Resource Access Control (2)

Real-Time and Embedded Systems (M)
Lecture 14

UNIVERSITY (&5
of
GLASGOW (&

Lecture Outline

« Resources access control (cont’d):

— Enhancing the priority ceiling protocol
 Stack-based priority ceiling protocol
* Ceiling priority protocol

— Resource access control for dynamic priority systems
— Effects on scheduling

« Implementing resource access control
— Locking primitives
» Semaphores
e Mutexes
* Typical priority inheritance features
— Messages, signals and events

* Priority inheritance features for messaging

Enhancing the Priority Ceiling Protocol

* The basic priority ceiling protocol gives good performance, but
the defining rules are complex

* Also, can result in high context
switch overheads due to frequent

blocking 1f many jobs contend - T
for resources mm.m. .. -

0123456 78 910111213141516171819 20

* This has led to two modifications to the protocol:
— The stack-based priority ceiling protocol
— The ceiling priority protocol

Stack-Based Priority Ceiling Protocol

« Based on original work to allow jobs to share a run-time stack,
extended to control access to other resources

* Defining rules:
— Ceiling: When all resources are free, I1(t) = Q; II(t) updated each time a
resource 1s allocated or freed
 TI(t) current priority ceiling of all resources in currently use

» Q non-existing lowest priority level

— Scheduling:

» After ajob is released, it i1s blocked from starting execution until its assigned
priority is higher than T1(t)

» Non-blocked jobs are scheduled in a pre-emptive priority manner
» Tasks never self-yield

— Allocation: Whenever a job requests a resource, it is allocated the resource
» The allocation rule looks greedy, but the scheduling rule is not

Stack-Based Priority-Ceiling Protocol

* Consider an example system, with

parameters are shown on the right —

* JobsJ,,J,, J, and Js attempt to lock their
first resource after one unit of execution;

J4 accesses - after an additional 2

units of execution

JF [] [] [] [] [| [|

Job r; e; | m | Ciritical Sections
J 7 3 1 [EA 1]

J, 5 3 2 | [1

J; 4 2 3

J, 2 6 4 | A 4 B 1.5]]
Js 0 6 5 | ;4]

Jobs blocked

fromstarting J, , . 4 o .j-

Context switches are reduced
compared to the basic priority
ceiling protocol; no jobs finish
later, but many jobs start later

[| [] [] »

since 7t; <11 .
A

W72/ .

| I I DN BN e |
O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 1819 2
= 2 2 2 2 2 © 2 @1 @ @ o 1 1 1 1 @ @ @

Stack-Based Priority Ceiling Protocol

* Characteristics:
— When a job starts to run, all the resource it will ever need are free (since
otherwise the ceiling would be = priority)
» No job ever blocks waiting for a resource once its execution has begun
» Implies low context switch overhead
— When a job is pre-empted, all the resources the pre-empting job will
require are free, ensuring it will run to completion
» Deadlock can never occur
— Longest blocking time provably not worse than the basic priority ceiling
protocol
* 1.e. not worse than the duration of one critical section

Ceiling Priority Protocol

* A similar algorithm is the ceiling priority protocol

* Defining rules:
— Scheduling:

» Every job executes at its assigned priority when it does not hold any resource.
Jobs of the same priority are scheduled on a FIFO basis

« The priority of each job holding resources 1s equal to the highest of the priority
ceilings of all resources held by the job

— Allocation: whenever a job requests a resource, it 1s allocated

 When jobs never self-yield, gives identical schedules to the stack-
based priority ceiling protocol

* Again, simpler than the basic priority ceiling protocol

Choice of Priority Ceiling Protocol

 If tasks never self yield, the stack based priority ceiling protocol
1s a better choice than the basic priority ceiling protocol
— Simpler
— Reduce number of context switches

— Can also be used to allow sharing of the run-time stack, to save memory
resources

« Both give better performance than priority inheritance protocol

— Assuming fixed priority scheduling, resource usage known in advance

Resources in Dynamic Priority Systems

* The priority ceiling protocols assume fixed priority scheduling

* In a dynamic priority system, the priorities of the periodic tasks
change over time, while the set of resources required by each task
remains constant

— As a consequence, the priority ceiling of each resource changes over time

— Example: |
Tl] [|
; -
T,=(2,09)
7 / 2 1 T,=(5223
| O] P

0 1 2 3 + 5 6 7 8

(1) =1 ar)=2 (1) =1

— What happens if 7', uses resource X, but 7, does not?

 Priority ceiling of X'is 1 for 0 <¢ <4, becomes 2 for 4 <t <5, etc. even though
the set of resources required by the tasks remains unchanged

Resources in Dynamic Priority Systems

« [fasystem is job-level fixed priority, but task-level dynamic
priority, a priority ceiling protocol can still be applied

— Each job in a task has a fixed priority once it is scheduled, but may be
scheduled at different priority to other jobs in the task

« Example: Earliest Deadline Scheduling

— Update the priority ceilings of all jobs each time a new job is introduced;
use until updated on next job release

« Has been proven to work and have the same properties as priority
celling protocol 1n fixed priority systems
— But: very inefficient, since priority ceilings updated frequently
— May be better to use priority inheritance protocol, accept longer blocking

Maximum Duration of Blocking

* Assume J, and J, contend for a resource, R, where J, 1s the higher

priority job Blocking time
Jl | | [] [] [] [] [] [| # [] [] [] [] >

e ol L,

J, pre-empted immediately
after 1t locks resource R

* Worst case blocking time tends towards the duration of J,’s
critical section over R

* When using priority inheritance protocol, J, might be transitively
blocked for the duration of the next priority job’s critical section

— Worst case: it 1s blocked by every other lower priority job, for the full
duration of each lower priority job’s critical section

Maximum Duration of Blocking

* The priority ceiling protocols implement avoidance blocking, and
so do not exhibit transient blocking

— Block for at most the duration of one low priority critical section

 Direct blocking: low priority jobs locks resource; can be blocked for up to the
duration of the critical section of that job

» Avoidance blocking: resource is free, but priority ceiling rules deny access

» (alculate worst case blocking duration:
— Simple:
» Assume can block for duration of longest critical section of lower priority jobs
» Probably overestimates blocking duration; likely not too significant
— More efficient:
» Trace direct conflicts with lower priority jobs, find longest critical section

 Trace indirect conflicts with lower priority jobs that may inherit priority and
cause avoidance blocking, find longest critical section

 Greatest of these is maximum possible blocking time

Effects on Schedulability Tests

« Jobs which block due to resource access impact schedulability
 How to adjust schedulability test?

— Incorporate maximum blocking time as part of execution time of job;
schedulability test then runs as normal

— Priority ceiling protocols clearly preferred where possible

Implementing Resource Access Control

« Have focussed on resource access control algorithms which can
be implemented by an operating system
 How are these made available to applications?

— Some implemented by the operating system
— Some implemented at the application level

Resource Types and Locking

Program objects and data structures

Files Access arbitrated

Devices by the operating
system
Network interfaces

Semaphores g

Mutexes

Condition Variables

Provided by language or operating system —
focus on POSIX as a representative example

Need to be locked by

applications to ensure
exclusive access

1
|
|
|
1
/i |
|
1
1
1
1
1

1
\/
Message Queues

POSIX Semaphores

« Semaphores provide a simple locking abstraction:

int sem init(sem t *sem, int inter process, unsigned init val);

int sem destroy(sem t *sem);

int sem wait(sem t *sem);

int sem trywait(sem t *sem);

int sem post(sem t *sem);

 Embed a semaphore within an object for resource access control:

struct my object {
sem t lock;
char *data; // For example..
int data_ len;
}
struct my object *m = malloc(sizeof (my object));
sem init(&m->lock, 1, 1);

« Example of a feature with no special real-time features or priority
control

POSIX Mutexes

* A higher level locking mechanism for real-time applications is a
POSIX mutex, which controls priority during resource access

— As with semaphores, a mutex i1s embedded in an object at a location of the
programmers choosing to control access to that object/resource

— Basic API:

int pthread mutex init(pthread mutex t *mutex, pthread mutexattr t *attr);

int pthread mutex destroy(pthread mutex t *mutex) ;

int pthread mutex lock(pthread mutex t *mutex);
int pthread mutex trylock(pthread mutex t *mutex) ;

int pthread mutex unlock (pthread mutex t *mutex);

int pthread mutexattr init(pthread mutexattr t *attr);
int pthread mutexattr destroy(pthread mutexattr t *attr);

int pthread mutexattr setprotocol (pthread mutex attr t *attr, int proto);
int pthread mutexattr getprotocol (pthread mutex attr t *attr, int *proto);

POSIX Mutexes: Priority Inheritance

« Can specify the resource access protocol for a mutex:

— Use pthread mutexattr setprotocol () during mutex creation

« PTHREAD PRIO INHERIT Priority inheritance protocol applies
« PTHREAD PRIO PROTECT Priority ceiling protocol applies
« PTHREAD PRIO NONE Priority remains unchanged

— If the priority ceiling protocol is used, can adjust the ceiling to match
changes 1n thread priority (e.g. dynamic priority scheduling):
 pthread mutexattr getprioceiling(..)
 pthread mutexattr setprioceiling(..)

* Used with POSIX real-time scheduling;:

— Allow implementation of fixed priority scheduling with a known resource
access control protocol

— Controls priority inversion, scheduling; allows reasoning about a system

POSIX Condition Variables

« POSIX also defines a condition variable API:

int pthread cond init(pthread cond t *cond, pthread condattr_ t *attr);
int pthread cond destroy(pthread cond t *cond);

int pthread cond wait(pthread cond t *cond, pthread mutex t *mutex);
int pthread cond timedwait (pthread cond t *cond, pthread mutex t *mutex

struct timespec *wait time);

int pthread cond signal (pthread cond t *cond);
int pthread cond broadcast(pthread cond t *cond);

e (Combine a condition variable with a mutex to wait for a condition
to be SatiSﬁed: lock associated mutex

while (condition not satisfied) {

wait on condition wvariable

}

do work

unlock associated mutex

(timed wait with priority inheritance)

Messages, Signals and Events

 In addition to controlling access to resources, tasks often need to
communicate information to other tasks

« (Can be implemented using a shared data structure — a resource —
that 1s managed as described previously
— Example: a queue protected by a mutex and condition variable
— Requires synchronisation between tasks

« But may want to communicate with another task without explicit
synchronisation step
— Send another task a message
— Signal another task that an event has occurred

POSIX Message Queues

* A message queue abstraction provided for this purpose:

mpd t mg open(char *mgname, int flags, mode_ t mode,
struct mqg_attr attrs);

int mg _close(mpd t mq);
int mg_unlink (char *mgname) ;

int mg_send(mpd t mq, char *msg, size t len, unsigned prio);

int mg_receive (mgd t mq, char *msg, size t len, unsigned *prio);

int mqg setattr(pgd t mq, struct mg attr *new, struct mqg attr *old);
int mq getattr(mpd t mq, struct mg attr *buf);

* Blocking mq send () and mq receive () typical
— Can be set to non-blocking, if desired
— Receiver can be signalled when data arrives, rather than blocking
* Messages have priority, inserted in the queue 1n priority order

— Messages with equal priority are delivered in FIFO order

Message Based Priority Inheritance

* Messages not read until receiving thread executes mq_receive ()

e Problem:
— Sending a high priority message to a low priority thread
— The thread will not be scheduled to receive the message

« Solution: message based priority inheritance
— Assume message priorities map to task priorities

— When a task is sent a message, it provides a one-shot work thread to
process that message, which inherits the priority of the message

— Allows message processing to be scheduled as any other job
— Implemented by some RTOS (e.g. QNX); not common

» Typically simulate using a queue with a priority inheriting mutex

Signalling Events

* Need a way of signalling a task that an event has occurred
— Completion of asynchronous I/0 request
— Expiration of a timer

— Receipt of a message
— Etc.

e Many different approaches:

— Unix signals

» Event number N has occurred; no parameters; unreliable (non-queued)

— POSIX signals
« Allow data to be piggybacked onto the signal (a void * pointer)

 Signals are queued, and not lost if a second signal arrives while the first is
being processed

 Signals are prioritised

— Windows asynchronous procedure call and event loop

Signalling Events

Signals are delivered asynchronously at high priority
— As aresult of a timer event
— As aresult of a kernel operation completing
— As aresult of action by another process

« High overhead: require a kernel trap, context switch, etc
* Add unpredictable delay

— Executing process is delayed when a signal occurs, by the time taken to
switch to the signal handler of the signalled task, run the signal handler,
and switch back to the original task

* May be better to use synchronous communication where possible
in real time systems, since easier to predict

Implementation Summary

* As seen, many approaches to implementing resource access
control

« POSIX provides useful baseline functionality

— Priority scheduling abstraction, to implement Rate Monotonic schedules

— A mutex abstraction using either priority inheritance or priority ceiling
protocols to arbitrate resource access

« Similar, sometimes more advanced features, provided by other
real-time operating systems

— E.g The Ada language supports resource access control with the priority
ceiling protocol

— E.g. QNX support message based priority inheritance

Summary

* [llustrated operation of additional resource access control
protocols, simplifying priority ceiling protocol

* Discussed impact on schedulability

e Described some methods to implement resource access control:

— Use of POSIX real-time extensions and mutexes for locking, to directly
implement the 1deas described

— Other mechanisms: semaphores, message queues, signals, etc.

