P Unaversity | School of
of Glasgow | Computing Science

Dependable Device Drivers

Advanced Operating Systems (M)
Lecture 12

Lecture Outline

® Sources of bugs in device drivers

® |mproving device drivers: engineering approaches
e Apple MacOS X I/O Kit

e Advancing the driver model

e Microsoft Singularity operating system

Sources of Bugs in Device Drivers

Name Description Total faults D'ewc'e prot. S./W protocol Concurrency Generic faults
violations violations faults
USB drivers

rtI8150 rtI8 150 USB-to-Ethernet adapter 16 3 2 7 -

catc el1210a USB-to-Ethernet adapter 2 1 0 1 0
kaweth kl5kusb101 USB-to-Ethernet adapter 15 1 2 8 -

usb net generic USB network driver 45 16 9 6 14
usb hub USB hub 67 27 16 13 11

usb serial USB-to-serial converter 50 2 17 13 18
usb storage | USB Mass Storage devices 23 7 5 10 1

IEEE 1394 drivers
eth1394 generic ieee1394 Ethernet driver 22 6 6 4 6
sbp2 sbp-2 transport protocol 46 18 10 12 6
PCI drivers
mthca InfiniHost InfiniBand adapter 123 52 22 11 38
bnx?2 bnx2 network driver 51 35 4 5 7
1810 fb 1810 frame buffer device 16 4 5 2 5
cmipci cmi8338 soundcard 22 17 3 1 1
Total 498 189 (38%) 101 (20%) 93 (19%) 115 (23%)
N

N

Can we address these through improvements to
the supporting infrastructure for device-drivers?

Summary cause of bugs found in Linux USB, Firewire (IEEE 1394), and PCI drivers from 2002-2008
[from L. Ryzhyk et al., “Dingo: Taming device drivers”, Proc. EuroSys 2009, DOI 10.1145/1519065.1519095]

Device protocol violations are mis-programming of the hardware, software protocol violations and
concurrency faults are invalid interactions with the rest of the Linux kernel

Causes of Bugs in Device Drivers

e \What causes software protocol violations Type of faults #
d f It) Ordering violations
an Concurrency aAulls : Driver configuration protocol violation 16
)) .] . Data protocol violation 9
e Misunderstanding or misuse of the kernel device driver Resource ownership protocol violation g
API functions, especially in uncommon code paths Power management protocol violation 8
(e.g., error handling, hot-plug, power management) Hot unplug protocol violation 5
) .. Format violations
e |ncorrect use of locks leading to race conditions and Tncorrect Use of OS data Struciures 9
deadlocks Passing an incorrect argument to an OS service | 19
Returning invalid error code 7

Table 2. Types of software protocol violations.

| Type of faults ‘ # |

e Bad programming and poor documentation Race or deadlock in configmation functions %
of kernel APIs and locking requirements®? Callog a blockins Fanefon o somic comert—1 21
e Or error-prone programming languages, Race or deadlock Tn power ramagerment Fnciions | 3
concurrency models, and badly designed oung unintiaised synchrontsation primitve 1 2
ke rnel APIS’? Calling an OS service without an appropriate lock | 1

Table 3. Types of concurrency faults.

[from L. Ryzhyk et al., “Dingo: Taming device drivers”,
Proc. EuroSys 2009, DOI 10.1145/1519065.1519095]

Improving Device Drivers: Engineering

® Some issues can be solved with good software
engineering practice

e Device drivers generally fit some hierarchy

° E.g., a Broadcom Ethernet adaptor is an Ethernet adaptor is an IEEE 802 network interface

e |fimplemented in an object-oriented language, can encode much of the
common logic for a particular class of devices into a superclass which is
instantiated by device-specific subclasses that encode hardware details

° May be able to encode protocol state machines in the superclass, and leave the details of the
hardware access to subclasses (e.g., for Ethernet or USB drivers)

° May be able to abstract some of the details of the locking, if the hardware is similar enough

e Might require multiple inheritance or mixins to encode all the details of the
hardware, especially for multi-function devices

e (Can emulate in a C-based kernel, but with high syntactic and semantic
overhead [see next slide — Linux does this for some driver classes]

Digression: Faking OO Code in C

struct vtableFile {
void (*delete) (void *self) ;

int (*open) (void *self, char *filename, int mode) ;
int (*close) (void *self);

int (*read) (void *self, char *buffer, int buflen);
int (*write) (void *self, char *buffer, int buflen);

};

typedef struct {
struct vtableFile *vtable;
FILE *file;

} File;

File *newFile (void)

{
File *£f = malloc(sizeof (File)) ;
f->vtable->delete =
f->vtable->open =

f->file =

return £;
}
File *f = newFile() ; val £ = new File()
f->vtable->open (f, “example.txt”, RDONLY) f.open (“example. txt”, RDONLY)

Limitations of Object-Oriented Approach

® |ntegration with existing kernels is difficult

e Must either emulate object-oriented approach in C, losing much of the
benefits; or run dual-language kernel, with drivers in a different language
to the rest of the kernel

° MacOS X I/O Kit is an example of the latter

® Abstracting logic into a common framework doesn’t
address bugs in that framework

Example: MacOS X |/0O Kit

e (Object-oriented framework for building device drivers in
o IONetwork Stack | < "%
MacOS X 5 |
e Devices organised into families, represented by C++ abstract classes |2|| I0Ethernet Interface
e Drivers for particular hardware device types are concrete classes, |
implementing the abstract classes for their family Controller Driver
e Drivers are instantiated as nubs that represent individual devices | o
e Implemented using a restricted subset of C++ — without exceptions, IOPCIDevice g
templates, multiple inheritance, or RTTI since these are too complex ' 3
to implement efficiently and safely within the kernel Vg IOPCIBridge =

[Apple, Inc. “I/O Kit Fundamentals”, 2007
http://developer.apple.com/library/mac/

® Layered drlver mOdel documentation/DeviceDrivers/Conceptual/

IOKitFundamentals/IOKitFundamentals.pdf]

® Provides lifecycle management for devices and their
resources

e Simplifies event handling and work loops, abstracting
out a common model for devices and device families

/O Kit — Objects and Families

Many common functions and boilerplate are

OSObject

abstracted into family-specific classes

Families provide standard facilities to help a
device manage data during I/O operations —

OSMetaClass

DMA scatter-gather lists, virtual address @
translation, etc.

Provides a “robust system for protecting

access to driver resources during I/O

operations, which frees driver writers from

having to write their own code to enable and ..

Audio

disable interrupts and manage locks on the Frewe

Graphics

driver’s private resources”. Human Interface Devices

Network

IORegistryEntry

I0Service

PC Card
PCI/AGP

10 Kit
family

SBP-2 superclasses

SCSI
Serial
Storage
usB

OS classes
(general)

I/0 Kit classes
(general)

Family classes
(specific)

[Apple, Inc. “I/O Kit Fundamentals”, 2007]

/O Kit — Lifecycle Management

Property melching e All drivers follow a common basic lifecycle, defined by the
——attach() methods of the I0Service class
probe () on failure
_detach() e The figure on the left shows the lifecycle methods
__iZiETE) on failure e Families and individual device drivers override these methods as needed,;
open() each must call the corresponding method in its superclasses; progressive
|: - Driver 1in use refinement
close() e Adriver with no need for special behaviour can just accept the inherited
_Si;??e() functionality, and not define these methods
L detach() a—— -
o e Other methods provide for power management, messages
[Apple, Inc. “I/O Kit Fundamentals”, 2007] for deVice status ChangeS, etc.

e (Coding the lifecycle in a common superclass of all device
drivers in this manner ensures consistency

e The compiler forces that drivers that don’t implement a particular method
to inherit a sane default — a kernel where the object hierarchy is manually
implemented in C requires the programmer to explicitly manage the vtable
entry, leaving scope for bugs

/0O Kit — Events and Work Loops

Device drivers can be accessed
by multiple concurrent threads

Multiple user processes
Interrupts from the hardware

Timeouts, power management events,
and other system activity

Asynchronous callbacks from device or
user code

Drivers in this model are logically
single threaded

Each work loop has one or more objects
of type IOEventSource

° Use workLoop->addEventSource () to add
an event source to the work loop

° Various subclasses of TOEventSource exist
for different event types (e.g., interrupt, timer)

Callback functions are registered with

these event sources, and automatically
called with appropriate locks held when
events occur; concurrency is managed
by the kernel

® | ocking can be hard to manage

e Yet, the underlying hardware is
generally single threaded — e.g.,
you can only send one Ethernet
packet at once

e The parameter to the callback indicates
which event has occurred

e Rather than each driver manage
Its own concurrency, the kernel
translates system calls and other
actions into events, posted to a
per-driver work loop

e Moves complexity into the kernel,
but greatly simplifies driver code

Improving the Device Driver Model

® |nteraction between device driver and OS can be
represented as a finite state machine

e (Can formally model these state machines

e Explicit is better than implicit

® |ncorporate formal descriptions of the states, transitions, and events into
the code and type system

e Enabled correctness of the state machines to be checked

® Document the assumptions and requirements in a
format that can be verified automatically

Modelling State Machines

START N_Devicelnfo e A set of states and transitions triggered by/causing
events form a state machine

?RegisterForEvents

e The MacOS X I/O Kit models incoming events to a
driver, but not the states, allowable transitions, or
generated events

|IO_CONFIGURE_BEGIN

linvalidParameters l?SetParameters

IO _CONFIGURE_ACK . . .
2ConfigurelO e \We could formally define the full state machine in

ISuccess

4 the source code
|IO_CONFIGURED

® List of states

?StartlO ?PacketForReceive
Y ° List of events that can be received in each state
IO_RUNNING
° For each event that can be received, what is the next state,
?GetReceivedPacket and what events are generated in response

e (Could be implemented by annotating methods in a
Java-like language — or by extending the language

e Compiler or stand-alone verification tool can then check that
the code implements the defined state machine

Example: Singularity — State Machines

START IDevicelnfo contract NicDevice {
: out message DeviceInfo(...);

in message RegisterForEvents(NicEvents.EXp:READY
c);
. in message SetParameters(...);
?RegisterForEvents out message InvalidParameters(...);

out message Success();
in message Sta;tlo(); o

in message Configureio();
IO_CONFIGURE_BEGIN in message PacketForReceive(byte[] in ExHeap p);
out message BadPacketSize(byte[] in ExHeap p, int

linvalidParameters l?SetParameters m);

in message GetReceivedPacket();)
out message ReceivedPacket(Packet * in ExHeap p);
out message NoPacket();

I0_CONFIGURE_ACK
state START: one {

?ConfigurelO ISuccess) DeviceInfo! - IO_CONFIGURE_BEGIN;

\ 4 state IO_CONFIGURE_BEGIN: one {
RegisterForevents? -

IO_CONFIGURED SetParameters? - IO_CONFIGURE_ACK;

3
? ? i state IO_CONFIGURE_ACK: one {
?StartlO ?PacketForReceive InvalidParameters! - IO_CONFIGURE_BEGIN;

v Success! - IO_CONFIGURED;
}
IO—RUNNING state IO_CONFIGURED: one {
StartIO? - IO_RUNNING;

ConfigureIO? - IO_CONFIGURE_BEGIN;
?GetReceivedPacket

state IO_RUNNING: one {
PacketForReceive? - (Success! or BadPacketSize!)
- TO_RUNNING;
GetReceivedPacket? -» (ReceivedPacket! or
NoPacket!)
- TO_RUNNING;

e System comprises a set of concurrent processes that VT
communicate _SOIer by eXChangin_g messages Listing 1. Contract to access a network device driver.
* Acontract def.lnes. the state maCh“:]e for a process [G. Hunt and J. Larus. Singularity: Rethinking the software stack. ACM
e Implemented in Sing# — an extension to C# — the SIGOPS OS Review, 41(2), Apr. 2007. DOI 10.1145/1243418.1243424]
compiler can check that the contract is implemented
by processes declaring their support

Example: Singularity — Pattern Matching

e (Contract defines the state machine — essentially an abstract type

¢ |mplementation uses pattern matching NicDevice. Exp:lO_RUNNING nicClient ..

against received messages switch receive { T the state
case nicClient . PacketForReceive(buf):
° A function for each state // add buf to the available \buffers , reply

e Each function switches based on the type of case nicClient . GetReceivedPacket ()
the message object received // send back a buffer with“packet da

if available

case nicClient . ChannelClosed(): meS_Sage_S that can be
// client closed channel received in that state

}

e Compiler checks that switch receive

statements handle all messages defined
[M. Fahndrich et al. Language support for fast and reliable
by th e Contra Ct message-based communication in Singularity OS. Proc.

EuroSys 2006. DOI 10.1145/1218063.1217953]

° Blocks in the switch receive statement must end with
a transfer of control, to a function representing a new
state or to itself, allowing compiler to check transitions

e |Messages are immutable objects

e Simplifies locking — no need to lock the message, just the message passing code

Verification of State Machines

e |f the state machine is formally defined in the code,
we can begin to verify it

e Check that the code implements the defined state machine

® (Check the state machine itself

® Validate that the driver cannot deadlock
® Validate that certain states can be reached

° [discussed further in the MRS4 course]

e (Contracts in Sing# can readily be translated into (fragments of) a Promela
model, suitable for verification with a model checker such as SPIN

Event-driven vs. Concurrent Models

® [wo models for driver state machine code

Concurrent model — Singularity

Event-driven model — MacOS X |/O Kit, Dingo [see reading at end]

e Different ways of expressing the same concept

Apple had valid engineering reasons to prefer an object-oriented event-
driven model — familiarity, and ease of integration

The concurrent model used in Singularity conceptually cleaner, but
requires kernel structured for light-weight concurrency and message
passing [will return to this in later lectures]

Summary

® |Most operating systems employ an ad-hoc device
driver model

e Significant numbers of driver bugs are due to poor specification and
documentation of this model

e (Good software engineering practices can improve this somewhat, while
iIntegrating with existing kernels

® A clean-slate design can explicitly make the state
machine underlying the driver visible

e Allows automatic verification that the driver implements the state machine
for its device class

e Allows model checking of the state machine

Further Reading

L. Ryzhyk, P. Chubb, I. Kuz, and G. Heiser.
Dingo: Taming device drivers. Proceedings of the
European Conference on Computer Systems,
Nuremberg, Germany, April 2009. ACM/EuroSys.
DOI 10.1145/1519065.1519095

G. Hunt and J. Larus. Singularity: Rethinking the
software stack. ACM SIGOPS OS Review, 41(2),
Apr. 2007. DOI 10.1145/1243418.1243424

