

SAMPLE EXAMINATION
 (Duration: 2 hours)

DEGREES OF MSci, MEng, BEng, BSc, MA and MA (Social Sciences)

ADVANCED OPERATING SYSTEMS (M)

(Answer 3 out of 4 questions)

This examination paper is worth a total of 60 marks

You must not leave the examination room within the first hour or the last half-
hour of the examination.

Summer Diet - 1 - Continued Overleaf/

1. You are given a system of independent periodic tasks to be scheduled on a single
processor in a pre-emptive manner: T = {Ti} for i = 1... n where Ti = (φi, pi, ei, Di)
for each i.

 (a) Assume pi = Di for each i. What is the maximum schedulable utilization of the
Earliest Deadline First algorithm for this system? Is this a necessary and
sufficient condition?

If the inequality is satisfied, then the system is schedulable using EDF. This

is a necessary and sufficient condition.

[3]

 (b) Assume that pi ≥ Di for each i. What is the maximum schedulable utilization of
the Earliest Deadline First algorithm for this system? Is this a necessary and
sufficient condition?

If the inequality is satisfied, then the system is schedulable using EDF. This

is a sufficient condition unless pi = Di for all i, in which case it is also necessary.

 [3]

 (c) Assume that pi = Di for each i. What is the maximum schedulable utilization of
the Rate Monotonic algorithm for this system? Is this a necessary and sufficient
condition?

If the inequality is satisfied, then the system is schedulable using

RM. This is a sufficient condition; there may be systems which do not satisfy this
inequality that still yield feasible schedules.

 [3]

 (d) Assume that pi ≤ Di for each i. Under what conditions will the maximum
schedulable utilization of the Rate Monotonic algorithm for this system be
identical to that stated in response to part (a) above?

If the system is simply periodic – i.e. if for every pair of tasks Ti and Tk in T such that pi <
pk, pk is an integer multiple of pi. This is a necessary and sufficient condition.

 [3]

 (e) You are provided with the following system definition (all tasks are independent,
and are scheduled pre-emptively on a single processor system): T1 = (0, 2, 0.4, 2),
T2 = (1, 4, 1, 4), and T3 = (0, 5, 1.5, 5)}

(i) Can these tasks be scheduled using the Earliest Deadline First algorithm?
Explain your answer.

Summer Diet - 2 - Continued Overleaf/

Total utilization U = 0.4/2 +1/4 + 1.5/5 = 0.20 + 0.25 + 0.35 = 0.75. Since this is less than
1.0, and since the relative deadlines are identical to the periods, then this system is
schedulable using EDF.

(ii) Can these tasks be scheduled using the Rate Monotonic algorithm?
Explain your answer.

Total utilization U = 0.75. for n = 3 is 0.779. Since U ≤ 0.779, this system is

schedulable using RM.

 The parameters of the system are changed, such that T3 = (0, 8, 4, 8).
(iii) Can this new system be scheduled using the Earliest Deadline First

algorithm? Explain your answer.

Total utilization U = 0.4/2 +1/4 + 4/8 = 0.20 + 0.25 + 0.5 = 0.95. Since this is less than
1.0, and since the relative deadlines are identical to the periods, then this system is
schedulable using EDF.

 (iv) Can this new system be scheduled using the Rate Monotonic Algorithm?
Explain your answer.

Total utilization U = 0.95. The system is simply periodic, so the system is schedulable if
U ≤ 1.0. Therefore, this system is schedulable using RM.

 [2+2+2+2]

Summer Diet - 3 - Continued Overleaf/

2. You have been hired into a software engineering firm to replace a design
engineer that has recently left. His legacy is the design of a real time embedded
system. Your first task upon arrival is to critically review the design, since the
implementation phase is to start within two weeks.

 (a) The system consists primarily of N independent periodic tasks that must meet
their deadlines, along with random aperiodic jobs involved in the user interface
of the system. It is desirable to minimize the average response times of the
aperiodic jobs. All tasks execute on a single processor, and are pre-emptively
scheduled. Your predecessor had decided to use a simple deferrable server. The
total utilization of the periodic jobs is Up, and the maximum utilization permitted
while still being able to meet all deadlines is Umax > Up. Your predecessor has
specified that the deferrable server size should be Umax - Up.

 Do you agree with his choice? If so, indicate why; if not, how would you change
the design?

A deferrable server is the simplest bandwidth-preserving server algorithm. It retains its
budget whenever it is not executing, and loses any unused budget at replenishment time.
The deferrable server is usually the highest priority task in the system. The schedulability
condition for such a system is dependent upon which scheduling algorithm is chosen.

Regardless of the scheduling algorithm chosen, the deferrable server algorithm retains its
budget at times when it should not – i.e. it is too aggressive. As a result, the utilization
constraints are of the form Up + uS + eS/pN ≤ Umax.

The system should use a simple sporadic server with size Umax – Up. This is guaranteed
to restrict the utilization by the server to uS, thus guaranteeing that the periodic tasks will
all meet their deadlines.

 [5]

 (b) Various reasons led to using an earliest deadline first scheduling algorithm for the
periodic tasks and the server. Several of the periodic tasks compete for exclusive
access to a shared resource, and it is essential that the system not deadlock. Your
predecessor designed the system to use the priority inheritance protocol to
minimize blocking due to resource contention. Do you agree with his choice? If
so, indicate why; if not, how would you change the design?

The greedy nature of the priority inheritance protocol means that the system cannot be
guaranteed deadlock-free.

The priority ceiling protocol could be used, but it has a higher run-time overhead than the
preemption-ceiling protocol. The latter should be used in this system.

[5]

 (c) We usually assume that the context switch time is negligible when determining if
a system can be scheduled. Your predecessor has instrumented a prototype of the
running system, and has determined the maximum context switch time for jobs in

Summer Diet - 4 - Continued Overleaf/

execution to be TCS. He has, therefore, increased the execution time for each of
the periodic tasks (including the bandwidth-preserving server) by 2 × TCS.

 Do you agree with this approach? If so, indicate why; if not, how would you
approach this problem differently?

This is the correct way to approach the problem. Each job incurs a context switch when it
pre-empts the current job, and incurs another context switch when it completes and
releases the processor. Therefore, the execution time of each task in the system should
be increased by 2 * TCS.

[5]

 (d) Each job in periodic task Ti queries an array of sensors; each query to each sensor
takes ~1ms to complete, and there are N sensors to be queried serially; after
issuing the query, the job self-suspends until the I/O completes. Your predecessor
has accounted for this situation by increasing the execution time ei for jobs in the
task by N × TCS.

 Do you agree with this approach? If so, indicate why; if not, how would you
approach this problem differently?

Every time one of the task’s jobs self-suspends, it generates two additional context
switches: the first to schedule the highest-priority, ready-to-run job when it releases the
processor, and the second when it resumes itself, preempting the lower-priority job
running on the processor. Therefore, the execution time ei for jobs in the task must be
increased by 2 × N × TCS.

[5]

Summer Diet - 5 - Continued Overleaf/

3. (a) A simple form of automatic heap management is reference counting. Briefly
explain how a reference counting system manages memory allocated to objects,
and explain under what situation it can fail to reclaim objects.

[5]
Each object is augmented with a count of the number of references to that object [1 mark]

The reference count is incremented each time a reference to the object is created, and
decremented each time a reference is destroyed [2 marks]. When the count reaches
zero, the object is reclaimed [1 mark].

Reference counting can fail to reclaim objects if there are cyclic references [1 mark].

 (b) Describe one advantage of reference counting over other forms of automatic heap
management?

[2]
Reference counting is incremental: collection occurs in many small operations, and does
not “stop-the-world” for long periods of time [2 marks]

 (c) Tracing garbage collection algorithms are often used as alternative to reference
counting for automatic heap management. Briefly outline the concepts behind the
operation of tracing garbage collection.

[4]
A tracing garbage collector starts from a known root set of objects, and explicitly scans
for the set of live objects that can be reached from that root set [2 marks]. All unreached
objects are garbage, and can be disposed of in a separate garbage collection phrase [2
marks].

 (d) A way of implementing tracing garbage collection is to use a copying collector.
Outline what is a copying garbage collector, and explain how a copying collector
implemented using semispaces works.

[9]
A copying collector works by tracing through all the live objects and copying them into
one region of memory [2 marks]. This is done in a single pass [1 mark]. All the objects not
copied to the new region are garbage, and can be reclaimed [2 marks].

The implementation using semispaces splits the heap into two halves, each being a
contiguous region of memory [1 mark]. Allocations are made linearly from one half of the
heap only [1 mark]. When that half of the heap is full, the collector is invoked and copies
live objects into the other half of the heap, compacting as it goes [1 mark]. The first half of
the heap then only contains garbage, which is overwritten eventually (when the other half
is full and the collector runs again) [1 mark].

Summer Diet -6- /END

4. We discussed the MacOS X I/O Kit as an example of how operating system
kernels can be improved through the use of modern object-oriented software
engineering languages and practices, to improve the reliability of device drivers.
The I/O kit allows the use of a limited subset of C++ in the MacOS X kernel, and
organises device drivers into a hierarchy, pushing functionality that is common to
several devices up to super-classes from which particular drivers are derived.
Outline the advantages and disadvantages of this the I/O kit model compared to
the C-based device drivers used in Linux. Discuss the trade-off in using object-
oriented languages for kernel development in general – is the use of such
languages a net win compared to writing kernels in C?

[20]
The advantages of the I/O kit model are ease of development and robustness. It’s easy to
build a device driver by creating a sub-class in an appropriate family of devices, and only
implementing the minimum set of features needed to describe the unique features of the
new device. Robustness comes from well-controlled integration with the rest of the
operating system via framework code, implemented at the high-levels of the inheritance
hierarchy, which is automatically inherited by specific drivers [5 marks].

The main disadvantages are performance and flexibility. The use of C++ has some
(small) overhead compared to C, but more importantly there is less scope of optimise the
drivers to their full extent, since they must fit within the generic framework (which is
designed to be easy to use, rather than necessarily high performance). Lack of flexibility
is an issue when implementing drivers for a new class of devices: it’s harder to build
something that doesn’t fit into the existing frameworks, since there is more to implement
to integrate the new family of drivers into the frameworks [5 marks].

With regards to the general question of whether object oriented languages offer benefit
compared to writing in C, there is no single correct answer. The trade-off is between ease
of programming, complexity of the runtime, and overheads. The C runtime is very simple
and high performance, it also offers a great deal of control for the programmer; however
it’s also difficult to program. The object oriented languages tend to have a more complex
runtime, which operates at a higher level of abstraction. This makes them easier to
program, but less predictable (since the runtime hides a lot of detail). Up to [5 marks] are
available for this discussion; [1 mark] for making an explicit statement on whether the
candidate believes these languages are a net win; and [4 marks] for quality of written
argument (e.g., logical progression of concepts; coherent argumentation – not English
grammar).

