
Real-Time Operating Systems and
Languages (2)

Real-Time and Embedded Systems (M)
Lecture 11
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Lecture Outline

• Real-time system embedded as part of a larger operating system
• Open system architecture

– Discussion of concepts
– Advantages and disadvantages
– Implementation using a two level scheduler

• Case study of an open system: RTLinux

Reading for this lecture: Chapters 7.9 and 12.5–12.7
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Real-time Embedded Systems

• What is an embedded system?
– “An embedded system is a special-purpose computer system built into a

larger device.”
– “An embedded system is some combination of computer hardware and

software, either fixed in capability or programmable, that is specifically
designed for a particular kind of application device. Industrial machines,
automobiles, medical equipment, cameras, household appliances, airplanes,
vending machines, and toys (as well as the more obvious cellular phone
and PDA) are among the myriad possible hosts of an embedded system.”

⇒ Special purpose, limited resources, not generally upgradeable



C
op

yr
ig

ht
 ©

 2
00

6 
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll 
rig

ht
s r

es
er

ve
d.

Real-time Embedded Systems

• Embedded systems are closed:
– Run a fixed suite of applications, known a priori
– Tasks are scheduled according to some well-known algorithm
– Generally static and require predictability
– Prove, or exhaustively demonstrate, correctness
– Limited resources, tailored to the task at hand
– Dedicated operating systems, scheduler support, etc.

• Embedded systems form part of the wider world:
– Interact with the world through sensors and actuators
– Often part of a wider system, comprising other embedded and general

purpose systems

• Separation of concerns:
– Embedded controllers engineered separately to other systems, including

other embedded systems
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Open Architecture for Real-Time Systems

• Advantage of traditional embedded systems: resources dedicated;
predictability is guaranteed

• Disadvantage: dedicated resources are typically underused
– Predictable, but wasteful
– Many applications have both general-purpose and real-time components

• Desire a single system that can run general purpose and real-time
applications simultaneously
– An open system architecture that can support many different classes of

application, removing the distinction between embedded and general
purpose systems

– Not always suitable, but can give large savings for some application types
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Objectives

• Independent design choice
– The developer of an application can use a scheduling discipline best suited

to that application to control execution and resource access, independent of
other applications on system

• Independent validation
– If system validates assuming it runs alone on a processor with normalised

speed S, it will run on a virtual share of a real processor with equivalent
performance

• Independent admission and timing guarantees
– New real-time tasks subject to admission test. If accepted, schedulability is

guaranteed regardless of other applications in the system

Independently developed and validated real-time applications can
share a system with other real time and non-real time applications
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Implementation

• Open system architecture can only be implemented on a strictly
partitioned virtual machine
– Partition processor time
– Control access to global resources

• Each application submits requirements (e.g. task characteristics,
type of scheduler, etc.) to virtual machine monitor that performs
acceptance test
– The monitor partitions the physical resources into distinct virtual machines

and runs schedulers for each application
– The partitioning can be implemented using a two-level scheduler
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• Recall:
– A constant utilization server consumes a fraction ũi of the processor
– A total bandwidth server uses at least a fraction ũi and claims idle time
– Both run under an EDF scheduling algorithm and are defined by certain

consumption and replenishment rules

• Consider a system comprising:
– A total bandwidth server, S0, using a fraction ≥ ũ0

– A set of constant utilization servers Si for i = 1, 2, …, n each using fraction
ũi of the processor

• If                        will fairly share a processor with S0

• The maximum schedulable utilization, Umax, depends on the properties of the
server tasks, and their workload

– An EDF scheduler, running these servers

Two-Level Scheduler

! 

˜ u 
i
"U
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OS Scheduler (EDF)

…

Ready Queue

S0 S1 SN
…

Kernel
User

Total
bandwidth server Constant utilization

servers

Server
Schedulers

Each can run
a different 
scheduling

algorithm, in
their share of
the processor

Time shared RM scheduler EDF scheduler

Non-real time tasks Real time tasks Real time tasks
… … …

Operation of a Two-Level Scheduler

• The servers, Si, are scheduled according to an EDF algorithm by
the OS scheduler

• Each server runs an internal server scheduler to schedules jobs
within the server, subdividing the time allocated to that server
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OS Scheduler (EDF)

S0

Time shared
S1

RM scheduler
SN

EDF scheduler…

Kernel
User

Non-real time tasks Real time tasks Real time tasks

Server
Schedulers

… … …

…

Ready Queue

Operation of a Two-Level Scheduler

• The OS scheduler maintains an EDF ready queue, used to select
which server to execute
– Servers are eligible to run if they have work to do, and budget remaining
– The server with the earliest deadline among the ready servers is scheduled
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OS Scheduler (EDF)

…

Ready Queue

S0

Time shared
S1

RM scheduler
SN

EDF scheduler…

Kernel
User

Non-real time tasks Real time tasks Real time tasks

Server
Schedulers

… … …

Operation of a Two-Level Scheduler

• Both levels of scheduler are implemented in the kernel, to avoid
doubling the context switch overhead
– Applications see a virtual machine: their server and its internal scheduler
– The underlying OS scheduler is invisible to applications
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OS Scheduler (EDF)

…

Ready Queue

Time shared RM scheduler EDF scheduler…

Kernel
User

Non-real time tasks Real time tasks Real time tasks

Server
Schedulers

… … …

S0 S1 SN

Operation of a Two-Level Scheduler

• The virtual machines are strictly partitioned from each other:
– When executed by the OS scheduler, the virtual machine server scheduler

picks one of these threads to execute, according to its local policy
– Each can have different policy, and schedule its threads according to a

different algorithm



C
op

yr
ig

ht
 ©

 2
00

6 
U

ni
ve

rs
ity

 o
f G

la
sg

ow
A

ll 
rig

ht
s r

es
er

ve
d.

Interactions Between Schedulers

• The underlying OS scheduler runs EDF to partition available time
for each virtual machine scheduler
– Needs to know when the next scheduling event – deadline – will occur on

each virtual machine
• The two levels of scheduler must cooperate for efficiency

– Depends on the application running in each virtual machine
• Non-real time applications

– No deadlines
– The total-bandwidth server, S0, internally schedules the non-real time tasks

according to a time sharing algorithm with time slice x
• Predictable real-time applications

– Contain periodic tasks with fixed release times and known resource access patterns
– Known event times

• Unpredictable applications must be estimate time of next event
– Contains aperiodic or sporadic tasks, or periodic tasks with significant release time

jitter; occurrence of scheduling events only known at run-time
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Predictable Real Time Applications

• Can run within predictable real time applications within constant
utilization server, and meet deadlines, provided:
– The required capacity of the task is available

• A job need e units of execution time at normal speed to meet timing constraints
• Is run on a slow processor, speed u < 1

– u denotes the fraction of the original processor speed
• Multiply the execution time e of all jobs by 1/u to check if the system is still

schedulable on the slow processor
• The minimum fraction of speed at which the application is schedulable is its

required capacity
– Appropriate replenishment rules used for the server

• Vary depending on scheduling algorithm used within virtual machine scheduler
– Clock driven schedulers
– Priority scheduled but not preemptable
– Priority scheduled and preemptable, with known event times
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Replenishment Rules: Clock Driven

• A clock driven scheduler is characterised by a cyclic frame of size
f and the workload appears to the server as a single thread
– Scheduled on a constant utilization server of size ũi equal to required

capacity
• Ready for execution at the start of each cyclic frame
• Execution time of f⋅ũi each cycle
• Budget replenished each cycle, deadline set to beginning of next cycle

– Loops using a fixed fraction of the processor time
– Executes the application according to its pre-computed cycle
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• Priority scheduled non-preemptable tasks can also be scheduled
within a constant utilization server
– The server scheduler orders jobs in the application within its allocation

according to the scheduling algorithm requested by the application
– Since jobs are non-preemptable, the server must not be pre-empted while a

job is running
• Otherwise a job could be pre-empted by another server running on the OS

scheduler
• Limits maximum schedulable utilization of the complete system (not just this

server):
– Let B denote maximum execution time of all jobs
– Let Dmin denote the minimum relative deadline of all jobs
– All servers are schedulable provided Σũi < 1-B/Dmin

– Implications on the acceptance test for the open system, since EDF non-optimal in
this case

Replenishment Rules: Non-preemptable Periodic
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Replenishment Rules: Preemptable Periodic (1)

• Priority scheduled preemptable tasks executed on a server that is
similar to a constant utilization server, but with slightly different
replenishment rules
– Why different rules?

• Consider two jobs J1 and J2 running on a slow processor with speed 0.25
– Each job has execution time 0.25
– Job J1 is released at 0.5 and must complete by 1.5
– Job J2 is released at 0.0 and must complete by 2.0

• Execution:
– Job J2 starts at time 0.0, by time 0.5 has executed for 0.125
– Job J1 starts at time 0.5, pre-empts J2, and executes to completion by 1.5
– Job J2 resumes at 1.5, executes to completion at 2.0
– All deadlines are met
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Replenishment Rules: Preemptable Periodic (2)

• Priority scheduled preemptable tasks executed on a server that is
similar to a constant utilization server, but with slightly different
replenishment rules
– Why different rules?

• Consider the same jobs, running on ¼ of a normal speed processor
– Job J2 starts at time 0.0 with server budget 0.25 and deadline 1
– Job J2 uses the budget, and completes before time 0.5
– Job J1 is released at time 0.5, but the server budget is gone
– At time 1.0 the server budget is replenished to 0.25 and its deadline set to 2.0; the

server is eligible to run, and will execute job J1 when it runs
– Because the server deadline is 2.0, the server may not execute until after J1 has

missed it’s deadline at 1.5
• Problem: J2 consumed more execution time than it would on the slow

processor, preventing J1 from running
– Used 0.25 compared to 0.125 on slow processor
– Can be considered a form of priority inversion
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Replenishment Rules: Preemptable Periodic (3)

• Priority scheduled preemptable tasks executed on a server that is
similar to a constant utilization server, but with slightly different
replenishment rules
– Modified replenishment rules solve this:

• Let t be latest of the current deadline, or current time
• Let t′ be the release time of the next job in the task
• Budget   = min(ei, (t′ – t)⋅ũi) rather than ei

• Deadline = min(t + ei/ũi, t′) rather than t + ei/ũi

– Prevent jobs consuming more time than they would on a slower processor,
if they would be limited by pre-emption, by explicitly taking into account
pre-emption time

• (Modified replenishment rules also needed for non-preemptable periodic tasks)
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Unpredictable Real Time Applications

• If jobs unpredictable, cannot derive accurate replenishment rules
– Run the server under the constant utilization rules, giving qũi units of

budget every q time units
– The scheduling quantum, q, is a key parameter

• The server can over-budget the application up to the size of the
scheduling quantum
– Can result in priority inversion, as before…

• If a bound, t′, on time to the next event can be given, the server
can be scheduled with
– Budget   = (t′ + q – t).si

– Deadline = t′ + q

• Bounds the size of the scheduling quantum, and hence the
duration of any priority inversion
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Scheduling Overhead

• Might think that the two-level scheduler is very inefficient
– Not so if all applications are predictable:

• Same number of context switches
• More work to determine what to run, but insignificant compared to context

switch overhead
– In unpredictable applications running, overhead depends on the scheduling

quantum
• Small quantum gives better real-time performance, but higher overhead
• 30% overhead not unusual, but still often better than dedicated hardware

• If unpredictable jobs are rare, the two level scheduler works well
and allows real-time and non-real-time jobs to share a processor
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Admission Control

• All jobs start execution in non-real time mode, so they don’t
disrupt already running real-time jobs

• A job may switch to real-time scheduling on its own server,
subject to an acceptance test

• Jobs must provide:
– Required capacity ũi and scheduling algorithm
– Maximum execution time Bi of all non-preemptable sections
– Existence of aperiodic/sporadic tasks, if any
– Shortest relative deadline Dmin

• Job is accepted if Σũi < 1 – max(Bi/Dmin)
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Constraints and Implementations

• The open system architecture provides a conceptually clean way
to share resources between tasks with different requirements

• Disadvantage:
– Several applications share a hardware resource, so failure of the hardware

or OS scheduler can take down an entire set of applications
– Trade-off cost saving for potential reduction in reliability

• Full concept not widely implemented:
– Similar, but less powerful, systems are widely used commercially:

• Older versions of Symbian mobile phones running a real-time microkernel to
handle the voice processing, with SymbianOS running as a background task to
support the UI and user applications

• RTLinux
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Microkernel OS scheduler

S0

Slack stealer
S1

RM scheduler
SN

EDF scheduler

Kernel
User

Real time tasks Real time tasks…
… …

…

Ready Queue

Linux

Case Study: RTLinux

• A simple example of a two-level scheduler
– The OS scheduler is a microkernel real-time operating system
– Real-time tasks run directly on the microkernel

• RM and EDF schedulers provided
– Linux runs as the idle task
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Case Study: RTLinux

• A modified Linux kernel runs above the microkernel
– All hardware access is arbitrated by the microkernel
– Interrupts emulated in software on the microkernel
– Linux can always be pre-empted if a real-time task needs to run

• Communication between real-time and non-real-time tasks done
by FIFO buffers, locked into memory
– Appear as normal devices (/dev/rft1) under Linux
– Non-blocking and atomic access from the real-time kernel

• Conceptually, RTLinux maps closely onto the open system
architecture
– Differs in the details
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Summary

• Concepts of real-time on embedded systems
• The idea of an open system architecture, to support a range of

application types on a single system
• Strategies for implementing the open system architecture, using a

two-level scheduler
• Overview of RTLinux, as a simple system using a two-level

scheduler


