P Unaversity | School of
of Glasgow | Computing Science

Garbage Collection (2)

Advanced Operating Systems
Lecture 9

Lecture Outline

e (Garbage collection

e (Generational algorithms
® |ncremental algorithms

e Real-time garbage collection

® Practical factors

Object Lifetimes

e Studies have shown that most objects live a very
short time, while a small percentage of them live
much longer

e This seems to be generally true, no matter what programming language is
considered, across numerous studies

e Although, obviously, different programs and different languages produce
varying amount of garbage

e |mplication: when the garbage collector runs, live
objects will be in a minority

e Statistically, the longer an object has lived, the longer it is likely to live

e (Can we design a garbage collector to take advantage?

A Copying Generational Collector (1)

® [n a generational garbage collector, the

young objects e

SET

N

Younger Generation
heap is split into regions for long-lived and f\\

e Regions holding young objects are garbage collected
more frequently

e Objects are moved to the region for long-lived

objects if they're still alive after several collections =

e More sophisticated approaches may have multiple
generations, although the gains diminish rapidly with
increasing numbers of generations Older Generation

e [Example: stop-and-copy using semispaces
with two generations

e All allocations occurs in the younger generation’s
region of the heap

e When that region is full, collection occurs as normal

A Copying Generational Collector (2)

o
- Younger Generation
e Objects are tagged with the number of collections of 7 u"‘x ’
the younger generation they have survived; if they’re ‘iﬁf,..,,g......g R ROOT
alive after some threshold, they’re copied to the older :,;,,,:.,z%: ‘m% -
generation’s space during collection :’ ‘a; £ i b N
e Eventually, the older generation’s space is full, and is %?5»»; ?««; %M l/ ?‘j l
collected as normal b / am f
P/ [1]

First (New) fiii
Generation — - — - — - - c— . — 21 | d -
Memory : d : g

¢

#
fﬁlder Generation
&

Second
Generation.. L R SR
Memory

e Note: not to scale: older generations are generally
much larger than the younger, as they’re collected
much less often

Detecting Intergenerational References

® |n generational collectors, younger generation must
collected independent of the long-lived generation

e But - there may be object references between the generations

® Young objects referencing long-lived objects common but straight-forward
since most young objects die before the long-lived objects are collected

° Treat the younger generation objects as part of the root set for the older generation, if
collection of the older generation is needed

e Direct pointers from old-to-young generation are problematic, since they
require a scan of the old generation to detect

e May be appropriate to use an indirection table (“pointers-to-pointers”) for
old-to-young generation references
° The indirection table forms part of the root set of the younger generation

° Movement on objects in the younger generation requires an update to the indirection table, but
not to long-lived objects

° Note: this is conservative: the death of a long-lived object isn’'t observed until that generation
is collected, but that may be several collections of the younger generation, in which time the
younger object appears to be referenced

6

Generational Garbage Collection

e Variations on this concept are widely used

E.g., the Sur-Oracle HotSpot JVM uses a generational garbage collector

® (Generational collectors achieve good efficiency:

Cost of collection is generally proportional to number of live objects

Most objects don't live long enough to be collected; those that do are
moved to a more rarely collected generation

But — eventually the longer-lived generation must be collected; this can be
very slow

Incremental Garbage Collection

® Preceding discussion has assumed the collector
“stops-the-world” when it runs

e This is clearly problematic for interactive or real-time applications

e Desire a collector that can operate incrementally

® |nterleave small amounts of garbage collection with small runs of program
execution

e |mplication: the garbage collector can’t scan the entire heap when it runs;
must scan a fragment of the heap each time

® Problem: the program (the “mutator”) can change the heap between runs
of the garbage collector

® Need to track changes made to the heap between garbage collector runs;
be conservative and don’t collect objects that might be referenced — can
always collect on the next complete scan

Tricolour Marking

® For each complete collection cycle, each object is
labelled with a colour:

e \White — not yet checked
e Grey - live, but some direct children not yet checked

e PBlack - live

e Basic incremental collector operation:

e (Garbage collection proceeds with a wavefront of grey objects, where the
collector is checking them, or objects they reference, for liveness

e Black objects behind are behind the wavefront, and are known to be live

e Objects ahead of the wavefront, not yet reached by the collection, are
white; anything still white once all objects have been traced is garbage

e No direct pointers from black objects to white — any program operation
that will create such a pointer requires coordination with the collector

Tricolour Marking: Need for Coordination

Garbage collector runs

Object A has been scanned, and is known to be live —
black

Objects B and C are reachable via A, and are live, but
some of their children have not been scanned — grey

Object D has not yet been checked — white

Program runs, and swaps the pointers from
A—C and B—D such that A—D and B—C

This creates a pointer from black to white

Program must now coordinate with the collector, else
collection will continue, marking object B black and its
children grey, but D will not be reached since children
of A have already been scanned

Before

A

Coordination Strategies

e Read barrier: trap attempts by the program to read
pointers to white objects, colour those objects grey,
and let the program continue

e Makes it impossible for the program to get a pointer to a white object, so it
cannot make a black object point to a white

e Write barrier: trap attempts to change pointers from
black objects to point to white objects

e FEither then re-colour the black object as grey, or re-colour the white object
being referenced as grey

® The object coloured grey is moved onto the list of objects whose children
must be checked

Incremental Collection

¢ Many variants on read- and write-barrier tricolour
algorithms

Performance trade-off differs depending on hardware characteristics, and
on the way pointers are represented

Write barrier generally cheaper to implement than read barrier, as writes
are less common in most code

® There is a balance between collector operation and
program operation

If the program tries to create too many new references from black to white
objects, requiring coordination with the collector, the collection may never

complete

Resolve by forcing a complete stop-the-world collection if free memory is
exhausted, or after a certain amount of time

Real-time Garbage Collection

® Real-time collectors build incremental collectors

e [wo basic approaches:

° Work based: every request to allocate an object or assign an object reference does some
garbage collection; amortise collection cost with allocation cost

° Time based: schedule an incremental collector as a periodic task

e Obtain timing guarantees by limiting amount of garbage that can be
collected in a given interval to less than that which can be collected

e The amount of garbage that can be collected can be measured: how fast
can the collector scan memory (and copy objects, if a copying collector)

° Cannot collect garbage faster than the collector can scan memory to determine if objects are
free to be collected

° This must be a worse-case collection rate, if the collector has varying runtime

® The programmer must bound the amount of garbage generated to within
the capacity of the collector e

Bacon et al. A real-time garbage collector with low overhead and consistent
i utilization. Proc. ACM symposium on Principles of programming languages,
: 2003, New York. DOI 10.1145/604131.604155 :

Practical Factors

® Two significant limitations:

e Interaction with virtual memory

e (Garbage collection for C-like languages

® |n general, garbage collected programs will use
significantly more memory than (correct) programs
with manual memory management

e E.g., many of the copying collectors must maintain two regions, and so a
naive implementation doubles memory usage

Interaction with Virtual Memory

¢ Virtual memory subsystems page out unused data
iIn an LRU manner

e (Garbage collector scans objects, paging data back
into memory

® | eads to thrashing if the working set of the garbage
collector larger than memory

e (Open research issue: combining virtual memory with garbage collector

Garbage Collection for C-like Languages

® (ollectors rely on being able to identify and follow
pointers, to determine what is a live object

o (C is weakly typed: can cast any integer to a pointer,
and can do arithmetic on pointers

¢ |mplementation-defined behaviour, since pointers and integers are not
guaranteed to be the same size

o (Greatly complicates garbage collection:

e Need to be conservative: any memory that might be a pointer must be
treated as one

e The Boehm-Demers-Weiser garbage collector can be used for C and C++
(http://www.hpl.hp.com/personal/Hans _Boehm/gc/) — this works for strictly
conforming ANSI C code, but beware that much code is not conforming

http://www.hpl.hp.com/personal/Hans_Boehm
http://www.hpl.hp.com/personal/Hans_Boehm
http://www.cs.cornell.edu/annual_report/00-01/bios.htm#demers
http://www.cs.cornell.edu/annual_report/00-01/bios.htm#demers
http://www-sul.stanford.edu/weiser/
http://www-sul.stanford.edu/weiser/

Further Reading

Bacon et al. A real-time garbage collector
with low overhead and consistent utilization
Proc. ACM symposium on Principles of
programming languages, 2003, New York.
DOI 10.1145/604131.604155

Will be discussed in following tutorial

A Real-time Garbage Collector
with Low Overhead and Consistent Utilization

David F. Bacon Perry Cheng V.T. Rajan

IBM T.J. Watson Research Center

ox
Yorktown Heights, NY 10598

ABSTRACT

Now that the use of garbage collection in languages like Java s be.
coming widely accepted due o the safety and software engineeri
bencfits it provides, there s significant nterest in applying garbage

tions: by avoiding copying in most cases,
Kept low and by fully inc

meet real-time bounds. We implemented our algorithm in the Jikes
RYM and show it o esl-ime rsolton e ar abe (0 b
mutator uilization rates of 45% with only
ol spct rgated by e apcation. ot of 4 vement
wilization over the best previously published results. Delragmen-
tation causes no more than 4% of the traced data to be copicd.

S times the ac-

General Terms
Algorithms, Languages, Measurement, Performance

Categories and Subject Descriptors
.3 Special-Purpose and Applicat
time and embedded systems; D.3.2 [P
Javs:. D34 [Programming Languages]: Processors—Mermory
nanagement (sarbage collecion)

Keywords
Read brrier defragmentation, el scheduling,utlization

1 INTR()DU(‘TI()N

bag e like Java are making signif
o s oo i mm real-time concerns, such as antomo-
stems. However

product ife-cycle advantages conscquent from the simplickty of

ind

Permission to make digital o hard copies of all or part of this work for

personal or classroom use s granied Without ee provided tha copies e

ot made or disributed fo proi o commercial adantage and that copis
a his notce and he ful itation on he it page. To copy alherwise, to

epubls, 10 oo seenr o e, e i

pemision andior a e

POPL03, January 15-17, 2003, New Orleans, Lousians, USA.
Copyright © 2003 ACM 1-55113-628-S/03/0001 $5.00

progninning vithgrbage collcion reman bl o s
the core functionality of such systems, where hard real-time con-
straints must be met. As a result, real-time programming requires
the use of multple lan
tion for Java [9]) two programming models within
Therefore, there is a pressi

ractical nced

We preset design for realtme garbae collctor for Java,
alysis of ts s entation results
that show that we ar able 10 run applications it igh mutator
wilizaionsnd ko vcene inpus s
The

s niprossas cmboted sy, The clletr s
o il

and simplies the dee is complicated by the fact that
the collector must be intelcaved with the mutators, instead of being
able to run on a separate processor; the design s simplified since
u

rogramming model s sequenially consitnt

and complexity by using 2 non-c
fore subiect 1o pvently anbounde
0 aion by performing concurent copying (and
therefore require & minimum of a factor of two overhead in sps
aswell dor writes,

and tend 1o make response time unpredictable).

‘Our collector is unique in that it occupies an under-explored por-
tion of the design space for real-time incremental collectors: it
is & mosly non-copying bybrid. As long as space is available, it
acts like & non-copying collector, with the consequen advanages
When space becomes scarce, it performs def

reven fragmer

entation with lim.

i able (0 achieve low space and time overhead, and high and con-
sistent mutator CPU utlization.

In order to achieve high performance with a copy’

¢ have developed optimization techniques fo the oot

read i 10] wing am “cager imarant hat Keeps end baer
averhead t0 45, an order of magnitude faster than previous soft
ware read bariers

Our collector can use either time- or work-based scheduling.
Most previous work on real-time garbage collection, sarting with
Baker's algorithm [S]. has used work-based scheduling. We show
both analytically and experimentally that ime-based scheduling is
superior, partcularly at the short intervals that are typically of in-
terest in real-time systems. Work-based algorithms may achieve
short individual pause times,
wilization

“The paper is organized as follows: Section 2 describes previ-

but are unable to achieve consistent

