
Garbage Collection (2)

Advanced Operating Systems
Lecture 9

Lecture Outline

• Garbage collection
• …

• Generational algorithms

• Incremental algorithms

• Real-time garbage collection

• Practical factors

2

Object Lifetimes

• Studies have shown that most objects live a very
short time, while a small percentage of them live
much longer
• This seems to be generally true, no matter what programming language is

considered, across numerous studies

• Although, obviously, different programs and different languages produce
varying amount of garbage

• Implication: when the garbage collector runs, live
objects will be in a minority
• Statistically, the longer an object has lived, the longer it is likely to live

• Can we design a garbage collector to take advantage?

3

A Copying Generational Collector (1)

4

• In a generational garbage collector, the
heap is split into regions for long-lived and
young objects
• Regions holding young objects are garbage collected

more frequently

• Objects are moved to the region for long-lived
objects if they’re still alive after several collections

• More sophisticated approaches may have multiple
generations, although the gains diminish rapidly with
increasing numbers of generations

• Example: stop-and-copy using semispaces
with two generations
• All allocations occurs in the younger generation’s

region of the heap

• When that region is full, collection occurs as normal

• …

Younger Generation

ROOT

32

Fig. O. A generational copying garbage collector before garbage collection.

A Copying Generational Collector (2)

5

33

v~.. r--

%

. .2 i

~ J

Younger Generation

ROOT
SET %

f
t

Older Generation

Fig . 10. Generational collector after garbage collection.

• …

• Objects are tagged with the number of collections of
the younger generation they have survived; if they’re
alive after some threshold, they’re copied to the older
generation’s space during collection

• Eventually, the older generation’s space is full, and is
collected as normal

• Note: not to scale: older generations are generally
much larger than the younger, as they’re collected
much less often

First (New)
Generation
Memory

Second

Memory

CO 4~

Fig. 11. Memory use in a generational copy collector with semispaces for each generation.

Detecting Intergenerational References

• In generational collectors, younger generation must
collected independent of the long-lived generation
• But – there may be object references between the generations

• Young objects referencing long-lived objects common but straight-forward
since most young objects die before the long-lived objects are collected

• Treat the younger generation objects as part of the root set for the older generation, if
collection of the older generation is needed

• Direct pointers from old-to-young generation are problematic, since they
require a scan of the old generation to detect

• May be appropriate to use an indirection table (“pointers-to-pointers”) for
old-to-young generation references

• The indirection table forms part of the root set of the younger generation

• Movement on objects in the younger generation requires an update to the indirection table, but
not to long-lived objects

• Note: this is conservative: the death of a long-lived object isn’t observed until that generation
is collected, but that may be several collections of the younger generation, in which time the
younger object appears to be referenced

6

Generational Garbage Collection

• Variations on this concept are widely used
• E.g., the Sun Oracle HotSpot JVM uses a generational garbage collector

• Generational collectors achieve good efficiency:
• Cost of collection is generally proportional to number of live objects

• Most objects don’t live long enough to be collected; those that do are
moved to a more rarely collected generation

• But – eventually the longer-lived generation must be collected; this can be
very slow

7

Incremental Garbage Collection

• Preceding discussion has assumed the collector
“stops-the-world” when it runs
• This is clearly problematic for interactive or real-time applications

• Desire a collector that can operate incrementally
• Interleave small amounts of garbage collection with small runs of program

execution

• Implication: the garbage collector can’t scan the entire heap when it runs;
must scan a fragment of the heap each time

• Problem: the program (the “mutator”) can change the heap between runs
of the garbage collector

• Need to track changes made to the heap between garbage collector runs;
be conservative and don’t collect objects that might be referenced – can
always collect on the next complete scan

8

Tricolour Marking

• For each complete collection cycle, each object is
labelled with a colour:
• White – not yet checked

• Grey – live, but some direct children not yet checked

• Black – live

• Basic incremental collector operation:
• Garbage collection proceeds with a wavefront of grey objects, where the

collector is checking them, or objects they reference, for liveness

• Black objects behind are behind the wavefront, and are known to be live

• Objects ahead of the wavefront, not yet reached by the collection, are
white; anything still white once all objects have been traced is garbage

• No direct pointers from black objects to white – any program operation
that will create such a pointer requires coordination with the collector

9

Tricolour Marking: Need for Coordination

• Garbage collector runs
• Object A has been scanned, and is known to be live →

black

• Objects B and C are reachable via A, and are live, but
some of their children have not been scanned → grey

• Object D has not yet been checked → white

• Program runs, and swaps the pointers from
A→C and B→D such that A→D and B→C

• This creates a pointer from black to white
• Program must now coordinate with the collector, else

collection will continue, marking object B black and its
children grey, but D will not be reached since children
of A have already been scanned

10

23

A A

Before After

Fig. 7. A violation of the coloring invariant.

rather than their source. That is, if a pointer to a white object is copied into a black
object, that new copy of the pointer will be found. Conceptually, the black object (or
part of it) is reverted to grey when the mutator "undoes" the collector's traversal.
(Alternatively, the pointed-to object may be greyed immediately.) This ensures that
the traversal is updated in the face of mutator changes.

3.2 Baker's Incremental Copying.

The best-known real-time garbage collector is Baker's incremental copying scheme
[Bak78]. It is an adaptation of the simple copy collection scheme described in Sect. 2.5,
and uses a read barrier for coordination with the mutator. For the most part, the
copying of data proceeds in the Cheney (breadth-first) fashion, by advancing the scan
pointer through the unscanned area of tospace and moving any referred-to objects

Coordination Strategies

• Read barrier: trap attempts by the program to read
pointers to white objects, colour those objects grey,
and let the program continue
• Makes it impossible for the program to get a pointer to a white object, so it

cannot make a black object point to a white

• Write barrier: trap attempts to change pointers from
black objects to point to white objects
• Either then re-colour the black object as grey, or re-colour the white object

being referenced as grey

• The object coloured grey is moved onto the list of objects whose children
must be checked

11

Incremental Collection

• Many variants on read- and write-barrier tricolour
algorithms
• Performance trade-off differs depending on hardware characteristics, and

on the way pointers are represented

• Write barrier generally cheaper to implement than read barrier, as writes
are less common in most code

• There is a balance between collector operation and
program operation
• If the program tries to create too many new references from black to white

objects, requiring coordination with the collector, the collection may never
complete

• Resolve by forcing a complete stop-the-world collection if free memory is
exhausted, or after a certain amount of time

12

• Real-time collectors build incremental collectors
• Two basic approaches:

• Work based: every request to allocate an object or assign an object reference does some
garbage collection; amortise collection cost with allocation cost

• Time based: schedule an incremental collector as a periodic task

• Obtain timing guarantees by limiting amount of garbage that can be
collected in a given interval to less than that which can be collected

• The amount of garbage that can be collected can be measured: how fast
can the collector scan memory (and copy objects, if a copying collector)

• Cannot collect garbage faster than the collector can scan memory to determine if objects are
free to be collected

• This must be a worse-case collection rate, if the collector has varying runtime

• The programmer must bound the amount of garbage generated to within
the capacity of the collector

13

Real-time Garbage Collection

Bacon et al. A real-time garbage collector with low overhead and consistent
utilization. Proc. ACM symposium on Principles of programming languages,
2003, New York. DOI 10.1145/604131.604155

Practical Factors

• Two significant limitations:
• Interaction with virtual memory

• Garbage collection for C-like languages

• In general, garbage collected programs will use
significantly more memory than (correct) programs
with manual memory management
• E.g., many of the copying collectors must maintain two regions, and so a

naïve implementation doubles memory usage

14

Interaction with Virtual Memory

• Virtual memory subsystems page out unused data
in an LRU manner

• Garbage collector scans objects, paging data back
into memory

• Leads to thrashing if the working set of the garbage
collector larger than memory
• Open research issue: combining virtual memory with garbage collector

15

Garbage Collection for C-like Languages

• Collectors rely on being able to identify and follow
pointers, to determine what is a live object

• C is weakly typed: can cast any integer to a pointer,
and can do arithmetic on pointers
• Implementation-defined behaviour, since pointers and integers are not

guaranteed to be the same size

• Greatly complicates garbage collection:
• Need to be conservative: any memory that might be a pointer must be

treated as one

• The Boehm-Demers-Weiser garbage collector can be used for C and C++
(http://www.hpl.hp.com/personal/Hans_Boehm/gc/) – this works for strictly
conforming ANSI C code, but beware that much code is not conforming

16

http://www.hpl.hp.com/personal/Hans_Boehm
http://www.hpl.hp.com/personal/Hans_Boehm
http://www.cs.cornell.edu/annual_report/00-01/bios.htm#demers
http://www.cs.cornell.edu/annual_report/00-01/bios.htm#demers
http://www-sul.stanford.edu/weiser/
http://www-sul.stanford.edu/weiser/

Further Reading

• Bacon et al. A real-time garbage collector
with low overhead and consistent utilization.
Proc. ACM symposium on Principles of
programming languages, 2003, New York.
DOI 10.1145/604131.604155

• Will be discussed in following tutorial

17

A Real-time Garbage Collector
with Low Overhead and Consistent Utilization

David F. Bacon
dfb@watson.ibm.com

Perry Cheng
perryche@us.ibm.com

V.T. Rajan
vtrajan@us.ibm.com

IBM T.J. Watson Research Center
P.O. Box 704

Yorktown Heights, NY 10598

ABSTRACT
Now that the use of garbage collection in languages like Java is be-
coming widely accepted due to the safety and software engineering
benefits it provides, there is significant interest in applying garbage
collection to hard real-time systems. Past approaches have gener-
ally suffered from one of two major flaws: either they were not
provably real-time, or they imposed large space overheads to meet
the real-time bounds. We present a mostly non-moving, dynami-
cally defragmenting collector that overcomes both of these limita-
tions: by avoiding copying in most cases, space requirements are
kept low; and by fully incrementalizing the collector we are able to
meet real-time bounds. We implemented our algorithm in the Jikes
RVM and show that at real-time resolution we are able to obtain
mutator utilization rates of 45% with only 1.6–2.5 times the ac-
tual space required by the application, a factor of 4 improvement in
utilization over the best previously published results. Defragmen-
tation causes no more than 4% of the traced data to be copied.

General Terms
Algorithms, Languages, Measurement, Performance

Categories and Subject Descriptors
C.3 [Special-Purpose and Application-Based Systems]: Real-
time and embedded systems; D.3.2 [Programming Languages]:
Java; D.3.4 [Programming Languages]: Processors—Memory
management (garbage collection)

Keywords
Read barrier, defragmentation, real-time scheduling, utilization

1. INTRODUCTION
Garbage collected languages like Java are making significant in-

roads into domains with hard real-time concerns, such as automo-
tive command-and-control systems. However, the engineering and
product life-cycle advantages consequent from the simplicity of

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

POPL’03, January 15–17, 2003, New Orleans, Louisiana, USA.
Copyright c 2003 ACM 1-58113-628-5/03/0001 $5.00.

programming with garbage collection remain unavailable for use in
the core functionality of such systems, where hard real-time con-
straints must be met. As a result, real-time programming requires
the use of multiple languages, or at least (in the case of the Real-
Time Specification for Java [9]) two programming models within
the same language. Therefore, there is a pressing practical need
for a system that can provide real-time guarantees for Java without
imposing major penalties in space or time.

We present a design for a real-time garbage collector for Java,
an analysis of its real-time properties, and implementation results
that show that we are able to run applications with high mutator
utilization and low variance in pause times.

The target is uniprocessor embedded systems. The collector is
therefore concurrent, but not parallel. This choice both complicates
and simplifies the design: the design is complicated by the fact that
the collector must be interleaved with the mutators, instead of being
able to run on a separate processor; the design is simplified since
the programming model is sequentially consistent.

Previous incremental collectors either attempt to avoid overhead
and complexity by using a non-copying approach (and are there-
fore subject to potentially unbounded fragmentation), or attempt
to prevent fragmentation by performing concurrent copying (and
therefore require a minimum of a factor of two overhead in space,
as well as requiring barriers on reads and/or writes, which are costly
and tend to make response time unpredictable).

Our collector is unique in that it occupies an under-explored por-
tion of the design space for real-time incremental collectors: it
is a mostly non-copying hybrid. As long as space is available, it
acts like a non-copying collector, with the consequent advantages.
When space becomes scarce, it performs defragmentation with lim-
ited copying of objects. We show experimentally that such a design
is able to achieve low space and time overhead, and high and con-
sistent mutator CPU utilization.

In order to achieve high performance with a copying collector,
we have developed optimization techniques for the Brooks-style
read barrier [10] using an “eager invariant” that keeps read barrier
overhead to 4%, an order of magnitude faster than previous soft-
ware read barriers.

Our collector can use either time- or work-based scheduling.
Most previous work on real-time garbage collection, starting with
Baker’s algorithm [5], has used work-based scheduling. We show
both analytically and experimentally that time-based scheduling is
superior, particularly at the short intervals that are typically of in-
terest in real-time systems. Work-based algorithms may achieve
short individual pause times, but are unable to achieve consistent
utilization.

The paper is organized as follows: Section 2 describes previ-

285

