P Unaversity | School of
of Glasgow | Computing Science

General Purpose GPU Programming (2)

Advanced Operating Systems
Lecture 15

Lecture Outline

® Programming models (cont'd)

e Heterogenous virtual machines

® Discussion

¢ Hybrid and alternative architectures

Heterogeneous Virtual Machines

o Multi-kernel and offload models problematic:

e Heterogeneous multi-kernel model is conceptually simple, but not a good
fit for modern hardware

e Heterogenous offload processors are widely used:

° But — have high cognitive overhead on programmers, due to SIMD programming model
° Have a complex and high-overhead offload process, exposing too many low-level details

° Are difficult to reason about and debug

e (Can a heterogeneous virtual machine (VM) model
hide some complexity?

e Rather than expose details of the heterogeneous processor and offload
process, hide offload complexity in a virtual machine?

e (Can a JIT compiler translate regular code to fit programming model of the
heterogenous offload processor?

Heterogeneous VM Programming Model

e Write in high-level language targeting VM, ignoring
the distinction between processor cores

High-level code desirable — specify what needs to be done, leaving how
to the VM and/or run time libraries

The VM can implement operations differently depending on the processor
architecture targeted

e | etthe VM handle the offload

The VM can query and setup the heterogenous processor code, exposing
only a high-level API (if any) to the programmer

The VM can JIT compile code for different processor architectures
Pushes complexity onto the VM — simple for application programmer

Requires close integration of JIT and VM with operating system kernel

Example: Hera JVM

| Application | Key
| Java Library | Java Code
| Runtime System |
Assembly Code

LowLevel|| PPC || |LowLevel|| SPE
Assembly || Compiler |, [Assembly || Compiler
|
|

Processing Core

PPE Core 1] SPE Core
SPE SPE SPE SPE
! ! t !
P(();V:gc Element Interconnect Bus Memory
! ! | !
SPE SPE SPE SPE

(a) The architecture of the Cell processor.

— Control Flow
@b Data Flow

SPE Private [| -.DMA |
Transfer
Core Local Engine
(SPU) Memory (MFC)

Main Memory
SPE

(b) An SPE core’s memory subsystem.

i R. Mcllroy and J. Sventek, “Hera-JVM: A Runtime System for !
: Heterogeneous Multi-Core Architectures”, Proc. ACM OOPSLA
: Conference, October 2010. DOI:10.1145/1869459.1869478

e A JVM for the Cell processor, can offload
methods from PPE to SPE cores

JIT compilation; methods compiled for appropriate
core based on runtime code placement algorithm

Data caching: SPE memory is not cache coherent;
data cached on SPE when method starts; cache
flushed at synchronisation points, following Java
memory model

Methods copied to SPE memory in their entirety;
migration onto the SPE causes an entire method,
and any methods it calls, to run on the SPE

Garbage collector understands both architectures,
and the caches on the SPEs

Hard to decide which methods to migrate to SPE:
] Explicit annotations (@RunOnSPECore, @RunOnPPECore)
work, but place high overhead on programmer

° Behaviour hints (@ArithmeticCode, @ObjectAccessCode,
@LargeWorkingSet) allow the JVM runtime to automatically
migrate methods to the SPEs, but are suboptimal

° Optimal solution is an open problem

Poor performance, since cannot make effective use
of vector instructions on SPE cores

http://dx.doi.org/10.1145/1869459.1869478
http://dx.doi.org/10.1145/1869459.1869478

Limitations of Heterogenous VM Model

e Hera JVM shows high-level languages often not a
good fit for heterogenous offload processors

e Example: JVM cannot express SIMD-style array processing operations,
encourages conditional execution, imperative code, and mutable state —
opposite of what is needed for good GPU code

e But, GPU-optimised language would perform poorly on general-purpose
CPUs, with small number of cores optimised for imperative code

e Automatically extracting parallelism hasn’'t been an
effective approach

e Difficult for a single processor architecture

e Offload to heterogenous cores only complicates problem, due to need to
manage offload overhead

Discussion

e (Offload to slave processor model is common

Hard for programmer, but gives good performance

Main kernel treats the GPU as a resource, that can be claimed by a
process, and managed as any other resource

Effective, but overly complex programming model

® Abstraction via virtual machine conceptually clean

In principle, allows transparent offload of work from main processor to
subordinate processors such as GPUs

Difficult in practice: applications written without account for the different
processor types and capabilities, and don’t aid the runtime; insufficient
information for the runtime to effectively offload work — likely inefficient

Straight forward programming model, but not effective

Hybrid Architectures

e (Can we wrap a device-specific programming model
In the virtual machine, alongside a general purpose
language?

e Add types that represent SIMD-style operations, so giving the VM hints
when to offload, and also easing programming model

e EXxplicit model of device-specific operations, and control over when they
execute

® \/irtual machine hides low-level details

® High-level model — coding SIMD-style operations in
type system — eases programming

Example: Accelerator

e Extension to C# to provide data-
parallel arrays with GPU offload

e Support operations such as conversion
to/from standard arrays, element-wise
arithmetic, reductions, transformations,
and matrix algebra

e Data parallel arrays are lazy, and don't
compute their value until converted back
to a standard array

e Lazy evaluation helps efficiency: runtime
JIT compiles all operations on a single
data parallel array at once, and passes
to the GPGPU for execution as a single
block

e Similar model to OpenCL, except
the complexity of managing the
GPU is pushed onto the VM

e Programming model is very similar, and
there is similar control over when code
executes on the GPU

static float[,] Blur(float[,] array, float[] kernel) {

float[,] result;
DFPA parallelArray = new DFPA (array) ;

FPA resultX = new FPA(Of, parallelArray.Shape) ;
for (int 1 = 0; i < kernel.Length; i++) {

int[] shiftDir = new int[] { O, i};

resultX += PA.Shift(parallelArray, shiftDir) * kernell[i];
}

FPA resultY = new FPA(Of, parallelArray.Shape) ;
for (int 1 = 0; i < kernel.Length; i++) {

int[] shiftDir = new int[] { i, 0 };

resultY += PA.Shift (resultX, shiftDir) * kernell[i];
}
PA.ToArray (resultY, out result);
parallelArray.Dispose() ;
return result;

D. Tarditi, S. Puri, and J. Oglesby, “Accelerator: using data parallelism to
: program GPUs for general-purpose use”, Proc. ACM ASPLOS, October
: 2006, DOI:10.1145/1168857.1168898 '

http://dx.doi.org/10.1145/1168857.1168898
http://dx.doi.org/10.1145/1168857.1168898

Discussion

e Embedding lazy SIMD operations in types eases
programming burden

e Restricted set of operations can be performed in parallel, on appropriate
array types — rough match to hardware features

e Only exploits functional SIMD operations — no flexibility for conditional
processing, even if hardware allows

® | azy operation can be confusing to programmers — when does the offload
and computation occur? — but less complex than OpenCL-style model

® (Considerable complexity pushed into VM

e (Good performance needs effective operation of lazy JIT compilation in VM

e (Opaque, and difficult to tune

10

Future Directions

® Heterogeneous offload model (e.g., OpenCL) is the
only effective solution to date

e Heterogenous VM offers poor performance — too big a mismatch between
VM language and GPGPU hardware

e Hybrid model has potential, but opaque to tuning, and limited functionality

® Future directions:

e Higher-level APls for offload management?

e DSLs for programming SIMD-style hardware — a minimal pure functional
language, with data parallel arrays as main datatype, but link compatible
with C++, to replace OpenCL?

11

Further Reading

D. Tarditi, S. Puri, and J. Oglesby, “Accelerator: using
data parallelism to program GPUs for general-purpose
use”, Proc. ACM ASPLOS, San Jose, CA, USA,
October 2006, DOI:10.1145/1168857.1168898

12

Accelerator: Using Data Parallelism to Program GPUs for
General-Purpose Uses

David Tarditi

Sidd Puri Jose Oglesby

Microsoft Research
{dtarditi,siddpuri joseog! } @microsoft.com

Abstract

GPUs are difficult to program for general-purpose uses. Program-
mers can either learn graphics APIs and convert their applications
to use graphics pipeline operations or they can use stream program-
ming abstractions of GPUs. We describe Accelerator, a system that
uses data parallelism to program GPUs for general-purpose uses
instead. Prog use a imperative prog 2
language and a library that provides only high-level data-parallel
operations. No aspects of GPUs are exposed to programmers. The
library implementation compiles the data-parallel operations on the
fly to optimized GPU pixel shader code and API calls. We describe
the compilation techniques used to do this. We evaluate the effec-
tiveness of using data parallelism to program GPUs by providing
results for a set of compute-intensive benchmarks. We compare
the performance of Accelerator versions of the benchmarks against
hand-written pixel shaders. The speeds of the Accelerator versions
are typically within 50% of the speeds of hand-written pixel shader
code. Some benchmarks significantly outperform C versions on a
CPU: they are up to 18 times faster than C code running on a CPU

Categories and Subject Descriptors D.1.3 [Programming Tech-
niques): Concurrent Programming—Parallel Programming; D.3.4
[Programming Languages}: Processors—Compilers

General Terms Measurement, Performance, Experimentation,
Languages

Keywords Graphi
time compilation

processing units, data_ parallelism, just-in-

1. Introduction

Highly programmable graphics processing units (GPUs) became
available in 2001 [10] and have evolved rapidly since then [15]
GPUs are now highly parallel processors that deliver much higher

their performance continues to increase as transistor counts in-
crease.

‘The performance available on GPUs has led to interest in using
GPUS for general-purpose programming [16, 8. It is difficult,
however, for most programmers to program GPUs for general-
purpose uses.

In this paper, we show how to use data parallelism to program
GPUs for general-purpose uses. We start with a conventional im-
perative language, C# (which is similar to Java). We provide a li-
brary that implements an abstract data type providing data-parallel
arrays; no aspects of GPUs are exposed to programmers. The li-
brary evaluates the data-parallel operations using a GPU: all other
operations are evaluated on the CPU. For efficiency, the library
does not immediately perform data-parallel operations. Instead, it
builds a graph of desired operations and compiles the operations on
demand to GPU pixel shader code and API calls.

Data-parallel arrays only provide aggregate operations over en-
tire input arrays. The operations are a subset of those found in lan-
guages like APL and include element-wise arithmetic and compar-
ison operators, reduction operations (such as sum), and transfor-
mations on arrays. Data-parallel arrays are functional: each oper-
ation produces a new data-parallel array. Programmers must ex-
plicitly convert back and forth between conventional arrays and
data-parallel arrays. The lazy compilation is typically done when
a program converts a data-parallel array to a normal array.

Compiling data-parallel operations lazily to a GPU allows
implement the operations efficiently: the system can avoid creat-
ing large numbers of temporary data-parallel arrays and optimize
the creation of pixel shaders. It also allows us to avoid exposing
GPU details to programmers: the system manages the use of GPU
resources automatically and amortizes the cost of accessing graph-
ics APIs. Compilation at run time also allows the system to handle
properties and features that vary across GPU manufacturers and
models.

floating-point performance for some workloads than
CPUs. For example, the ATI Radeon x1900 processor has 48 pixel
shader processors, each of which is capable of 4 floating-point op-
erations per cycle, at a clock speed of 650 MHz. It has a peak
floating-point performance of over 250 GFLOPS using single-
precision_floating-point numbers, counting multiply-adds as two
FLOPs. GPUs have an explicitly parallel programming model and

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the fullcitation
on the first page. To copy otherwise, to republish, to post on servers o to redistribute
o lists, requires prior specific permission and/or a fee.

ASPLOS'06 October 21-25, 2006, San Jose, California, USA.

Copyright (© 2006 ACM 1-59393-451-0/06/0010....$5.00.

95

We have i these ideas in a system called Acceler-
ator. We evaluate the effectiveness of the approach using a set of
benchmarks for compute-intensive tasks such as image processing
and computer vision, run on several generations of GPUs from both
ATI and NVidia. the benchmarks in ha e
pixel shader assembly for GPUs, C# using Accelerator, and C++ for
the CPU. The C# programs, including compilation overhead, are
typically within 2xof the speed of the hand-written pixel shader
programs, and sometimes exceed their speeds. The C# programs,
like the hand-written pixel shader programs, often outperform the
Co++ programs (by up to 18x).

Prior work on programming GPUs for general-purpose uses ei-
ther targets the specialized GPU programming model directly or
provides a stream programming abstraction of GPUs. It is diffi-
cult to target the GPU directly. First, programmers need to learn
the graphics programming model, which is specialized to the set of

http://dx.doi.org/10.1145/1168857.1168898
http://dx.doi.org/10.1145/1168857.1168898

