
Introduction to Real-time Systems

Advanced Operating Systems (M)
Lecture 2

Introduction to Real-time Systems

• Real-time systems deliver services while meeting
some timing constraints
• Not necessarily fast, but must meet some timing deadline

• Many real-time systems are embedded as part of some larger device or
system

• Washing machine, photocopier, mobile phone, car, aircraft, industrial plant, etc.

• Representative classes: digital process control; telephony and multimedia

• Frequent requirement to validate for correctness
• Many embedded real-time systems are safety critical: if they do not

complete in a timely and correct basis, serious consequences result

• Bugs in embedded real-time systems can often be difficult or expensive to
fix: you can’t just run “software update” on a car!

2

Example: Digital Process Control

• Controlling some device (“the plant”)
using an actuator, based on sampled
sensor data

• Effective control depends on correct
control law computation, reference
input, and accuracy of measurements

• Time between measurements of y(t),
r(t) is the sampling period, T
• Small T better approximates analogue control

but large T needs less processor time; if T is
too large, oscillation will result as the system
fails to keep up with changes in the input

• A simple control loop is conceptually
simple to implement
• Complexity comes from multiple control loops

running at different rates, and from systems
that must switch between different modes of
operation

Control-law
computation D/AA/D

A/D

ActuatorSensor Plant

Reference
input: r(t)

rk

yk

y(t)

u(t)

uk

Controller

set timer to interrupt periodically with period T;
at each timer interrupt, do
 do analogue-to-digital conversion of y(t) to get yk;
 compute control output uk based on reference rk and yk;
 do digital-to-analogue conversion of uk to get u(t);
end do;

3

Examples: Drive-by-Wire and Telephony

• Real-time systems are increasingly
built as distributed systems

• The components of the system are
connected via some communications
network
• E.g., a sensor that sends data to the controller

process over a local area network, perhaps as
part of a drive by wire car

• E.g., a voice-over-IP telephony system, where
real-time speech data is transferred over a
wide area IP network such as the Internet

• These systems not only need to run a
control law under time constraints, but
must also schedule communications
according to deadlines

C
o
p
y
ri

g
h
t

©
 2

0
0
7
 U

n
iv

er
si

ty
 o

f
G

la
sg

o
w

A
ll

 r
ig

h
ts

 r
es

er
v
ed

.

Wheel
sensors

Steering Brake Accelerator Gears

Engine
sensors

Control
system

Controller
area network

Brake
actuator Engine

controls

Example: Drive by Wire

•! All data must be delivered reliably

–! Bad if you turn the steering wheel, and nothing happens

•! Commands from control system have highest priority, then sensors and actuators, then

control inputs

–! Anti-lock brakes have a faster response time than the driver, so prioritise to ensure the car

doesn’t skid

•! Network must schedule and prioritise communications

Example: drive-by-wire controls in a car
C

o
p
y
ri

g
h
t

©
 2

0
0
7
 U

n
iv

er
si

ty
 o

f
G

la
sg

o
w

A
ll

 r
ig

h
ts

 r
es

er
v
ed

.

Packet switched

voice network

Example: Packet Voice

•! Voice is digitised and sent as a sequence of packets

–! Constant spacing, every 10-30ms depending on codec

•! Strict timeliness requirement

–! Mouth to ear delay needs to be less than approximately 150ms

–! Packets must be played out with equal spacing

•! Relaxed reliability requirement

–! Some small fraction of packets can be lost, and just sound like crackles on

the wire; most need to arrive

•! Emergency calls may have priority

Example: voice-over-IP

4

Types of Real-Time System

• Purely cyclic
• Every task executes periodically

• Demands in resources (e.g., computing,
communication, or storage) do not vary
significantly from period to period

• Example: most digital controllers and
real-time monitors

• Mostly cyclic
• Most tasks execute periodically

• The system must also respond to some
external events asynchronously (e.g.,
fault recovery and external commands)

• Example: modern avionics and process
control systems

• Asynchronous, mostly predictable
• Most tasks are not periodic

• The time between consecutive
executions of a task may vary
considerably, or the variations in
resource utilisation in different periods
may be large

• These variations have either bounded
ranges or known statistics

• Asynchronous, unpredictable
• Applications that react to external events

and/or have tasks with high and variable
run-time complexity

• Example: intelligent real-time control

Easier to reason about systems that are more cyclic, synchronous, and predictable

5

Implementation Considerations

• Some real-time embedded systems are complex,
implemented on high-performance hardware
• E.g., industrial plant control, avionics and flight control systems

• But, many are implemented on hardware that is low
cost, low power, and low performance, but light-
weight and robust
• E.g., consumer goods

• Often implemented in C or assembler, fitting within a few kilobytes of
memory; correctness primary concern, efficiency a close second

• We are interested in proofs of correctness of the
scheduling, and ways of raising the level of
abstraction when programming such systems

6

Reference Model for Real-time Systems

• A reference model and consistent terminology let
us reason about real-time systems

• Reference model is characterised by:
• A model that describes the applications running on the system

• A model that describes the resources available to those applications

• Scheduling algorithms that define how the applications execute and use
the resources

7

Jobs, Tasks, Processors, and Resources

• A job is a unit of work scheduled
and executed by the system;
• A task, T, is a set of related jobs, J1, J2,

…, Jn that jointly provide some function

• If jobs occur on a regular cycle, the task
is termed periodic

• if jobs are unpredictable, the task is
termed aperiodic (or sporadic, if the jobs
have deadlines once released)

• Jobs execute on a processor and
may depend on some resources

• Processors are active devices on
which jobs are scheduled
• E.g., threads scheduled on a CPU, data

scheduled on a transmission link

• A processor has a speed attribute, that
determines the rate of progress of jobs
executing on that processor

• A resource, R, is a passive entity
on which jobs may depend
• E.g., system memory, a hardware device

• Resources may have different types and
sizes, but do not have a speed attribute

• Resources are not consumed by usage,
and can be reused multiple times

• Jobs compete for access to resources,
and may block if the resource is in use
by another job

• A resource is plentiful if there is enough
of it that nothing blocks waiting access –
such resources can’t affect correctness,
and so are generally ignored

8

Execution Time of Jobs

• A job Ji will execute for time ei

• This is the amount of time required to complete execution of Ji when it
executes alone on the processor, and has all the resources it needs

• The value of ei depends on the complexity of the job and the speed of the
processor; it may vary on a given processor due to conditional branches
in the job, the effects of processor caches, etc.
• Execution times therefore fall into an interval [ei−, ei+]; assume we know this interval for every

real-time job, but not necessarily the actual ei

• Terminology: (x, y] is an interval starting immediately after x, continuing up to and including y

• Often, assume ei = ei+ and validate using worst-case execution times: inefficient, but safe

9

Deadlines & Timing Constraints
C

o
p
y
ri

g
h
t

©
 2

0
0
6
 U

n
iv

er
si

ty
 o

f
G

la
sg

o
w

A
ll

 r
ig

h
ts

 r
es

er
v
ed

.

Deadlines and Timing Constraints

•! Completion time – the instant at which a job completes execution

•! Relative deadline – the maximum allowable job response time

•! Absolute deadline – the instant of time by which a job is required

to be completed (often called simply the deadline)

–! absolute deadline = release time + relative deadline

–! Feasible interval for a job Ji is the interval (ri, di]

•! Deadlines are examples of timing constraints

Job, Ji Time

Response time

Relative deadline, Di

Absolute deadline, di

Completion time

ri
+ ri

-

Release time, ri

10

Deadlines & Timing Constraints: Example

• A system to monitor and control a heating furnace
• The system takes 20ms to initialise when turned on

• After initialisation, every 100ms, the system:
• Samples and reads the temperature sensor

• Computes the control-law for the furnace to process the temperature readings, determine the
correct flow rates of fuel, air, and coolant

• Adjusts the flow rates to match the computed values

• The system can be modelled as a task, T, comprising jobs J0, J1, …, Jk, …
• The release time of Jk is 20 + (k × 100)ms

• The relative deadline of Jk is 100ms; the absolute deadline is 20 + ((k + 1) × 100)ms

0 20 120 220 320 420

J0 J1 J2 J3

Slack timeRelative deadline = 100ms Absolute deadline for J2 = 320ms

11

Effective Release Times and Deadlines

• Sometimes the release time of a job may be later
than that of its successors, or its deadline may be
earlier than that specified for its predecessors
• Makes no sense: derive effective release time or effective deadline

consistent with all precedence constraints, and schedule using that

• Effective release time
• If a job has no predecessors, its effective release time is its release time

• If it has predecessors, its effective release time is the maximum of its release time and the
effective release times of its predecessors

• Effective deadline
• If a job has no successors, its effective deadline is its deadline

• It if has successors, its effective deadline is the minimum of its deadline and the effective
deadline of its successors

12

Hard vs. Soft Real-time Systems

• The firmness of timing constraints affects how we
engineer the system
• If a job must never miss its deadline, the system is hard real-time
• A timing constraint is hard is failure to meet it is considered a fatal error

• A timing constraint is hard if the usefulness of the results falls off abruptly at the deadline

• A timing constraint is hard if the user requires validation (formal proof or exhaustive simulation,
potentially with legal penalties) that the system always meets the constraint

• If some deadlines can be missed occasionally, with low probability, then
the system is described as soft real-time

• Hard and soft real-time are two ends of a spectrum
• In many practical systems, the constraints are probabilistic, and depend

on the likelihood and consequences of failure

• No system is guaranteed to always meet its deadlines: there is always
some probability of failure

13

Periodic Tasks

• A set of jobs that are executed at regular time
intervals can be modelled as a periodic task –
many real-world systems fit this model
• Each periodic task Ti is a sequence of jobs Ji,1, Ji,2, …, Ji,n

• The phase, φi, of task Ti is the release time ri,1 of the first job Ji,1

• The period, pi, of task Ti is the minimum length of time between release
times of consecutive jobs

• The execution time, ei, of task Ti is the maximum execution time of all jobs
in the task

• The utilisation of task Ti is ui = ei / pi and measures the fraction of time for
which the task executes

• The total utilisation of a system U = ui
i
∑

14

Periodic Tasks: Example

15

C
o

p
y

ri
g

h
t

©
 2

0
0

6
 U

n
iv

er
si

ty
 o

f
G

la
sg

o
w

A
ll

 r
ig

h
ts

 r
es

er
v

ed
.

Modelling Periodic Tasks

•! The hyper-period of a set of periodic tasks is the least common

multiple of their periods: H = lcm(pi) for i = 1, 2, …, n

–! Time after which the pattern of job release/execution times starts to repeat,

limiting analysis needed

•! Example:

–! T1 : p1 = 3, e1 = 1

–! T2 : p2 = 5, e2 = 2

H = lcm(3, 5) = 15

Time
0 5 10 15 20 25 30

J1,1 J1,2 J1,3 J1,4 J1,5

J2,1 J2,2 J2,2 J2,3

A system of periodic tasks repeats after the
hyper-period, H = lcm(pi) for i = 1, 2, …, n

Aperiodic and Sporadic Tasks

• Many real-time systems are required to respond to
unpredictable events

• These are modelled as aperiodic or sporadic jobs
• An aperiodic job has no deadline; a sporadic job has a deadline once

released

• It is often possible to characterise the inter-arrival times for such jobs
according to some probability distribution

• The presence of aperiodic and sporadic jobs
greatly complicates reasoning about a system
• Sporadic tasks make the design of a hard real-time system impossible,

unless some bounds can be placed on their inter-arrival times and relative
deadlines

16

Dynamic vs. Static Systems

• A multiprocessor system is dynamic if the jobs can
migrate between processors; it is static if (sets of)
jobs are bound to a single processor

• Expect static systems to have inferior performance
(in terms of overall response job time) compared to
dynamic systems
• But it is possible to validate static systems, whereas this is not always true

for dynamic systems; hence, most hard real time systems are static

• Results demonstrated for uniprocessor systems are applicable to each
processor of a static multiprocessor system; they are not necessarily
applicable to dynamic multiprocessor systems

17

Overview of Real-time Scheduling

• Jobs are scheduled and allocated
access to resources according to
a scheduling algorithm and some
resource access control protocol

• A valid schedule satisfies the
following conditions:
• Every processor is assigned at most one

job at any time; every job is assigned to
at most one processor at once

• No job is scheduled before its release
time

• The total amount of processor time
assigned to each job is equal to its
maximum or actual execution time

• All the precedence and resource usage
constraints are satisfied

• A schedule is feasible if it’s valid
and every job meets its timing
constraints

• A scheduling algorithm is optimal
if it always produces a feasible
schedule for a given set of jobs if
a feasible schedule exists
• There are some scheduling algorithms

that will find some, but not all, feasible
schedules, and so may fail to schedule a
set of jobs that some other algorithm
could schedule

18

Real-time Scheduling Algorithms

• Two main classes of algorithm for scheduling real-
time tasks:
• Clock-driven algorithms are used for mostly static systems, where all

properties of all jobs are known at design time, such that offline
scheduling techniques can be used

• Priority-driven algorithms are used for more dynamic systems, with a mix
of periodic tasks and event-driven (aperiodic and/or sporadic tasks),
where the system must adapt to changing events and conditions

• Lecture 3: clock-driven scheduling

• Lectures 4-7: priority-driven scheduling

19

Further Reading

• Will focus on real-time scheduling in the next few
lectures

• Recommended reading:
• Jane W. S. Liu, "Real-Time Systems",

Prentice Hall, 2000, ISBN 0130996513

20

