet-Draft RTP for WebRTC October 2012

 cycle as one rewrites RTP headers. This both reduces the amount of

 computational resources needed in the mixer and increases the media

 quality per transmitted bit. This is achieve by letting the mixer

 have a number of SSRCs that represents conceptual or functional

 streams the mixer produces. These streams are created by selecting

 media from one of the by the mixer received RTP media streams and

 forward the media using the mixers own SSRCs. The mixer can then

 switch between available sources if that is needed by the concept for

 the source, like currently active speaker.

 To achieve a coherent RTP media stream from the mixer’s SSRC the

 mixer is forced to rewrite the incoming RTP packet’s header. First

 the SSRC field has to be set to the value of the Mixer’s SSRC.

 Secondly, the sequence number is set to the next in the sequence of

 outgoing packets it sent. Thirdly the RTP timestamp value needs to

 be adjusted using an offset that changes each time one switch media

 source. Finally depending on the negotiation the RTP payload type

 value representing this particular RTP payload configuration might

 have to be changed if the different PeerConnections have not arrived

 on the same numbering for a given configuration. This also requires

 that the different end-points do support a common set of codecs,

 otherwise media transcoding for codec compatibility is still needed.

 Lets consider the operation of media switching mixer that supports a

 video conference with six participants (A-F) where the two latest

 speakers in the conference are shown to each participants. Thus the

 mixer has two SSRCs sending video to each peer.

Perkins, et al. Expires April 25, 2013 [Page 47]

Internet-Draft RTP for WebRTC October 2012

 +-A-------------+ +-MIXER--------------------------+

 | +-PeerC1------| |-PeerC1--------+ |

 | | +-UDP1------| |-UDP1--------+ | |

 | | | +-RTP1----| |-RTP1------+ | | +-----+ |

 | | | | +-Video-| |-Video---+ | | | | | |

 | | | | | AV1|------------>|---------+-+-+-+------->| | |

 | | | | | |<------------|MV1 <----+-+-+-+-BV1----| | |

 | | | | | |<------------|MV2 <----+-+-+-+-EV1----| | |

 | | | | +-------| |---------+ | | | | | |

 | | | +---------| |-----------+ | | | | |

 | | +-----------| |-------------+ | | S | |

 | +-------------| |---------------+ | W | |

 +---------------+ | | I | |

 | | T | |

 +-B-------------+ | | C | |

 | +-PeerC2------| |-PeerC2--------+ | H | |

 | | +-UDP2------| |-UDP2--------+ | | | |

 | | | +-RTP2----| |-RTP2------+ | | | M | |

 | | | | +-Video-| |-Video---+ | | | | A | |

 | | | | | BV1|------------>|---------+-+-+-+------->| T | |

 | | | | | |<------------|MV3 <----+-+-+-+-AV1----| R | |

 | | | | | |<------------|MV4 <----+-+-+-+-EV1----| I | |

 | | | | +-------| |---------+ | | | | X | |

 | | | +---------| |-----------+ | | | | |

 | | +-----------| |-------------+ | | | |

 | +-------------| |---------------+ | | |

 +---------------+ | | | |

 : : : :

 : : : :

 +-F-------------+ | | | |

 | +-PeerC6------| |-PeerC6--------+ | | |

 | | +-UDP6------| |-UDP6--------+ | | | |

 | | | +-RTP6----| |-RTP6------+ | | | | |

 | | | | +-Video-| |-Video---+ | | | | | |

 | | | | | CV1|------------>|---------+-+-+-+------->| | |

 | | | | | |<------------|MV11 <---+-+-+-+-AV1----| | |

 | | | | | |<------------|MV12 <---+-+-+-+-EV1----| | |

 | | | | +-------| |---------+ | | | | | |

 | | | +---------| |-----------+ | | | | |

 | | +-----------| |-------------+ | +-----+ |

 | +-------------| |---------------+ |

 +---------------+ +--------------------------------+

 Figure 11: Media Switching RTP Mixer

 The Media Switching RTP mixer can similar to the Media Mixing one

 reduce the bit-rate needed towards the different peers by selecting

 and switching in a sub-set of RTP media streams out of the ones it

Perkins, et al. Expires April 25, 2013 [Page 48]

Internet-Draft RTP for WebRTC October 2012

 receives from the conference participations.

 To ensure that a media receiver can correctly decode the RTP media

 stream after a switch, it becomes necessary to ensure for state

 saving codecs that they start from default state at the point of

 switching. Thus one common tool for video is to request that the

 encoding creates an intra picture, something that isn’t dependent on

 earlier state. This can be done using Full Intra Request RTCP codec

 control message as discussed in Section 5.1.1.

 Also in this type of mixer one could consider to terminate the RTP

 sessions fully between the different PeerConnection. The same

 arguments and considerations as discussed in Appendix A.3.1.1 applies

 here.

A.3.3. Media Projecting

 Another method for handling media in the RTP mixer is to project all

 potential sources (SSRCs) into a per end-point independent RTP

 session. The mixer can then select which of the potential sources

 that are currently actively transmitting media, despite that the

 mixer in another RTP session receives media from that end-point.

 This is similar to the media switching Mixer but have some important

 differences in RTP details.

Perkins, et al. Expires April 25, 2013 [Page 49]

Internet-Draft RTP for WebRTC October 2012

 +-A-------------+ +-MIXER--------------------------+

 | +-PeerC1------| |-PeerC1--------+ |

 | | +-UDP1------| |-UDP1--------+ | |

 | | | +-RTP1----| |-RTP1------+ | | +-----+ |

 | | | | +-Video-| |-Video---+ | | | | | |

 | | | | | AV1|------------>|---------+-+-+-+------->| | |

 | | | | | |<------------|BV1 <----+-+-+-+--------| | |

 | | | | | |<------------|CV1 <----+-+-+-+--------| | |

 | | | | | |<------------|DV1 <----+-+-+-+--------| | |

 | | | | | |<------------|EV1 <----+-+-+-+--------| | |

 | | | | | |<------------|FV1 <----+-+-+-+--------| | |

 | | | | +-------| |---------+ | | | | | |

 | | | +---------| |-----------+ | | | | |

 | | +-----------| |-------------+ | | S | |

 | +-------------| |---------------+ | W | |

 +---------------+ | | I | |

 | | T | |

 +-B-------------+ | | C | |

 | +-PeerC2------| |-PeerC2--------+ | H | |

 | | +-UDP2------| |-UDP2--------+ | | | |

 | | | +-RTP2----| |-RTP2------+ | | | M | |

 | | | | +-Video-| |-Video---+ | | | | A | |

 | | | | | BV1|------------>|---------+-+-+-+------->| T | |

 | | | | | |<------------|AV1 <----+-+-+-+--------| R | |

 | | | | | |<------------|CV1 <----+-+-+-+--------| I | |

 | | | | | | : : : |: : : : : : : : : : :| X | |

 | | | | | |<------------|FV1 <----+-+-+-+--------| | |

 | | | | +-------| |---------+ | | | | | |

 | | | +---------| |-----------+ | | | | |

 | | +-----------| |-------------+ | | | |

 | +-------------| |---------------+ | | |

 +---------------+ | | | |

 : : : :

 : : : :

 +-F-------------+ | | | |

 | +-PeerC6------| |-PeerC6--------+ | | |

 | | +-UDP6------| |-UDP6--------+ | | | |

 | | | +-RTP6----| |-RTP6------+ | | | | |

 | | | | +-Video-| |-Video---+ | | | | | |

 | | | | | CV1|------------>|---------+-+-+-+------->| | |

 | | | | | |<------------|AV1 <----+-+-+-+--------| | |

 | | | | | | : : : |: : : : : : : : : : :| | |

 | | | | | |<------------|EV1 <----+-+-+-+--------| | |

 | | | | +-------| |---------+ | | | | | |

 | | | +---------| |-----------+ | | | | |

 | | +-----------| |-------------+ | +-----+ |

 | +-------------| |---------------+ |

 +---------------+ +--------------------------------+

Perkins, et al. Expires April 25, 2013 [Page 50]

Internet-Draft RTP for WebRTC October 2012

 Figure 12: Media Projecting Mixer

 So in this six participant conference depicted above in (Figure 12)

 one can see that end-point A will in this case be aware of 5 incoming

 SSRCs, BV1-FV1. If this mixer intend to have the same behavior as in

 Appendix A.3.2 where the mixer provides the end-points with the two

 latest speaking end-points, then only two out of these five SSRCs

 will concurrently transmit media to A. As the mixer selects which

 source in the different RTP sessions that transmit media to the end-

 points each RTP media stream will require some rewriting when being

 projected from one session into another. The main thing is that the

 sequence number will need to be consecutively incremented based on

 the packet actually being transmitted in each RTP session. Thus the

 RTP sequence number offset will change each time a source is turned

 on in RTP session.

 As the RTP sessions are independent the SSRC numbers used can be

 handled independently also thus working around any SSRC collisions by

 having remapping tables between the RTP sessions. However the

 related WebRTC MediaStream signalling need to be correspondingly

 changed to ensure consistent WebRTC MediaStream to SSRC mappings

 between the different PeerConnections and the same comment that

 higher functions MUST NOT use SSRC as references to RTP media streams

 applies also here.

 The mixer will also be responsible to act on any RTCP codec control

 requests coming from an end-point and decide if it can act on it

 locally or needs to translate the request into the RTP session that

 contains the media source. Both end-points and the mixer will need

 to implement conference related codec control functionalities to

 provide a good experience. Full Intra Request to request from the

 media source to provide switching points between the sources,

 Temporary Maximum Media Bit-rate Request (TMMBR) to enable the mixer

 to aggregate congestion control response towards the media source and

 have it adjust its bit-rate in case the limitation is not in the

 source to mixer link.

 This version of the mixer also puts different requirements on the

 end-point when it comes to decoder instances and handling of the RTP

 media streams providing media. As each projected SSRC can at any

 time provide media the end-point either needs to handle having thus

 many allocated decoder instances or have efficient switching of

 decoder contexts in a more limited set of actual decoder instances to

 cope with the switches. The WebRTC application also gets more

 responsibility to update how the media provides is to be presented to

 the user.

Perkins, et al. Expires April 25, 2013 [Page 51]

Internet-Draft RTP for WebRTC October 2012

A.4. Translator Based

 There is also a variety of translators. The core commonality is that

 they do not need to make themselves visible in the RTP level by

 having an SSRC themselves. Instead they sit between one or more end-

 point and perform translation at some level. It can be media

 transcoding, protocol translation or covering missing functionality

 for a legacy end-point or simply relay packets between transport

 domains or to realize multi-party. We will go in details below.

A.4.1. Transcoder

 A transcoder operates on media level and really used for two

 purposes, the first is to allow two end-points that doesn’t have a

 common set of media codecs to communicate by translating from one

 codec to another. The second is to change the bit-rate to a lower

 one. For WebRTC end-points communicating with each other only the

 first one is relevant. In certain legacy deployment media transcoder

 will be necessary to ensure both codecs and bit-rate falls within the

 envelope the legacy end-point supports.

 As transcoding requires access to the media, the transcoder has to be

 within the security context and access any media encryption and

 integrity keys. On the RTP plane a media transcoder will in practice

 fork the RTP session into two different domains that are highly

 decoupled when it comes to media parameters and reporting, but not

 identities. To maintain signalling bindings to SSRCs a transcoder is

 likely needing to use the SSRC of one end-point to represent the

 transcoded RTP media stream to the other end-point(s). The

 congestion control loop can be terminated in the transcoder as the

 media bit-rate being sent by the transcoder can be adjusted

 independently of the incoming bit-rate. However, for optimizing

 performance and resource consumption the translator needs to consider

 what signals or bit-rate reductions it needs to send towards the

 source end-point. For example receiving a 2.5 Mbps video stream and

 then send out a 250 kbps video stream after transcoding is a waste of

 resources. In most cases a 500 kbps video stream from the source in

 the right resolution is likely to provide equal quality after

 transcoding as the 2.5 Mbps source stream. At the same time

 increasing media bit-rate further than what is needed to represent

 the incoming quality accurate is also wasted resources.

Perkins, et al. Expires April 25, 2013 [Page 52]

Internet-Draft RTP for WebRTC October 2012

 +-A-------------+ +-Translator------------------+

 | +-PeerC1------| |-PeerC1--------+ |

 | | +-UDP1------| |-UDP1--------+ | |

 | | | +-RTP1----| |-RTP1------+ | | |

 | | | | +-Audio-| |-Audio---+ | | | +---+ |

 | | | | | AA1|------------>|---------+-+-+-+-|DEC|----+ |

 | | | | | |<------------|BA1 <----+ | | | +---+ | |

 | | | | | | | |\| | | +---+ | |

 | | | | +-------| |---------+ +-+-+-|ENC|<-+ | |

 | | | +---------| |-----------+ | | +---+ | | |

 | | +-----------| |-------------+ | | | |

 | +-------------| |---------------+ | | |

 +---------------+ | | | |

 | | | |

 +-B-------------+ | | | |

 | +-PeerC2------| |-PeerC2--------+ | | |

 | | +-UDP2------| |-UDP2--------+ | | | |

 | | | +-RTP1----| |-RTP1------+ | | | | |

 | | | | +-Audio-| |-Audio---+ | | | +---+ | | |

 | | | | | BA1|------------>|---------+-+-+-+-|DEC|--+ | |

 | | | | | |<------------|AA1 <----+ | | | +---+ | |

 | | | | | | | |\| | | +---+ | |

 | | | | +-------| |---------+ +-+-+-|ENC|<---+ |

 | | | +---------| |-----------+ | | +---+ |

 | | +-----------| |-------------+ | |

 | +-------------| |---------------+ |

 +---------------+ +-----------------------------+

 Figure 13: Media Transcoder

 Figure 13 exposes some important details. First of all you can see

 the SSRC identifiers used by the translator are the corresponding

 end-points. Secondly, there is a relation between the RTP sessions

 in the two different PeerConnections that are represented by having

 both parts be identified by the same level and they need to share

 certain contexts. Also certain type of RTCP messages will need to be

 bridged between the two parts. Certain RTCP feedback messages are

 likely needed to be sourced by the translator in response to actions

 by the translator and its media encoder.

A.4.2. Gateway / Protocol Translator

 Gateways are used when some protocol feature that are needed are not

 supported by an end-point wants to participate in session. This RTP

 translator in Figure 14 takes on the role of ensuring that from the

 perspective of participant A, participant B appears as a fully

 compliant WebRTC end-point (that is, it is the combination of the

 Translator and participant B that looks like a WebRTC end point).

Perkins, et al. Expires April 25, 2013 [Page 53]

Internet-Draft RTP for WebRTC October 2012

 +------------+

 | |

 +---+ | Translator | +---+

 | A |<---->| to legacy |<---->| B |

 +---+ | end-point | +---+

 WebRTC | | Legacy

 +------------+

 Figure 14: Gateway (RTP translator) towards legacy end-point

 For WebRTC there are a number of requirements that could force the

 need for a gateway if a WebRTC end-point is to communicate with a

 legacy end-point, such as support of ICE and DTLS-SRTP for key

 management. On RTP level the main functions that might be missing in

 a legacy implementation that otherwise support RTP are RTCP in

 general, SRTP implementation, congestion control and feedback

 messages needed to make it work.

 +-A-------------+ +-Translator------------------+

 | +-PeerC1------| |-PeerC1------+ |

 | | +-UDP1------| |-UDP1------+ | |

 | | | +-RTP1----| |-RTP1-----------------------+|

 | | | | +-Audio-| |-Audio---+ ||

 | | | | | AA1|------------>|---------+----------------+ ||

 | | | | | |<------------|BA1 <----+--------------+ | ||

 | | | | | |<---RTCP---->|<--------+----------+ | | ||

 | | | | +-------| |---------+ +---+-+ | | ||

 | | | +---------| |---------------+| T | | | ||

 | | +-----------| |-----------+ | || R | | | ||

 | +-------------| |-------------+ || A | | | ||

 +---------------+ | || N | | | ||

 | || S | | | ||

 +-B-(Legacy)----+ | || L | | | ||

 | | | || A | | | ||

 | +-UDP2------| |-UDP2------+ || T | | | ||

 | | +-RTP1----| |-RTP1----------+| E | | | ||

 | | | +-Audio-| |-Audio---+ +---+-+ | | ||

 | | | | |<---RTCP---->|<--------+----------+ | | ||

 | | | | BA1|------------>|---------+--------------+ | ||

 | | | | |<------------|AA1 <----+----------------+ ||

 | | | +-------| |---------+ ||

 | | +---------| |----------------------------+|

 | +-----------| |-----------+ |

 | | | |

 +---------------+ +-----------------------------+

 Figure 15: RTP/RTCP Protocol Translator

Perkins, et al. Expires April 25, 2013 [Page 54]

Internet-Draft RTP for WebRTC October 2012

 The legacy gateway can be implemented in several ways and what it

 need to change is highly dependent on what functions it need to proxy

 for the legacy end-point. One possibility is depicted in Figure 15

 where the RTP media streams are compatible and forward without

 changes. However, their RTP header values are captured to enable the

 RTCP translator to create RTCP reception information related to the

 leg between the end-point and the translator. This can then be

 combined with the more basic RTCP reports that the legacy endpoint

 (B) provides to give compatible and expected RTCP reporting to A.

 Thus enabling at least full congestion control on the path between A

 and the translator. If B has limited possibilities for congestion

 response for the media then the translator might need the capability

 to perform media transcoding to address cases where it otherwise

 would need to terminate media transmission.

 As the translator are generating RTP/RTCP traffic on behalf of B to A

 it will need to be able to correctly protect these packets that it

 translates or generates. Thus security context information are

 needed in this type of translator if it operates on the RTP/RTCP

 packet content or media. In fact one of the more likely scenario is

 that the translator (gateway) will need to have two different

 security contexts one towards A and one towards B and for each RTP/

 RTCP packet do a authenticity verification, decryption followed by a

 encryption and integrity protection operation to resolve mismatch in

 security systems.

A.4.3. Relay

 There exist a class of translators that operates on transport level

 below RTP and thus do not effect RTP/RTCP packets directly. They

 come in two distinct flavours, the one used to bridge between two

 different transport or address domains to more function as a gateway

 and the second one which is to to provide a group communication

 feature as depicted below in Figure 16.

 +---+ +------------+ +---+

 | A |<---->| |<---->| B |

 +---+ | | +---+

 | Translator |

 +---+ | | +---+

 | C |<---->| |<---->| D |

 +---+ +------------+ +---+

 Figure 16: RTP Translator (Relay) with Only Unicast Paths

 The first kind is straight forward and is likely to exist in WebRTC

 context when an legacy end-point is compatible with the exception for

 ICE, and thus needs a gateway that terminates the ICE and then

Perkins, et al. Expires April 25, 2013 [Page 55]

Internet-Draft RTP for WebRTC October 2012

 forwards all the RTP/RTCP traffic and key management to the end-point

 only rewriting the IP/UDP to forward the packet to the legacy node.

 The second type is useful if one wants a less complex central node or

 a central node that is outside of the security context and thus do

 not have access to the media. This relay takes on the role of

 forwarding the media (RTP and RTCP) packets to the other end-points

 but doesn’t perform any RTP or media processing. Such a device

 simply forwards the media from each sender to all of the other

 participants, and is sometimes called a transport-layer translator.

 In Figure 16, participant A will only need to send a media once to

 the relay, which will redistribute it by sending a copy of the stream

 to participants B, C, and D. Participant A will still receive three

 RTP streams with the media from B, C and D if they transmit

 simultaneously. This is from an RTP perspective resulting in an RTP

 session that behaves equivalent to one transporter over an IP Any

 Source Multicast (ASM).

 This results in one common RTP session between all participants

 despite that there will be independent PeerConnections created to the

 translator as depicted below Figure 17.

Perkins, et al. Expires April 25, 2013 [Page 56]

Internet-Draft RTP for WebRTC October 2012

 +-A-------------+ +-RELAY--------------------------+

 | +-PeerC1------| |-PeerC1--------+ |

 | | +-UDP1------| |-UDP1--------+ | |

 | | | +-RTP1----| |-RTP1-------------------------+ |

 | | | | +-Video-| |-Video---+ | |

 | | | | | AV1|------------>|---------------------------+ | |

 | | | | | |<------------|BV1 <--------------------+ | | |

 | | | | | |<------------|CV1 <------------------+ | | | |

 | | | | +-------| |---------+ | | | | |

 | | | +---------| |-------------------+ ^ ^ V | |

 | | +-----------| |-------------+ | | | | | | |

 | +-------------| |---------------+ | | | | | |

 +---------------+ | | | | | | |

 | | | | | | |

 +-B-------------+ | | | | | | |

 | +-PeerC2------| |-PeerC2--------+ | | | | | |

 | | +-UDP2------| |-UDP2--------+ | | | | | | |

 | | | +-RTP2----| |-RTP1--------------+ | | | | |

 | | | | +-Video-| |-Video---+ | | | | |

 | | | | | BV1|------------>|-----------------------+ | | | |

 | | | | | |<------------|AV1 <----------------------+ | |

 | | | | | |<------------|CV1 <--------------------+ | | |

 | | | | +-------| |---------+ | | | | |

 | | | +---------| |-------------------+ | | | | |

 | | +-----------| |-------------+ | | V ^ V | |

 | +-------------| |---------------+ | | | | | |

 +---------------+ | | | | | | |

 : | | | | | |

 : | | | | | |

 +-C-------------+ | | | | | | |

 | +-PeerC3------| |-PeerC3--------+ | | | | | |

 | | +-UDP3------| |-UDP3--------+ | | | | | | |

 | | | +-RTP3----| |-RTP1--------------+ | | | | |

 | | | | +-Video-| |-Video---+ | | | | |

 | | | | | CV1|------------>|-------------------------+ | | |

 | | | | | |<------------|AV1 <----------------------+ | |

 | | | | | |<------------|BV1 <------------------+ | |

 | | | | +-------| |---------+ | |

 | | | +---------| |------------------------------+ |

 | | +-----------| |-------------+ | |

 | +-------------| |---------------+ |

 +---------------+ +--------------------------------+

 Figure 17: Transport Multi-party Relay

 As the Relay RTP and RTCP packets between the UDP flows as indicated

 by the arrows for the media flow a given WebRTC end-point, like A

 will see the remote sources BV1 and CV1. There will be also two

Perkins, et al. Expires April 25, 2013 [Page 57]

Internet-Draft RTP for WebRTC October 2012

 different network paths between A, and B or C. This results in that

 the client A has to be capable of handling that when determining

 congestion state that there might exist multiple destinations on the

 far side of a PeerConnection and that these paths have to be treated

 differently. It also results in a requirement to combine the

 different congestion states into a decision to transmit a particular

 RTP media stream suitable to all participants.

 It is also important to note that the relay can not perform selective

 relaying of some sources and not others. The reason is that the RTCP

 reporting in that case becomes inconsistent and without explicit

 information about it being blocked has to be interpreted as severe

 congestion.

 In this usage it is also necessary that the session management has

 configured a common set of RTP configuration including RTP payload

 formats as when A sends a packet with pt=97 it will arrive at both B

 and C carrying pt=97 and having the same packetization and encoding,

 no entity will have manipulated the packet.

 When it comes to security there exist some additional requirements to

 ensure that the property that the relay can’t read the media traffic

 is enforced. First of all the key to be used has to be agreed such

 so that the relay doesn’t get it, e.g. no DTLS-SRTP handshake with

 the relay, instead some other method needs to be used. Secondly, the

 keying structure has to be capable of handling multiple end-points in

 the same RTP session.

 The second problem can basically be solved in two ways. Either a

 common master key from which all derive their per source key for

 SRTP. The second alternative which might be more practical is that

 each end-point has its own key used to protects all RTP/RTCP packets

 it sends. Each participants key are then distributed to the other

 participants. This second method could be implemented using DTLS-

 SRTP to a special key server and then use Encrypted Key Transport

 [I-D.ietf-avt-srtp-ekt] to distribute the actual used key to the

 other participants in the RTP session Figure 18. The first one could

 be achieved using MIKEY messages in SDP.

Perkins, et al. Expires April 25, 2013 [Page 58]

Internet-Draft RTP for WebRTC October 2012

 +---+ +---+

 | | +-----------+ | |

 | A |<------->| DTLS-SRTP |<------->| C |

 | |<-- -->| HOST |<-- -->| |

 +---+ \ / +-----------+ \ / +---+

 X X

 +---+ / \ +-----------+ / \ +---+

 | |<-- -->| RTP |<-- -->| |

 | B |<------->| RELAY |<------->| D |

 | | +-----------+ | |

 +---+ +---+

 Figure 18: DTLS-SRTP host and RTP Relay Separated

 The relay can still verify that a given SSRC isn’t used or spoofed by

 another participant within the multi-party session by binding SSRCs

 on their first usage to a given source address and port pair.

 Packets carrying that source SSRC from other addresses can be

 suppressed to prevent spoofing. This is possible as long as SRTP is

 used which leaves the SSRC of the packet originator in RTP and RTCP

 packets in the clear. If such packet level method for enforcing

 source authentication within the group, then there exist

 cryptographic methods such as TESLA [RFC4383] that could be used for

 true source authentication.

A.5. End-point Forwarding

 An WebRTC end-point (B in Figure 19) will receive a WebRTC

 MediaStream (set of SSRCs) over a PeerConnection (from A). For the

 moment is not decided if the end-point is allowed or not to in its

 turn send that WebRTC MediaStream over another PeerConnection to C.

 This section discusses the RTP and end-point implications of allowing

 such functionality, which on the API level is extremely simplistic to

 perform.

 +---+ +---+ +---+

 | A |--->| B |--->| C |

 +---+ +---+ +---+

 Figure 19: MediaStream Forwarding

 There exist two main approaches to how B forwards the media from A to

 C. The first one is to simply relay the RTP media stream. The second

 one is for B to act as a transcoder. Lets consider both approaches.

 A relay approach will result in that the WebRTC end-points will have

 to have the same capabilities as being discussed in Relay

 (Appendix A.4.3). Thus A will see an RTP session that is extended

Perkins, et al. Expires April 25, 2013 [Page 59]

Internet-Draft RTP for WebRTC October 2012

 beyond the PeerConnection and see two different receiving end-points

 with different path characteristics (B and C). Thus A’s congestion

 control needs to be capable of handling this. The security solution

 can either support mechanism that allows A to inform C about the key

 A is using despite B and C having agreed on another set of keys.

 Alternatively B will decrypt and then re-encrypt using a new key.

 The relay based approach has the advantage that B does not need to

 transcode the media thus both maintaining the quality of the encoding

 and reducing B’s complexity requirements. If the right security

 solutions are supported then also C will be able to verify the

 authenticity of the media coming from A. As downside A are forced to

 take both B and C into consideration when delivering content.

 The media transcoder approach is similar to having B act as Mixer

 terminating the RTP session combined with the transcoder as discussed

 in Appendix A.4.1. A will only see B as receiver of its media. B

 will responsible to produce a RTP media stream suitable for the B to

 C PeerConnection. This might require media transcoding for

 congestion control purpose to produce a suitable bit-rate. Thus

 loosing media quality in the transcoding and forcing B to spend the

 resource on the transcoding. The media transcoding does result in a

 separation of the two different legs removing almost all

 dependencies. B could choice to implement logic to optimize its

 media transcoding operation, by for example requesting media

 properties that are suitable for C also, thus trying to avoid it

 having to transcode the content and only forward the media payloads

 between the two sides. For that optimization to be practical WebRTC

 end-points have to support sufficiently good tools for codec control.

A.6. Simulcast

 This section discusses simulcast in the meaning of providing a node,

 for example a stream switching Mixer, with multiple different encoded

 version of the same media source. In the WebRTC context that appears

 to be most easily accomplished by establishing multiple

 PeerConnection all being feed the same set of WebRTC MediaStreams.

 Each PeerConnection is then configured to deliver a particular media

 quality and thus media bit-rate. This will work well as long as the

 end-point implements media encoding according to Figure 7. Then each

 PeerConnection will receive an independently encoded version and the

 codec parameters can be agreed specifically in the context of this

 PeerConnection.

 For simulcast to work one needs to prevent that the end-point deliver

 content encoded as depicted in Figure 8. If a single encoder

 instance is feed to multiple PeerConnections the intention of

 performing simulcast will fail.

Perkins, et al. Expires April 25, 2013 [Page 60]

Internet-Draft RTP for WebRTC October 2012

 Thus it needs to be considered to explicitly signal which of the two

 implementation strategies that are desired and which will be done.

 At least making the application and possible the central node

 interested in receiving simulcast of an end-points RTP media streams

 to be aware if it will function or not.

Authors’ Addresses

 Colin Perkins

 University of Glasgow

 School of Computing Science

 Glasgow G12 8QQ

 United Kingdom

 Email: csp@csperkins.org

 Magnus Westerlund

 Ericsson

 Farogatan 6

 SE-164 80 Kista

 Sweden

 Phone: +46 10 714 82 87

 Email: magnus.westerlund@ericsson.com

 Joerg Ott

 Aalto University

 School of Electrical Engineering

 Espoo 02150

 Finland

 Email: jorg.ott@aalto.fi

Perkins, et al. Expires April 25, 2013 [Page 61]

