
Priority-driven Scheduling of
Periodic Tasks (1)

Real-Time and Embedded Systems (M)
Lecture 5

C
op

yr
ig

ht
 ©

 2
00

6
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll
rig

ht
s r

es
er

ve
d.

Lecture Outline

• Assumptions
• Fixed-priority algorithms

– Rate monotonic
– Deadline monotonic

• Dynamic-priority algorithms
– Earliest deadline first
– Least slack time

• Relative merits of fixed- and dynamic-priority scheduling
• Schedulable utilization and proof of schedulability

Material in lectures 5 & 6 corresponds to chapter 6 of Liu’s book

C
op

yr
ig

ht
 ©

 2
00

6
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll
rig

ht
s r

es
er

ve
d.

Assumptions

• Priority-driven scheduling of periodic tasks on a single processor
• Assume a restricted periodic task model:

– A fixed number of independent periodic tasks exist
• Jobs comprising those tasks:

– Are ready for execution as soon as they are released
– Can be pre-empted at any time
– Never suspend themselves

• New tasks only admitted after an acceptance test; may be rejected
• The period of a task defined as minimum inter-release time of jobs in task

– There are no aperiodic or sporadic tasks
– Scheduling decisions made immediately upon job release and completion

• Algorithms are event driven, not clock driven
• Never intentionally leave a resource idle

– Context switch overhead negligibly small; unlimited priority levels

C
op

yr
ig

ht
 ©

 2
00

6
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll
rig

ht
s r

es
er

ve
d.

Dynamic versus Static Systems

• Recall from lecture 3:
– If jobs are scheduled on multiple processors, and a job can be dispatched to

any of the processors, the system is dynamic
– If jobs are partitioned into subsystems, each subsystem bound statically to

a processor, we have a static system
– Difficult to determine the best- and worst-case performance of dynamic

systems, so most hard real-time systems built are static

• In static systems, the scheduler for each processor schedules the
jobs in its subsystem independent of the schedulers for the other
processors

⇒Results demonstrated for priority-driven uniprocessor systems are
applicable to each subsystem of a static multiprocessor system
– They are not applicable to dynamic multiprocessor systems

C
op

yr
ig

ht
 ©

 2
00

6
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll
rig

ht
s r

es
er

ve
d.

Fixed- and Dynamic-Priority Algorithms

• A priority-driven scheduler is an on-line scheduler
– It does not pre-compute a schedule of tasks/jobs: instead assigns priorities

to jobs when released, places them on a run queue in priority order
– When pre-emption is allowed, a scheduling decision is made whenever a

job is released or completed
– At each scheduling decision time, the scheduler updates the run queues and

executes the job at the head of the queue

• Jobs in a task may be assigned the same priority (task level fixed-
priority) or different priorities (task level dynamic-priority)

• The priority of each job is usually fixed (job level fixed-priority);
but some systems can vary the priority of a job after it has started
(job level dynamic-priority)
– Job level dynamic-priority usually very inefficient

C
op

yr
ig

ht
 ©

 2
00

6
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll
rig

ht
s r

es
er

ve
d.

Rate Monotonic Scheduling

• Best known fixed-priority algorithm is rate monotonic scheduling
• Assigns priorities to tasks based on their periods

– The shorter the period, the higher the priority
– The rate (of job releases) is the inverse of the period, so jobs with higher

rate have higher priority
• Very widely studied and used

• For example, consider a system of 3 tasks:
– T1 = (4, 1) ⇒ rate = 1/4
– T2 = (5, 2) ⇒ rate = 1/5
– T3 = (20, 5) ⇒ rate = 1/20

– Relative priorities: T1 > T2 > T3

C
op

yr
ig

ht
 ©

 2
00

6
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll
rig

ht
s r

es
er

ve
d.

Example: Rate Monotonic Scheduling

6

2

9
8
7

5
4
3

1
0

RunningReady to runTime
10

18

14
15
16
17

11
12
13

19

RunningReady to runTime

0 4 8 12 16 20

J1,1 J1,2 J1,3 J1,4 J1,5
J2,2J2,1 J2,3 J2,4

J3,1R
el

ea
se

d T1 = (4, 1)
T2 = (5, 2)
T3 = (20, 5)

C
op

yr
ig

ht
 ©

 2
00

6
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll
rig

ht
s r

es
er

ve
d.

Deadline Monotonic Scheduling

• The deadline monotonic algorithm assigns task priority according
to relative deadlines – the shorter the relative deadline, the higher
the priority

• When relative deadline of every task matches its period, then rate
monotonic and deadline monotonic give identical results

• When the relative deadlines are arbitrary:
– Deadline monotonic can sometimes produce a feasible schedule in cases

where rate monotonic cannot
– But, rate monotonic always fails when deadline monotonic fails

• Deadline monotonic preferred to rate monotonic
– If deadline ≠ period

C
op

yr
ig

ht
 ©

 2
00

6
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll
rig

ht
s r

es
er

ve
d.

Dynamic-Priority Algorithms

• Discussed several dynamic-priority algorithms in lecture 3:
– Earliest deadline first (EDF)

• The job queue is ordered by earliest deadline
– Least slack time first (LST)

• The job queue is ordered by least slack time
• Two variations:

– Strict LST – scheduling decisions are made also whenever a queued job’s slack
time becomes smaller than the executing job’s slack time – huge overheads, not
used

– Non-strict LST – scheduling decisions made only when jobs release or complete

– First in, first out (FIFO)
• Job queue is first-in-first-out by release time

– Last in, first out (LIFO)
• Job queue is last-in-first-out by release time

• Focus on EDF as commonly used example

C
op

yr
ig

ht
 ©

 2
00

6
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll
rig

ht
s r

es
er

ve
d.

Example: Earliest Deadline First

RunningReady to runTime RunningReady to runTime

T1 = (2, 1)
T2 = (5, 2.5)

J1,1 J1,2 J1,3 J1,4 J1,5
J2,2J2,1 J2,3

R
el

ea
se

d J1,6

0 1 2 3 4 5 6 7 8 9 10

C
op

yr
ig

ht
 ©

 2
00

6
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll
rig

ht
s r

es
er

ve
d.

Relative Merits

• Fixed- and dynamic-priority scheduling algorithms have different
properties; neither appropriate for all scenarios

• Algorithms that do not take into account the urgencies of jobs in
priority assignment usually perform poorly
– E.g FIFO, LIFO

• The EDF algorithm gives higher priority to jobs that have missed
their deadlines than to jobs whose deadline is still in the future
– Not necessarily suited to systems where occasional overload unavoidable

• Dynamic algorithms like EDF can produce feasible schedules in
cases where RM and DM cannot
– But fixed priority algorithms often more predictable, lower overhead

C
op

yr
ig

ht
 ©

 2
00

6
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll
rig

ht
s r

es
er

ve
d.

Example: Comparing Different Algorithms

• Compare performance of RM, EDF, LST and FIFO scheduling
• Assume a single processor system with 2 tasks:

– T1 = (2, 1)
– T2 = (5, 2.5) H = 10

• The total utilization is 1.0 ⇒ no slack time
– Expect some of these algorithms to lead to missed deadlines!
– This is one of the cases where EDF works better than RM/DM

C
op

yr
ig

ht
 ©

 2
00

6
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll
rig

ht
s r

es
er

ve
d.

• Demonstrate by exhaustive simulation that LST and EDF meet
deadlines, but FIFO and RM don’t

Example: RM, EDF, LST and FIFO

0 2 4 6 8 10

J1,1 J2,1 J1,2 J2,1 J1,3 J2,1 J2,2 J1,4 J1,5J2,2 J2,2

J2,1

J1,2 J2,1 J1,3 J2,2 J1,4 J1,5J2,2 J2,2

J2,1 J1,2 J2,1 J1,3 J2,2 J1,4 J1,5J2,2 J2,2

J2,1

J1,2 J1,3 J2,2 J1,4 J1,5

RM

EDF

LST

FIFO

J1,1

J1,1

J1,1

J1,1 J1,2 J1,3 J1,4 J1,5
J2,1 J2,2

Deadlines

C
op

yr
ig

ht
 ©

 2
00

6
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll
rig

ht
s r

es
er

ve
d.

Schedulability Tests

• Simulating schedules is both tedious and error-prone… can we
demonstrate correctness without working through the schedule?

• Yes, in some cases. This is a schedulability test
– A test to demonstrate that all deadlines are met, when scheduled using a

particular algorithm
– An efficient schedulability test can be used as an on-line acceptance test;

clearly exhaustive simulation is too expensive

C
op

yr
ig

ht
 ©

 2
00

6
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll
rig

ht
s r

es
er

ve
d.

Schedulable Utilization

• Recall: a periodic task Ti is defined by the 4-tuple (φi, pi, ei, Di)
with utilization ui = ei / pi

• Total utilization of the system where 0 ≤ U ≤ 1

• A scheduling algorithm can feasibly schedule any system of
periodic tasks on a processor if U is equal to or less than the
maximum schedulable utilization of the algorithm, UALG
– If UALG = 1, the algorithm is optimal

• Why is knowing of UALG important? It gives a schedulability test,
where a system can be validated by showing that U ≤ UALG

!

U = u
i

i=1

n

"

C
op

yr
ig

ht
 ©

 2
00

6
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll
rig

ht
s r

es
er

ve
d.

Schedulable Utilization: EDF

• Theorem: a system of independent preemptable periodic tasks
with Di = pi can be feasibly scheduled on one processor using
EDF if and only if U ≤ 1
– UEDF = 1 for independent, preemptable periodic tasks with Di = pi

[Expected since EDF proved optimal
in lecture 3 – see the book for proof]

– Corollary: result also holds if deadline longer than period: UEDF = 1 for
independent preemptable periodic tasks with Di ≥ pi

• Notes:
– Result is independent of φi

– Result can also be shown to apply to strict LST

C
op

yr
ig

ht
 ©

 2
00

6
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll
rig

ht
s r

es
er

ve
d.

• What happens if Di < pi for some i? The test doesn’t work…
– E.g. T1 = (2, 0.8), T2=(5, 2.3, 3)

• However, there is an alternative test:
– The density of the task, Ti, is δi = ei / min(Di, pi)
– The density of the system is Δ = δ1 + δ2 + … + δn

– Theorem: A system T of independent, preemptable periodic tasks can be
feasibly scheduled on one processor using EDT if Δ ≤ 1.

• Note:
– This is a sufficient condition, but not a necessary condition – i.e. a system

is guaranteed to be feasible if Δ ≤ 1, but might still be feasible if Δ > 1
(would have to run the exhaustive simulation to prove)

J2,2J1,1 J1,2 J1,3 J1,4

0 1 2 3 4 5 6 7

J2,1 J2,1 J2,2

J2,1 is preempted and misses deadline

Schedulable Utilization: EDF

C
op

yr
ig

ht
 ©

 2
00

6
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll
rig

ht
s r

es
er

ve
d.

Schedulable Utilization: EDF

• How can you use this in practice?
– Assume using EDF to schedule multiple periodic tasks, known execution

time for all jobs
⇒Choose the periods for the tasks such that the schedulability test is met

• Example: a simple digital controller:
– Control-law computation task, T1, takes e1 = 8 ms, sampling rate is 100 Hz

(i.e. p1 = 10 ms)
⇒ u1 is 0.8
⇒ the system is guaranteed to be schedulable

– Want to add a built-in self test task, T2, taking 50ms - will the system still
work?

C
op

yr
ig

ht
 ©

 2
00

6
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll
rig

ht
s r

es
er

ve
d.

Schedulable Utilization of RM

• Theorem: a system of n independent preemptable periodic tasks
with Di = pi can be feasibly scheduled on one processor using RM
if and only if U ≤ n⋅(21/n – 1)

– URM(n) = n⋅(21/n – 1)
– For large n → ln 2

(i.e. n → 0.69314718056…)

– [Proof in book - complicated!]

– U ≤ URM(n) is a sufficient, but not necessary, condition – i.e. a feasible rate
monotonic schedule is guaranteed to exist if U ≤ URM(n), but might still be
possible if U > URM(n)

0.7

0.6

0.8

0.9

2 4 6 8 10 12 14 16 18
n

URM(n)

C
op

yr
ig

ht
 ©

 2
00

6
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll
rig

ht
s r

es
er

ve
d.

Schedulable Utilization of RM

• What happens if the relative deadlines for tasks are not equal to
their respective periods?

• Assume the deadline is some multiple υ of the period: Dk = υ⋅pk

• It can be shown that:

!

U
RM

(n,") =

"

n((2")
1
n #1) +1#"

"(n #1)
" +1

"

$

%
&

'

(
)

1
n
#1

#1
*

+
,
,

-

.
/
/

0

1

2
2
2 2

3

2
2
2
2

 for

0 4" 4 0.5

0.5 4" 41

" = 2,3,...

C
op

yr
ig

ht
 ©

 2
00

6
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll
rig

ht
s r

es
er

ve
d.

Schedulable Utilization of RM

0.5000.5820.6360.6700.6870.6930.8100.8630.892∞

0.5000.5840.6420.6820.7070.7200.8290.8760.9039

0.5000.5840.6430.6840.7090.7240.8310.8780.9058

0.5000.5840.6440.6860.7130.7280.8340.8810.9067

0.5000.5850.6460.6880.7170.7340.8380.8840.9096

0.5000.5850.6480.6920.7230.7430.8440.8880.9125

0.5000.5860.6510.6980.7330.7560.8530.8940.9174

0.5000.5880.6560.7080.7490.7790.8680.9060.9263

0.5000.5900.6660.7290.7830.8280.8980.9280.9442

υ = 0.5υ = 0.6υ = 0.7υ = 0.8υ = 0.9υ = 1.0υ = 2.0υ = 3.0υ = 4.0n

Di = pi

Di > pi ⇒ Schedulable
utilization increases

Di < pi ⇒ Schedulable
util ization decreases

C
op

yr
ig

ht
 ©

 2
00

6
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll
rig

ht
s r

es
er

ve
d.

Summary

Key points:
• Different priority scheduling algorithms

– Earliest deadline first, least slack time, rate monotonic, deadline monotonic
– Each has different properties, suited for different scenarios

• Scheduling tests, concept of maximum schedulable utilization
– Examples for different algorithms

Next lecture: practical factors, more schedulability tests…

