
Dependable Device Drivers

Advanced Operating Systems (M)
Lecture 12

Lecture Outline

• Sources of bugs in device drivers

• Improving device drivers: engineering approaches
• Apple MacOS X I/O Kit

• Advancing the driver model
• Microsoft Singularity operating system

2

Sources of Bugs in Device Drivers

3

Name Description Total faults
Device prot.
violations

S/W protocol
violations

Concurrency
faults

Generic faults

USB drivers
rtl8150 rtl8150 USB-to-Ethernet adapter 16 3 2 7 4
catc el1210a USB-to-Ethernet adapter 2 1 0 1 0
kaweth kl5kusb101 USB-to-Ethernet adapter 15 1 2 8 4
usb net generic USB network driver 45 16 9 6 14
usb hub USB hub 67 27 16 13 11
usb serial USB-to-serial converter 50 2 17 13 18
usb storage USB Mass Storage devices 23 7 5 10 1

IEEE 1394 drivers
eth1394 generic ieee1394 Ethernet driver 22 6 6 4 6
sbp2 sbp-2 transport protocol 46 18 10 12 6

PCI drivers
mthca InfiniHost InfiniBand adapter 123 52 22 11 38
bnx2 bnx2 network driver 51 35 4 5 7
i810 fb i810 frame buffer device 16 4 5 2 5
cmipci cmi8338 soundcard 22 17 3 1 1

Total 498 189 (38%) 101 (20%) 93 (19%) 115 (23%)

Table 1. Classified counts of driver faults. The maxima in each row are in bold face. The highlighted cells summarise the
types of faults that we focus on in the rest of the paper.

!"# $%%%&'() *+$,-,./
0123415,6748

9:

;9:

)9:

<9:

=9:

&99:

:
5-
>50

4>
4?
,8

@432?4571-,-?-/532-/.,2-A8
?-A?B114A?65>.B/,8
8CD571-,-?-/532-/.,2-A8
E4A412?5>.B/,8

Figure 2. Summary of software faults by driver type.

Type of faults #

Race or deadlock in configuration functions 29
Race or deadlock in the hot-unplug handler 26
Calling a blocking function in an atomic context 21
Race or deadlock in the data path 7
Race or deadlock in power management functions 5
Using uninitialised synchronisation primitive 2
Imbalanced locks 2
Calling an OS service without an appropriate lock 1

Table 3. Types of concurrency faults.

3. Dingo device driver architecture
Our driver defect study has revealed areas where better OS
support could improve driver reliability. In particular two
categories of faults are directly related to how the driver in-
teracts with the OS: concurrency faults and software proto-
col violations. Together, these faults constitute 39% of the
defects in our study, and are clearly a significant source of
problems for drivers.

To address these issues, we developed Dingo, a new ar-
chitecture for device drivers that simplifies interaction with
the OS and allows driver developers to focus on the main
task of a driver: controlling the hardware. Dingo achieves
this via two improvements over traditional driver architec-
tures. First, Dingo reduces the amount of concurrency that
the driver must handle by replacing the driver’s traditional
multithreaded model of computation with an event-driven
model. This model eliminates the majority of concurrency-
related driver faults without impacting the performance. Sec-
ond, Dingo provides a formal language for describing driver
software protocols, which avoids confusion and ambiguity,
and helps driver writers implement correct protocols.

Dingo does not attempt to provide solutions to deal with
the other types of defects identified (i.e., device protocol
violations and generic programming faults) since these are
provoked by factors that lie beyond the influence of the OS
and should be eliminated by complementary means such as
those surveyed in Section 10.
Overview of Dingo Dingo specifies a model for commu-
nication between a driver and its environment. Communi-
cation occurs over ports, which are bidirectional message-
based communication points. In a typical implementation,
ports are represented by function tables and messages are
delivered by invoking the corresponding functions. Dingo
guarantees atomic message delivery resulting in a strict or-
dering of all messages exchanged by drivers.

Each port is associated with a protocol, which specifies a
behavioural contract between the driver and the framework.
It defines the messages that can be exchanged over that port
as well as constraints on the ordering, timing and content of
those messages. Every port has exactly one protocol asso-

278

Summary cause of bugs found in Linux USB, Firewire (IEEE 1394), and PCI drivers from 2002–2008
[from L. Ryzhyk et al., “Dingo: Taming device drivers”, Proc. EuroSys 2009, DOI 10.1145/1519065.1519095]

Device protocol violations are mis-programming of the hardware, software protocol violations and
concurrency faults are invalid interactions with the rest of the Linux kernel

Can we address these through improvements to
the supporting infrastructure for device-drivers?

Causes of Bugs in Device Drivers

4

• What causes software protocol violations
and concurrency faults?
• Misunderstanding or misuse of the kernel device driver

API functions, especially in uncommon code paths
(e.g., error handling, hot-plug, power management)

• Incorrect use of locks leading to race conditions and
deadlocks

• Bad programming and poor documentation
of kernel APIs and locking requirements?

• Or error-prone programming languages,
concurrency models, and badly designed
kernel APIs?

We then built a bug database for these drivers by analysing
all changes made to the drivers during the six-year period
from 2002 to 2008. In all we recorded 498 defects in this
database.

In order to identify the main sources of complexity in
device drivers, we distinguish between errors caused by the
complexity of interacting with the device, errors caused by
the complexity of interacting with the operating system, and
generic programming errors. Specifically, we distinguished
the following categories of driver software faults:
Device protocol violations occur when the driver behaves
in a way that violates the required hardware protocol, and
typically result in a failure of the hardware to provide its
required service. These include putting the device into an in-
correct state, mis-interpreting device state, incorrectly pars-
ing or generating data exchanged with the device, issuing
a sequence of commands to the device that violates the de-
vice protocol, specifying incorrect timeout values for device
operations, and endianness violations. Device protocol vio-
lations constitute 38% of the overall defects (Table 1).

According to our study, at least one third of the faults
in device-control logic are caused by poorly documented
device behaviour. Such faults are particularly common when
device documentation is not readily available, and the driver
is produced by reverse engineering a driver from another OS.

A portion of these faults are also caused by devices whose
behaviour deviates from the hardware interface standards
that they are meant to implement. Similar faults are due
to devices that violate their documented behaviour. In both
these cases, drivers that expect hardware to behave according
to the standards or documentation will function incorrectly
and must be fixed by adding appropriate workarounds.
Software protocol violations occur when the driver per-
forms an operation that violates the required protocol with
the OS. This includes all violations of expected order-
ing, format or timing in interactions between the OS and
the driver. These faults are particularly common in error-
handling paths and code paths handling uncommon situa-
tions such as hot-unplug and power management requests,
which are often insufficiently tested.

Examples of ordering violations include forgetting to wait
for a completion callback from an asynchronous data request
(data protocol violation), trying to resume a suspended de-
vice before restoring its PCI power state (power manage-
ment protocol violation), and forgetting to release a resource
or releasing resources in the wrong order (resource owner-
ship protocol violation). Examples of format violations in-
clude incorrectly modifying a data structure shared with the
OS, incorrectly initialising a driver descriptor before passing
it to the OS, and falsely returning a success status from an
operation that failed.

Software protocol violations constitute 20% of the overall
driver defects. Statistics for the frequencies of different types
of protocol violations are shown in Table 2.

Type of faults #

Ordering violations
Driver configuration protocol violation 16
Data protocol violation 9
Resource ownership protocol violation 8
Power management protocol violation 8
Hot unplug protocol violation 5

Format violations
Incorrect use of OS data structures 29
Passing an incorrect argument to an OS service 19
Returning invalid error code 7

Table 2. Types of software protocol violations.

Concurrency faults occur when a driver incorrectly syn-
chronises multiple threads of control executing within it,
causing a race condition or a deadlock.

Unlike the previous bug categories, concurrency bugs are
not related to a particular aspect of the driver functionality,
but rather to the model of computation enforced by the OS
on device drivers. Any non-trivial device driver is involved
in several concurrent activities, including handling I/O re-
quests, processing interrupts, and dealing with power man-
agement and hot-plugging events. Most operating systems
are designed to run these activities in separate threads that
invoke the driver in parallel. This multithreaded model of
computation requires the driver to protect itself from race
conditions using a variety of synchronisation primitives. In
addition, a driver in the kernel environment has to keep track
of the synchronisation context in which it is invoked. For in-
stance, a driver running in the context of an interrupt handler
is not allowed to perform any potentially blocking opera-
tions.

Concurrency management accounts for 19% of the total
number of bugs. In Figure 2 we see that the rate of con-
currency bugs is higher in USB drivers (26.5%) and IEEE
1394 drivers (23.5%) than in PCI drivers (9%). USB and
IEEE 1394 buses support hot-plugging, which introduces a
device disconnect event to the driver interface. Disconnect
happens asynchronously to all other activities, causing race
conditions in all USB and IEEE 1394 drivers covered by our
study. In addition, since these buses are not memory mapped,
communication with the device is based on asynchronous
messages, which adds another degree of concurrency to the
driver logic.

Statistics for different types of concurrency faults are
shown in Table 3. From this we see that concurrency faults
are mostly introduced in situations where a sporadic event,
such as a hot-unplug notification or a configuration request,
occurs while the driver is handling a stream of data requests.
Generic programming faults This category of bugs in-
cludes common coding errors, such as memory allocation er-
rors, typos, missing return value checks, and program logic
errors. These errors account for the remaining 23% of de-
fects.

277

Name Description Total faults
Device prot.
violations

S/W protocol
violations

Concurrency
faults

Generic faults

USB drivers
rtl8150 rtl8150 USB-to-Ethernet adapter 16 3 2 7 4
catc el1210a USB-to-Ethernet adapter 2 1 0 1 0
kaweth kl5kusb101 USB-to-Ethernet adapter 15 1 2 8 4
usb net generic USB network driver 45 16 9 6 14
usb hub USB hub 67 27 16 13 11
usb serial USB-to-serial converter 50 2 17 13 18
usb storage USB Mass Storage devices 23 7 5 10 1

IEEE 1394 drivers
eth1394 generic ieee1394 Ethernet driver 22 6 6 4 6
sbp2 sbp-2 transport protocol 46 18 10 12 6

PCI drivers
mthca InfiniHost InfiniBand adapter 123 52 22 11 38
bnx2 bnx2 network driver 51 35 4 5 7
i810 fb i810 frame buffer device 16 4 5 2 5
cmipci cmi8338 soundcard 22 17 3 1 1

Total 498 189 (38%) 101 (20%) 93 (19%) 115 (23%)

Table 1. Classified counts of driver faults. The maxima in each row are in bold face. The highlighted cells summarise the
types of faults that we focus on in the rest of the paper.

!"# $%%%&'() *+$,-,./
0123415,6748

9:

;9:

)9:

<9:

=9:

&99:

:
5-
>50

4>
4?
,8

@432?4571-,-?-/532-/.,2-A8
?-A?B114A?65>.B/,8
8CD571-,-?-/532-/.,2-A8
E4A412?5>.B/,8

Figure 2. Summary of software faults by driver type.

Type of faults #

Race or deadlock in configuration functions 29
Race or deadlock in the hot-unplug handler 26
Calling a blocking function in an atomic context 21
Race or deadlock in the data path 7
Race or deadlock in power management functions 5
Using uninitialised synchronisation primitive 2
Imbalanced locks 2
Calling an OS service without an appropriate lock 1

Table 3. Types of concurrency faults.

3. Dingo device driver architecture
Our driver defect study has revealed areas where better OS
support could improve driver reliability. In particular two
categories of faults are directly related to how the driver in-
teracts with the OS: concurrency faults and software proto-
col violations. Together, these faults constitute 39% of the
defects in our study, and are clearly a significant source of
problems for drivers.

To address these issues, we developed Dingo, a new ar-
chitecture for device drivers that simplifies interaction with
the OS and allows driver developers to focus on the main
task of a driver: controlling the hardware. Dingo achieves
this via two improvements over traditional driver architec-
tures. First, Dingo reduces the amount of concurrency that
the driver must handle by replacing the driver’s traditional
multithreaded model of computation with an event-driven
model. This model eliminates the majority of concurrency-
related driver faults without impacting the performance. Sec-
ond, Dingo provides a formal language for describing driver
software protocols, which avoids confusion and ambiguity,
and helps driver writers implement correct protocols.

Dingo does not attempt to provide solutions to deal with
the other types of defects identified (i.e., device protocol
violations and generic programming faults) since these are
provoked by factors that lie beyond the influence of the OS
and should be eliminated by complementary means such as
those surveyed in Section 10.
Overview of Dingo Dingo specifies a model for commu-
nication between a driver and its environment. Communi-
cation occurs over ports, which are bidirectional message-
based communication points. In a typical implementation,
ports are represented by function tables and messages are
delivered by invoking the corresponding functions. Dingo
guarantees atomic message delivery resulting in a strict or-
dering of all messages exchanged by drivers.

Each port is associated with a protocol, which specifies a
behavioural contract between the driver and the framework.
It defines the messages that can be exchanged over that port
as well as constraints on the ordering, timing and content of
those messages. Every port has exactly one protocol asso-

278

[from L. Ryzhyk et al., “Dingo: Taming device drivers”,
Proc. EuroSys 2009, DOI 10.1145/1519065.1519095]

Improving Device Drivers: Engineering

• Some issues can be solved with good software
engineering practice
• Device drivers generally fit some hierarchy
• E.g., a Broadcom Ethernet adaptor is an Ethernet adaptor is an IEEE 802 network interface

• If implemented in an object-oriented language, can encode much of the
common logic for a particular class of devices into a superclass which is
instantiated by device-specific subclasses that encode hardware details
• May be able to encode protocol state machines in the superclass, and leave the details of the

hardware access to subclasses (e.g., for Ethernet or USB drivers)

• May be able to abstract some of the details of the locking, if the hardware is similar enough

• Might require multiple inheritance or mixins to encode all the details of the
hardware, especially for multi-function devices

• Can emulate in a C-based kernel, but with high syntactic and semantic
overhead [see next slide – Linux does this for some driver classes]

5

Digression: Faking OO Code in C

6

struct vtableFile {
 void (*delete)(void *self);
 int (*open)(void *self, char *filename, int mode);
 int (*close)(void *self);
 int (*read)(void *self, char *buffer, int buflen);
 int (*write)(void *self, char *buffer, int buflen);
};

typedef struct {
 struct vtableFile *vtable;
 FILE *file;
} File;

File *newFile(void)
{
 File *f = malloc(sizeof(File));
 f->vtable->delete = ...
 f->vtable->open = ...
 ...
 f->file = ...
 return f;
}

File *f = newFile(); val f = new File()
f->vtable->open(f, “example.txt”, RDONLY) f.open(“example.txt”, RDONLY)
...

Limitations of Object-Oriented Approach

• Integration with existing kernels is difficult
• Must either emulate object-oriented approach in C, losing much of the

benefits; or run dual-language kernel, with drivers in a different language
to the rest of the kernel
• MacOS X I/O Kit is an example of the latter

• Abstracting logic into a common framework doesn’t
address bugs in that framework

7

Example: MacOS X I/O Kit

• Object-oriented framework for building device drivers in
MacOS X
• Devices organised into families, represented by C++ abstract classes

• Drivers for particular hardware device types are concrete classes,
implementing the abstract classes for their family

• Drivers are instantiated as nubs that represent individual devices

• Implemented using a restricted subset of C++ – without exceptions,
templates, multiple inheritance, or RTTI since these are too complex
to implement efficiently and safely within the kernel

• Layered driver model

• Provides lifecycle management for devices and their
resources

• Simplifies event handling and work loops, abstracting
out a common model for devices and device families

8

IOEthernet Interface

Controller Driver

IOPCIDevice

IOPCIBridge

IONetwork StackClient of

Pr
ov

id
er

 to

...

[Apple, Inc. “I/O Kit Fundamentals”, 2007
http://developer.apple.com/library/mac/
documentation/DeviceDrivers/Conceptual/
IOKitFundamentals/IOKitFundamentals.pdf]

I/O Kit – Objects and Families

• Many common functions and boilerplate are
abstracted into family-specific classes

• Families provide standard facilities to help a
device manage data during I/O operations –
DMA scatter-gather lists, virtual address
translation, etc.

• Provides a “robust system for protecting
access to driver resources during I/O
operations, which frees driver writers from
having to write their own code to enable and
disable interrupts and manage locks on the
driver’s private resources”.

9

 !

 !

 !

OSObject

OSMetaClassOS data
containers

IORegistryEntry

IOService

IO Kit
family

superclasses

I/O Kit
helper classes

OS classes
(general)

I/O Kit classes
(general)

Family classes
(specific)

ADB
ATA and ATAPI
Audio
FireWire
Graphics
Human Interface Devices
Network

PC Card
PCI/AGP
SBP-2
SCSI
Serial
Storage
USB

[Apple, Inc. “I/O Kit Fundamentals”, 2007]

I/O Kit – Lifecycle Management

• All drivers follow a common basic lifecycle, defined by the
methods of the IOService class

• The figure on the left shows the lifecycle methods

• Families and individual device drivers override these methods as needed;
each must call the corresponding method in its superclasses; progressive
refinement

• A driver with no need for special behaviour can just accept the inherited
functionality, and not define these methods

• Other methods provide for power management, messages
for device status changes, etc.

• Coding the lifecycle in a common superclass of all device
drivers in this manner ensures consistency
• The compiler forces that drivers that don’t implement a particular method

to inherit a sane default – a kernel where the object hierarchy is manually
implemented in C requires the programmer to explicitly manage the vtable
entry, leaving scope for bugs

10

Property matching
init()
attach()
probe()
detach()
attach()
start()
open()
 - - Driver in use -
close()
message()
stop()
detach()
free()

on failure

on failure

init start

free stop

init attach probe detach

registerService

[Apple, Inc. “I/O Kit Fundamentals”, 2007]

I/O Kit – Events and Work Loops

• Device drivers can be accessed
by multiple concurrent threads
• Multiple user processes

• Interrupts from the hardware

• Timeouts, power management events,
and other system activity

• Asynchronous callbacks from device or
user code

• Locking can be hard to manage

• Yet, the underlying hardware is
generally single threaded – e.g.,
you can only send one Ethernet
packet at once

• Rather than each driver manage
its own concurrency, the kernel
translates system calls and other
actions into events, posted to a
per-driver work loop

• Drivers in this model are logically
single threaded
• Each work loop has one or more objects

of type IOEventSource

• Use workLoop->addEventSource() to add
an event source to the work loop

• Various subclasses of IOEventSource exist
for different event types (e.g., interrupt, timer)

• Callback functions are registered with
these event sources, and automatically
called with appropriate locks held when
events occur; concurrency is managed
by the kernel

• The parameter to the callback indicates
which event has occurred

• Moves complexity into the kernel,
but greatly simplifies driver code

11

Improving the Device Driver Model

12

• Interaction between device driver and OS can be
represented as a finite state machine

• Can formally model these state machines
• Explicit is better than implicit

• Incorporate formal descriptions of the states, transitions, and events into
the code and type system

• Enabled correctness of the state machines to be checked

• Document the assumptions and requirements in a
format that can be verified automatically

Modelling State Machines

• A set of states and transitions triggered by/causing
events form a state machine

• The MacOS X I/O Kit models incoming events to a
driver, but not the states, allowable transitions, or
generated events

• We could formally define the full state machine in
the source code
• List of states

• List of events that can be received in each state

• For each event that can be received, what is the next state,
and what events are generated in response

• Could be implemented by annotating methods in a
Java-like language – or by extending the language
• Compiler or stand-alone verification tool can then check that

the code implements the defined state machine

13

IO_CONFIGURE_ACK

IO_RUNNING

START

IO_CONFIGURE_BEGIN

!DeviceInfo

?RegisterForEvents

?SetParameters!InvalidParameters

IO_CONFIGURED

!Success

?StartIO

?ConfigureIO

?PacketForReceive

?GetReceivedPacket

Example: Singularity – State Machines

14

A key experiment in the Singularity project is to construct an
entire operating system using SIPs and demonstrate that the
resulting system is more dependable than a conventional system.
The results so far are promising. SIPs are cheap enough to fit a

software development granularity of one developer or
team per SIP and light-weight enough to provide fault-stop
boundaries for aberrant behavior.

2.2 Contract-Based Channels
All communication between SIPs in Singularity flows through
contract-based channels. A channel is a bi-directional message
conduit with exactly two endpoints. A channel provides a lossless,
in-order message queue. Semantically, each endpoint has a
receive queue. Sending on an endpoint enqueues a message on the

queue. A channel endpoint belongs to
exactly one thread at a time. Only the owning thread
can dequeue messages from its receive queue or send messages to
its peer.
Communication across a channel is described by a channel
contract. The two ends of a channel are not symmetric in a
contract. One endpoint is the importing end (Imp) and the other is
the exporting end (Exp). In the Sing# language, the endpoints are
distinguished by types C.Imp and C.Exp, respectively, where C is
the channel contract governing the interaction.
Channel contracts are declared in the Sing# language. A contract
consists of message declarations and a set of named protocol
states. Message declarations state the number and types of
arguments for each message and an optional message direction.
Each state specifies the possible message sequences leading to
other states in the state machine.
We will explain channel contracts through a condensed version of
the contract for network device drivers shown in Listing 1. A
channel contract is written from the perspective of the SIP
exporting a service and starts in the first listed state. Message
sequences consist of a message tag and a message direction sign
(! for Exp to Imp), and (? for Imp to Exp). The message direction
signs are not strictly necessary if message declarations already
contain a direction (in, out), but the signs make the state
machine more human-readable.
In our example, the first state is START and the network device
driver starts the conversation by sending the client (probably the
network stack) information about the device via message
DeviceInfo. After that the conversation is in the
IO_CONFIGURE_BEGIN state, where the client must send message
RegisterForEvents to register another channel for receiving
events and set various parameters in order to get the conversation
into the IO_CONFIGURED state. If something goes wrong during
the parameter setting, the driver can force the client to start the
configuration again by sending message InvalidParameters.
Once the conversation is in the IO_CONFIGURED state, the client
can either start I/O (by sending StartIO), or reconfigure the
driver (ConfigureIO). If I/O is started, the conversation is in

state IO_RUNNING. In state IO_RUNNING, the client provides the
driver with packet buffers to be used for incoming packets
(message PacketForReceive). The driver may respond with
BadPacketSize, returning the buffer and indicating the size
expected. This way, the client can provide the driver with a
number of buffers for incoming packets. The client can ask for
packets with received data through message GetReceived-
Packet and the driver either returns such a packet via
ReceivedPacket or states that there are no more packets with
data (NoPacket). Similar message sequences are present for
transmitting packets, but we elide them in the example.
From the channel contract it appears that the client polls the driver
to retrieve packets. However, we have not yet explained the
argument of message RegisterForEvents. The argument of
type NicEvents.Exp:READY describes an Exp channel endpoint
of contract NicEvents in state READY. This endpoint argument
establishes a second channel between the client and the network
driver over which the driver notifies the client of important events
(such as the beginning of a burst of packet arrivals). The client
retrieves packets when it is ready through the NicDevice
channel. Figure 2 shows the configuration of channels between
the client and the network driver. The NicEvents contract
appears in Listing 2.

contract NicDevice {
oout message DeviceInfo(...);
iin message RegisterForEvents(NicEvents.Exp:READY
c);
iin message SetParameters(...);
oout message InvalidParameters(...);
oout message Success();
iin message StartIO();
iin message ConfigureIO();
iin message PacketForReceive(byte[] in ExHeap p);
oout message BadPacketSize(byte[] in ExHeap p, int
m);
iin message GetReceivedPacket();
oout message ReceivedPacket(Packet * in ExHeap p);
oout message NoPacket();

sstate START: one {

}
sstate IO_CONFIGURE_BEGIN: oone {

}
sstate IO_CONFIGURE_ACK: oone {

IO_CONFIGURED;

}
sstate IO_CONFIGURED: oone {

ConfigureIO? IO_CONFIGURE_BEGIN;

}
sstate IO_RUNNING: oone {

(Success! or BadPacketSize!)

 or
NoPacket!)

...

}
}

Listing 1. Contract to access a network device driver.
contract NicEvents {

eenum NicEventType {
NoEvent, ReceiveEvent, TransmitEvent, LinkEvent

}

oout message NicEvent(NicEventType e);
iin message AckEvent();

state READY: oone {

AckEvent? !READY;
}

}

Listing 2. Contract for network device events.

Figure 2. Channels between a network driver and stack.

NicDevice

NetStack NIC DriverNicEvents

Imp

Imp

Exp

Exp

!"

[G. Hunt and J. Larus. Singularity: Rethinking the software stack. ACM
SIGOPS OS Review, 41(2), Apr. 2007. DOI 10.1145/1243418.1243424]

IO_CONFIGURE_ACK

IO_RUNNING

START

IO_CONFIGURE_BEGIN

!DeviceInfo

?RegisterForEvents

?SetParameters!InvalidParameters

IO_CONFIGURED

!Success

?StartIO

?ConfigureIO

?PacketForReceive

?GetReceivedPacket

• System comprises a set of concurrent processes that
communicate solely by exchanging messages

• A contract defines the state machine for a process
• Implemented in Sing# – an extension to C# – the

compiler can check that the contract is implemented
by processes declaring their support

Example: Singularity – Pattern Matching

• Contract defines the state machine – essentially an abstract type

• Implementation uses pattern matching
 against received messages
• A function for each state

• Each function switches based on the type of
the message object received

• Compiler checks that switch receive
statements handle all messages defined
by the contract
• Blocks in the switch receive statement must end with

a transfer of control, to a function representing a new
state or to itself, allowing compiler to check transitions

• Messages are immutable objects
• Simplifies locking – no need to lock the message, just the message passing code

15

NetStack

NicDevice

NIC Driver

ExpImp

NicEvents
ExpImp

Figure 2: Channels between network driver and netstack

the IO CONFIGURE BEGIN state, where the client must send
message RegisterForEvents to register another channel for re-
ceiving events and set various parameters in order to get
the conversation into the IO CONFIGURED state. If some-
thing goes wrong during the parameter setting, the driver
can force the client to start the configuration again by send-
ing message InvalidParameters . Once the conversation is in
the IO CONFIGURED state, the client can either start IO
(by sending StartIO), or reconfigure the driver (ConfigureIO).
If IO is started, the conversation is in state IO RUNNING.
In state IO RUNNING, the client provides the driver with
packet buffers to be used for incoming packets (message
PacketForReceive). The driver may respond with BadPacketSize,
returning the buffer and indicating the size expected. This
way, the client can provide the driver with a number of
buffers for incoming packets. The client can ask for packets
with received data through message GetReceivedPacket and
the driver either returns such a packet via ReceivedPacket or
states that there are no more packets with data (NoPacket).
Similar message sequences are present for transmitting pack-
ets, but we elide them in the example.

From the channel contract it appears that the client polls
the driver to retrieve packets. However, we haven’t ex-
plained the argument of message RegisterForEvents yet. The
argument of type NicEvents.Exp:READY describes an Exp chan-
nel endpoint of contract NicEvents in state READY. This end-
point argument establishes a second channel between the
client and the network driver over which the driver notifies
the client of important events (such as the beginning of a
burst of packet arrivals). The client retrieves packets when
it is ready through the NicDevice channel. Figure 2 shows the
configuration of channels between the client and the network
driver. The NicEvents contract is shown below.

contract NicEvents {
enum NicEventType {

NoEvent, ReceiveEvent, TransmitEvent, LinkEvent
}

out message NicEvent(NicEventType eventType);
in message AckEvent();

state READY: one {
NicEvent! → AckEvent? →READY;

}
}

So far we have seen how channel contracts specify messages
and a finite state machine describing the protocol between
the Imp and Exp endpoints of the channel. The next section
describes how programs use channels.

2.4 Channel Operations

To create a new channel supporting contract C, the following

rep struct Imp {
void SendAckEvent();
void RecvNicEvent(out NicEventType eventType);

}

rep struct Exp {
void SendNicEvent(NicEventType eventType);
void RecvAckEvent();

}

Listing 1: Methods on endpoints

code is used:

C.Imp imp;
C.Exp exp;
C.NewChannel(out imp, out exp);

Two variables imp and exp of the corresponding endpoint
types are declared. These variables are then initialized via
a call to C.NewChannel which creates the new channel and
returns the endpoints by initializing the out parameters.1

Endpoint types contain method definitions for sending
and receiving messages described in the contract. For ex-
ample, the endpoints of the NicEvents contract contain the
method declarations shown in Listing 1. The semantics of
these methods is as follows. Send methods never block and
only fail if the endpoint is in a state in the conversation
where the message cannot be sent. Receive operations check
that the expected message is at the head of the queue and
if so, return the associated data. If the queue is empty, re-
ceives block until a message has arrived. If the message at
the head of the queue is not the expected message or the
channel is closed by the peer, the receive fails.

As is apparent from these declarations, there is no need
to allocate a message object and fill it with the message
data. Only the message arguments are actually transmitted
along with a tag identifying the message. The sender and
receiver only manipulate the message arguments, never an
entire message. This property is desirable, for it avoids the
possibility of failure on sends. Furthermore, as we discuss
in Section 2.6, it simplifies the implementation.

Direct calls to the receive methods are not useful in gen-
eral, since a program has to be ready to receive one of a num-
ber of possible messages. Sing# provides the switch receive

statement for this purpose. Here’s an example of using the
NicDevice channel endpoint in the server:

NicDevice.Exp:IO RUNNING nicClient ...

switch receive {
case nicClient .PacketForReceive(buf):

// add buf to the available buffers , reply
...

case nicClient .GetReceivedPacket():
// send back a buffer with packet data if available
...

case nicClient .ChannelClosed():
// client closed channel
...

}

1In C# an out parameter is like a C++ by-ref parameter,
but with the guarantee that it will be initialized on all nor-
mal code paths.

180 EuroSys 2006

[M. Fähndrich et al. Language support for fast and reliable
message-based communication in Singularity OS. Proc.
EuroSys 2006. DOI 10.1145/1218063.1217953]

the state

messages that can be
received in that state

Verification of State Machines

• If the state machine is formally defined in the code,
we can begin to verify it
• Check that the code implements the defined state machine

• Check the state machine itself
• Validate that the driver cannot deadlock

• Validate that certain states can be reached

• …

• [discussed further in the MRS4 course]

• Contracts in Sing# can readily be translated into (fragments of) a Promela
model, suitable for verification with a model checker such as SPIN

16

Event-driven vs. Concurrent Models

• Two models for driver state machine code
• Concurrent model – Singularity

• Event-driven model – MacOS X I/O Kit, Dingo [see reading at end]

• Different ways of expressing the same concept
• Apple had valid engineering reasons to prefer an object-oriented event-

driven model – familiarity, and ease of integration

• The concurrent model used in Singularity conceptually cleaner, but
requires kernel structured for light-weight concurrency and message
passing [will return to this in later lectures]

17

Summary

• Most operating systems employ an ad-hoc device
driver model
• Significant numbers of driver bugs are due to poor specification and

documentation of this model

• Good software engineering practices can improve this somewhat, while
integrating with existing kernels

• A clean-slate design can explicitly make the state
machine underlying the driver visible
• Allows automatic verification that the driver implements the state machine

for its device class

• Allows model checking of the state machine

18

Further Reading

19

Dingo: Taming Device Drivers

Leonid Ryzhyk12 Peter Chubb12 Ihor Kuz12 Gernot Heiser123

1NICTA∗ 2The University of New South Wales 3Open Kernel Labs
Sydney, Australia

leonid.ryzhyk@nicta.com.au

Abstract
Device drivers are notorious for being a major source of
failure in operating systems. In analysing a sample of real
defects in Linux drivers, we found that a large propor-
tion (39%) of bugs are due to two key shortcomings in
the device-driver architecture enforced by current operating
systems: poorly-defined communication protocols between
drivers and the OS, which confuse developers and lead to
protocol violations, and a multithreaded model of computa-
tion that leads to numerous race conditions and deadlocks.

We claim that a better device driver architecture can help
reduce the occurrence of these faults, and present our Dingo
framework as constructive proof. Dingo provides a formal,
state-machine based, language for describing driver proto-
cols, which avoids confusion and ambiguity, and helps driver
writers implement correct behaviour. It also enforces an
event-driven model of computation, which eliminates most
concurrency-related faults. Our implementation of the Dingo
architecture in Linux offers these improvements, while in-
troducing negligible performance overhead. It allows Dingo
and native Linux drivers to coexist, providing a gradual mi-
gration path to more reliable device drivers.

Categories and Subject Descriptors D.4.4 [Operating
systems]: Input/Output; D.3.2 [Language Classifications]:
Specialized application languages

General Terms Languages, Reliability, Verification

Keywords Concurrent Programming, Device Drivers,
Domain-Specific Languages, Fault Avoidance, Reliability.

∗ NICTA is funded by the Australian Government’s Department of Communications,
Information Technology, and the Arts and the Australian Research Council through
Backing Australia’s Ability and the ICT Research Centre of Excellence programs

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
EuroSys’09, April 1–3, 2009, Nuremberg, Germany.
Copyright c© 2009 ACM 978-1-60558-482-9/09/04. . . $5.00

1. Introduction
While accounting for about 70% of OS code, drivers typ-
ically contain several times more errors per line of code
than other system components [Chou 2001] and, according
to recent studies, are responsible for up to 70% of system
failures [Ganapathi 2006, Murphy 2004]. With the introduc-
tion of advanced hardware capabilities such as hot-plugging,
power management, and vectored I/O, device drivers have
increased in complexity and hence become even more error-
prone.

This paper explores the factors that contribute to driver
complexity and lead to buggy drivers. In analysing bugs
found in real Linux drivers, we discover and demonstrate
quantitatively that a large proportion of these factors result
from the way drivers interface with the OS, and can be
eliminated or mitigated by a better design of the driver-OS
interface.

Specifically, we identify two shortcomings of the driver
architecture common in modern operating systems: poorly-
defined communication protocols between drivers and the
OS, which confuse developers and lead to protocol viola-
tions, and a multithreaded model of computation that leads
to numerous race conditions and deadlocks. To address these
issues, we developed Dingo1—a device-driver architecture
aimed at simplifying development and reducing the number
of software defects in drivers.

In order to reduce protocol errors, driver protocols in
Dingo are specified using a state-machine-based formal lan-
guage called Tingu.2 Tingu allows a clear and unambigu-
ous description of requirements for driver behaviour, provid-
ing intuitive guidelines to driver programmers. The primary
purpose of Tingu specifications is to serve as documenta-
tion helping driver developers avoid errors; however they can
also be used as properties against which driver implementa-
tion can be formally validated either statically or at runtime.
Presently we only support runtime validation by compiling
driver protocol specifications into a runtime observer that de-
tects protocol violations committed by the driver.

1 A Dingo is an Australian wild dog.
2 Tingu is an Australian aboriginal name for a Dingo cub.

275

• L. Ryzhyk, P. Chubb, I. Kuz, and G. Heiser.
Dingo: Taming device drivers. Proceedings of the
European Conference on Computer Systems,
Nuremberg, Germany, April 2009. ACM/EuroSys.
DOI 10.1145/1519065.1519095

• G. Hunt and J. Larus. Singularity: Rethinking the
software stack. ACM SIGOPS OS Review, 41(2),
Apr. 2007. DOI 10.1145/1243418.1243424

Singularity: Rethinking the Software Stack
!"#$%&'(&)*%+&"%,&-".$/&0(&1"2*/&

Microsoft Research Redmond
3"#$%45.6728/89+(78.

ABSTRACT
Every operating system embodies a collection of design decisions.
Many of the decisions behind
systems have remained unchanged, even as hardware and
software have evolved. Operating systems form the foundation of
almost every software stack, so inadequacies in present systems
have a pervasive impact. This paper describes the efforts of the
Singularity project to re-examine these design choices in light of
advances in programming languages and verification tools.
Singularity systems incorporate three key architectural features:
software-isolated processes for protection of programs and system
services, contract-based channels for communication, and
manifest-based programs for verification of system properties. We
describe this foundation in detail and sketch the ongoing research
in experimental systems that build upon it.

Keywords
Operating systems, safe programming languages, program
verification, program specification, sealed process architecture,
sealed kernel, software-isolated processes (SIPs), hardware
protection domains, manifest-based programs (MBPs), unsafe
code tax.

1. INTRODUCTION
Every operating system embodies a collection of design
decisions some explicit, some implicit. These decisions include
the choice of implementation language, the program protection
model, the security model, the system abstractions, and many
others.
Contemporary operating systems Windows, Linux, Mac OS X,
and BSD share a large number of design decisions. This
commonality is not entirely accidental, as these systems are all
rooted in OS architectures and development tools of the late

early . Given the common operating
environments, the same programming language, and similar user
expectations, it is not surprising that designers of these systems
made similar decisions. While some design decisions have
withstood the test of time, others have aged less gracefully.
The Singularity project started in 2003 to re-examine the design
decisions and increasingly obvious shortcomings of existing
systems and software stacks. These shortcomings include: wide-
spread security vulnerabilities; unexpected interactions among
applications; failures caused by errant extensions, plug-ins, and
drivers, and a perceived lack of robustness.
We believe that many of these problems are attributable to
systems that have not evolved far beyond the computer
architectures

different from today. Computers were extremely limited in speed
and memory capacity. They were used only by a small group of
benign technical literati and were rarely networked or connected
to physical devices. None of these requirements still hold, but

modern operating systems have not evolved to accommodate the
enormous shift in how computers are used.

1.1 A Journey, not a Destination
In the Singularity project, we have built a new operating system, a
new programming language, and new software verification tools.
The Singularity operating system incorporates a new software
architecture based on software isolation of processes. Our
programming language, Sing# [8], is an extension of C# that
provides verifiable, first-class support for OS communication
primitives as well as strong support for systems programming and
code factoring. The sound verification tools detect programmer
errors early in the development cycle.
From the beginning, Singularity has been driven by the following
question: what would a software platform look like if it was
designed from scratch, with the primary goal of improved
dependability and trustworthiness? To this end, we have
championed three strategies. First, the pervasive use of safe
programming languages eliminates many preventable defects,
such as buffer overruns. Second, the use of sound program
verification tools further guarantees that entire classes of
programmer errors are removed from the system early in the
development cycle. Third, an improved system architecture stops
the propagation of runtime errors at well-defined boundaries,
making it easier to achieve robust and correct system behavior.
Although dependability is difficult to measure in a research
prototype, our experience has convinced us of the practicality of
new technologies and design decisions, which we believe will
lead to more robust and dependable systems in the future.
Singularity is a laboratory for experimentation in new design
ideas, not a design solution. While we like to think our current
code base represents a significant step forward from prior work,
we do not or an end in itself. A
research prototype such as Singularity is intentionally a work in
progress; it is a laboratory in which we continue to explore
implementations and trade-offs.
In the remainder of this paper, we describe the common
architectural foundation shared by all Singularity systems. Section
3 describes the implementation of the Singularity kernel which
provides the base implementation of that foundation. Section 4
surveys our work over the last three years within the Singularity
project to explore new opportunities in the OS and system design
space. Finally, in Section 5, we summarize our work to date and
discuss areas of future work.

2. ARCHITECTURAL FOUNDATION
The Singularity system consists of three key architectural features:
software-isolated processes, contract-based channels, and
manifest-based programs. Software-isolated processes provide an
environment for program execution protected from external
interference. Contract-based channels enable fast, verifiable
message-based communication between processes. Manifest-

!"

