
Principles of Real-time Systems

Advanced Operating Systems
Lecture 1



Lecture Outline

• Introduction and course administration
• Aims, rationale, intended learning outcomes

• Timetable

• Assessment and examination

• Principles of real-time systems

2



Introduction and Course Administration

3



Resources and Contact Details

• Lecture slides and other materials are on Moodle 
• Also http://csperkins.org/teaching/adv-os/

• Printed lecture handouts will not be provided – learning is enhanced by 
taking your own notes during lectures and tutorials

• Course coordinator: 
• Dr Colin Perkins, Room 405, Sir Alwyn Williams Building

• Email: colin.perkins@glasgow.ac.uk

• No assigned office hours – email to make appointment if needed

4

http://csperkins.org/teaching/adv-os/
http://csperkins.org/teaching/adv-os/


Rationale

• Radical changes to computing landscape; 
• Desktop PC becoming irrelevant 

• Heterogeneous, multicore, mobile, and real-time systems – smart phones, 
tablets – now ubiquitous

• Not reflected by corresponding change in operating 
system design practice

• This course will... 
• review research on systems programming techniques and operating 

systems design;

• discuss the limitations of deployed systems; and 

• show how the operating system infrastructure might evolve to address the 
challenges of supporting modern computing systems.

5



Aims and Objectives

• To explore programming language and operating 
system facilities essential to implement real-time, 
reactive, and embedded systems

• To discuss limitations of widely-used operating 
systems, introduce new design approaches to 
address challenges of security, robustness, and 
concurrency 

• To give an understanding of practical engineering 
issues in real-time and concurrent systems; and 
suggest appropriate implementation techniques

6



Intended Learning Outcomes (1)

• At the end of this course, you should be able to:
• clearly differentiate the issues that arise in designing real-time systems; 

analyse a variety of real-time scheduling techniques, prove correctness of 
the resulting schedule; implement basic scheduling algorithms;

• apply real-time scheduling theory to the design and implementation of a 
real-world system using the POSIX real-time extensions; demonstrate 
how to manage resource access in such a system;

• describe how embedded systems are constructed, and discuss the 
limitations and advantages of C as a systems programming language; 
understand how managed code and advanced type systems might be 
used in the design and implementation of future operating systems;

• discuss the advantages and disadvantages of integrating garbage 
collection with the operating system/runtime; understand the operation of 
popular garbage collection algorithms; know when it might be appropriate 
to apply garbage collection and managed runtimes to real-time systems;
… 

7



Intended Learning Outcomes (2)

… 

• understand the impact of heterogeneous multicore systems on operating 
systems; compare and evaluate different programming models for 
concurrent systems, their implementation, and their impact on operating 
systems;

• construct simple concurrent programs using transactional memory and 
message passing to understand trade-offs and implementation decisions.

8



Course Outline

• Real-time operating systems
• Real-time scheduling

• Resource allocation

• Programming model

• Garbage collection

• Implications of multicore systems
• Message passing

• Transactions

• General purpose GPU programming models

9



Timetable (1)

10

Week Lecture Subject

1

Lecture 1 Principles of Real-time Systems

1 Lecture 2 Real-time Scheduling of Periodic Tasks (1)1

Lecture 3 Real-time Scheduling of Periodic Tasks (2)

2

Tutorial 1 Real-time Scheduling of Periodic Tasks

2 Lecture 4 Real-time Scheduling of Aperiodic and Sporadic Tasks (1)2

Lecture 5 Real-time Scheduling of Aperiodic and Sporadic Tasks (2)

3

Tutorial 2 Real-time Scheduling of Aperiodic and Sporadic Tasks

3 Lecture 6 Resource Management3

Lecture 7 Real-time & Embedded Systems Programming

4

Tutorial 3 Resource Management/Systems Programming

4 Lecture 8 Garbage Collection (1)4

Lecture 9 Garbage Collection (2)

5

Tutorial 4 Garbage Collection

5 Lecture 10 Implications of Multicore Systems5

Lecture 11 Message Passing (1)



Timetable (2)

11

Week Lecture Subject

6

Lecture 12 Message Passing (2)

6 Tutorial 5 Message Passing6

No lectures – programming assignment
7

No lectures – programming assignment
7

No lectures – programming assignment
7

No lectures – programming assignment

8

Lecture 13 Transactions

8 Tutorial 6 Transactions8

Lecture 14 General Purpose GPU Programming (1)

9

Lecture 15 General Purpose GPU Programming (2)

9 Tutorial 7 General Purpose GPU Programming9

Lecture 16 Wrap-up

10 No lectures10 No lectures10 No lectures



Assessment

• Level M course; 10 credits

• Coursework (20%)

• Examination (80%)
• Two hours duration; sample and past papers are available on Moodle

• All material in the lectures, tutorials, and cited papers is examinable

• Aim is to test your understanding of the material, not to test your memory 
of all the details; explain why – don’t just recite what

12

Exercise Weight Topic Set Due

1 4% Scheduling periodic tasks Tutorial 1 Tutorial 2

2 4% Scheduling aperiodic/sporadic tasks Tutorial 2 Tutorial 3

3 12% Programming message passing systems Tutorial 5 Tutorial 6



Pre- and co-requisites

• Required pre-requisites: 
• Computer Systems 2

• Operating Systems 3

• Advanced Programming 3

• Functional Programming 4

• Recommended co-requisites:
• Computer Architecture 4

13



Required Reading

• No single set text book

• Research papers will be cited
• DOIs will be provided; resolve via http://dx.doi.org/ – some papers behind 

paywalls, but accessible for free from on campus

• You are expected to read and understand papers; it will be beneficial to 
follow-up on some of the references and do further background reading

• Critical reading of a research paper is difficult and requires practice; read in a structured 
manner, not end-to-end, thinking about the material as you go

• Advice on paper reading: http://www.eecs.harvard.edu/~michaelm/postscripts/ReadPaper.pdf

• S. Keshav, “How to Read a Paper”, ACM Computer Communication Review, 37(3), July 2007 
DOI: 10.1145/1273445.1273458

• Tutorials allow for discussion of papers and lectured material

14

http://dx.doi.org
http://dx.doi.org
http://www.eecs.harvard.edu/~michaelm/postscripts/ReadPaper.pdf
http://www.eecs.harvard.edu/~michaelm/postscripts/ReadPaper.pdf
http://dx.doi.org/10.1145/1273445.1273458
http://dx.doi.org/10.1145/1273445.1273458


Principles of Real-time Systems

15



Introduction to Real-time Systems

• Real-time systems deliver services while meeting 
timing constraints
• Not necessarily fast, but must meet some deadline

• Many real-time systems embedded as part of a larger device or system: 
washing machine, photocopier, phone, car, aircraft, industrial plant, etc.

• Frequently require validation for correctness
• Many embedded real-time systems are safety critical – if they don’t work 

in a timely and correct basis, serious consequences result

• Bugs in embedded real-time systems can be difficult or expensive to 
repair – e.g., can’t easily update software in a car!

16



Typical System Model

• Control a device using actuator, based 
on sampled sensor data
• Control loop compares measured value and 

reference

• Depends on correct control law computation, 
reference input, accuracy of measurements

• Time between measurements of y(t), r(t) is the 
sampling period, T

• Small T better approximates analogue control 
but large T needs less processor time; if T is too 
large, oscillation will result as the system fails to 
keep up with changes in the input

• Simple control loop conceptually easy 
to implement

• Complexity comes from multiple control 
loops running at different rates, of if the 
system contains aperiodic components

17

Control-law 
computation D/AA/D

A/D

ActuatorSensor Device

Reference
input: r(t)

rk

yk

y(t)

u(t)

uk

Controller



Implementation Considerations

• Some real-time embedded systems are complex, 
implemented on high-performance hardware
• E.g., industrial plant control, avionics and flight control systems

• But, many implemented on hardware that is low 
cost, low power, and low performance, but light-
weight and robust
• E.g., consumer goods

• Often implemented in C or assembler, fitting within a few kilobytes of 
memory; correctness primary concern, efficiency a close second

• Desire proofs of correctness, ways of raising the 
level of abstraction programming such systems

18



Reference Model for Real-time Systems

• A reference model and consistent terminology let 
us reason about real-time systems
• Cannot prove correctness without well-defined system model

• Reference model needs to characterise:
• Applications running on a system (jobs and tasks) and the processors 

supporting their execution

• The resources those applications use

• Scheduling algorithms to determine when applications execute and use 
resources, and the timing constraints they must meet

19



Jobs, Tasks, Processors, and Resources

• A job is a unit of work scheduled 
and executed by the system

• A task T = {J1, J2, …, Jn} is a set of 
related jobs that together perform 
some operation

• Jobs execute on a processor and 
may depend on some resources

• A scheduling algorithm describes 
how jobs execute

• Processors are active devices on 
which jobs are scheduled
• E.g., threads scheduled on a CPU, data 

scheduled on a transmission link

• A processor has a speed attribute, that 
determines the rate of progress of jobs 
executing on that processor

• A resource, R, is a passive entity 
on which jobs may depend
• A hardware device, for example

• Resources have different types or 
sizes, but have no speed attribute 
and are not consumed by use

• Jobs compete for resources, and 
can block if a resource is in use

20



• Job Ji executes for time ei – time to finish Ji given 
sole use of processor, and all required resources
• Execution time depends on input data – use worst case for safety

• Jobs have timing constraints – relative or absolute 
deadlines:

Timing Constraints

21

C
o
p
y
ri

g
h
t 

©
 2

0
0
6
 U

n
iv

er
si

ty
 o

f 
G

la
sg

o
w

 

A
ll

 r
ig

h
ts

 r
es

er
v
ed

. 
Deadlines and Timing Constraints 

•! Completion time – the instant at which a job completes execution 

•! Relative deadline – the maximum allowable job response time 

•! Absolute deadline – the instant of time by which a job is required 

to be completed (often called simply the deadline) 

–! absolute deadline = release time + relative deadline 

–! Feasible interval for a job Ji is the interval (ri, di] 

•! Deadlines are examples of timing constraints 

Job, Ji Time 

Response time 

Relative deadline, Di 

Absolute deadline, di 

Completion time 

ri
+ ri

- 

Release time, ri 



Timing Constraints: Example

• A system to monitor and control a heating furnace
• The system takes 20ms to initialise when turned on

• After initialisation, every 100ms, the system:
• Samples and reads the temperature sensor

• Computes the control-law for the furnace to process the temperature readings, determine the 
correct flow rates of fuel, air, and coolant

• Adjusts the flow rates to match the computed values

• The system can be modelled as a task, T, comprising jobs J0, J1, …, Jk, …
• The release time of Jk is 20 + (k × 100)ms

• The relative deadline of Jk is 100ms; the absolute deadline is 20 + ((k + 1) × 100)ms

22

0 20 120 220 320 420

J0 J1 J2 J3

Slack timeRelative deadline = 100ms Absolute deadline for J2 = 320ms



Periodic Tasks

• If jobs occur on a regular cycle, the task is periodic 
and characterised by parameters Ti = (φi, pi, ei, Di)
• Phase, φi, of the task is the release time of the first job (if omitted, φi = 0)

• Period, pi, of the task is the time between release of consecutive jobs

• Execution time, ei, of the task is the maximum execution time of the jobs

• Relative deadline, Di, is the minimum relative deadline of the jobs (if 
omitted, Di = pi)

• Utilisation of a task is ui = ei / pi and measures the fraction of time for 
which the task executes

• The total utilisation of a system

• Common in real-world control systems

23

U =
X

i

ui



Aperiodic and Sporadic Tasks

• If jobs have unpredictable release times, a task is 
termed aperiodic

• A sporadic task is an aperiodic task where the jobs 
have deadlines once released

• Greatly complicate reasoning about correctness
• Helpful if bounds or probability distributions of release times and 

deadlines can be determined

24



The Real-time Scheduling Problem

• Need to schedule jobs and manage resources

• In a valid schedule for a set of jobs:
• Processors are assigned at most one job at once; jobs are assigned at 

most one processor at once

• No job is scheduled before its release

• Processor time assigned to each job equals its maximum execution time

• All the precedence and resource usage constraints are satisfied

• A feasible schedule is valid, and jobs meet timing 
constraints – not all valid schedules are feasible

• An optimal scheduling algorithm will always find a 
feasible schedule if it exists

25



Hard and Soft Real-time Systems

• The firmness of timing constraints affects how we 
engineer the system
• If a job must never miss its deadline, the system is hard real-time

• A timing constraint is hard is failure to meet it is considered a fatal error

• A timing constraint is hard if the usefulness of the results falls off abruptly at the deadline

• A timing constraint is hard if the user requires validation (formal proof or exhaustive simulation, 
potentially with legal penalties) that the system always meets the constraint

• If some deadlines can be missed occasionally, with low probability, then 
the system is described as soft real-time

• Hard and soft real-time are two ends of a spectrum
• In many practical systems, the constraints are probabilistic, and depend 

on the likelihood and consequences of failure

• No system is guaranteed to always meet its deadlines: there is always 
some probability of failure

26



Further Reading

• Next few lectures will focus on real-time scheduling

• Recommended reading: 
Jane W. S. Liu, “Real-Time Systems”, Prentice 
Hall, 2000, ISBN 0130996513

27

http://www.amazon.co.uk/gp/product/0130996513/ref=as_li_ss_tl?ie=UTF8&tag=coliperkcspeo-21&linkCode=as2&camp=1634&creative=19450&creativeASIN=0130996513
http://www.amazon.co.uk/gp/product/0130996513/ref=as_li_ss_tl?ie=UTF8&tag=coliperkcspeo-21&linkCode=as2&camp=1634&creative=19450&creativeASIN=0130996513
http://www.amazon.co.uk/gp/product/0130996513/ref=as_li_ss_tl?ie=UTF8&tag=coliperkcspeo-21&linkCode=as2&camp=1634&creative=19450&creativeASIN=0130996513
http://www.amazon.co.uk/gp/product/0130996513/ref=as_li_ss_tl?ie=UTF8&tag=coliperkcspeo-21&linkCode=as2&camp=1634&creative=19450&creativeASIN=0130996513
http://www.amazon.co.uk/gp/product/0130996513/ref=as_li_ss_tl?ie=UTF8&tag=coliperkcspeo-21&linkCode=as2&camp=1634&creative=19450&creativeASIN=0130996513
http://www.amazon.co.uk/gp/product/0130996513/ref=as_li_ss_tl?ie=UTF8&tag=coliperkcspeo-21&linkCode=as2&camp=1634&creative=19450&creativeASIN=0130996513

