
Resource Management/Systems Programming

Advanced Operating Systems
Tutorial 3



Tutorial Outline

• Review of lectured material

• Review of exercise 1

• Discussion of papers
• Why systems programmers still use C

• Singularity
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Review of Lectured Material

• Resource management protocols
• Priority inheritance protocol – simple, but transitive blocking and potential 

deadlock

• Priority ceiling protocol – reduced blocking and no transitive blocking, but 
requires a-priori knowledge of resource usage; must track system priority 
ceiling; avoidance blocking prevents deadlock

• Stack-based priority ceiling protocol – further reduction in blocking if jobs 
never self-suspend; blocks jobs from starting until resources available

• Maximum duration of blocking; operation in dynamic priority systems

• Real-time and embedded systems programming
• Ensuring predictable timing

• Device drivers – hardware interactions; options for improving robustness

• System longevity; desire to improve robustness through alternate system 
implementation techniques
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Key Learning Outcomes

• Understand operation of resource management 
protocols; trade off between different algorithms

• Understand differences between embedded and 
real-time systems and traditional desktop systems
• Interactions with hardware

• Desire for predictability rather than raw performance

• Limitations of the traditional C-based programming model
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Review of Exercise 1 – Question 1

• Consider the following two systems of independent 
preemptable periodic tasks that are scheduled on a 
single processor. Can these systems be scheduled 
using the Rate Monotonic algorithm or the Earliest 
Deadline First algorithm? Explain your answers. 
• T1 = (5, 1), T2 = (3, 1), and T3 = (15, 3)

• T1 = (5, 2), T2 = (4, 1), T3 = (10, 1), and T4 = (20, 3)
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Review of Exercise 1 – Question 2

• A system contains three independent, preemptable, 
periodic tasks: 
• T1 = (3, 1)

• T2 = (5, 2)

• T3 = (8, 3)  

• Want to reduce execution time of T3 so system can 
be scheduled using EDF. 

• What is minimum amount of reduction necessary if 
the system is to be correctly scheduled (tasks may 
execute for a fraction of a time unit)? 
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Review of Exercise 1 – Question 3

• How does the maximum utilisation test for earliest 
deadline first scheduling change if the relative 
deadline of a task differs from that task's period? 
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Review of Exercise 1 – Question 4

• We considered several priority-driven scheduling 
algorithms for real-time systems. These algorithms 
make locally optimal decisions about which job to 
run, based on the priorities of the runnable tasks 
when a scheduling decision is to be made, but the 
resulting schedules are often not globally optimal.  
Discuss why the resulting schedules are often not 
globally optimal.
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Review of Exercise 1 – Question 5

• Periodic tasks T1 = (3, 1), T2 = (4, 2), and T3 = (6, 1) 
are scheduled in a pre-emptive manner using RM 
on a single processor. Draw a graph of the time-
demand function for each of the three tasks. Can 
these tasks be scheduled? Justify your answer. 
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Discussion of Papers

• J. Shapiro, “Programming language challenges in 
systems codes: why systems programmers still use C, 
and what to do about it”, Proc. PLOS 2006, San Jose, 
CA, Oct. 2006. DOI:10.1145/1215995.1216004
• Systems programming: constrained memory, I/O performance, data 

representation, state matters

• Fallacies: factors of 1.5–2 don’t matter; boxed representation can be 
optimised; the optimiser can fix it; legacy issues insurmountable

• Suggests: annotating code to check application constraints

• Suggests: manual but automatically checked storage management; 
explicit control over data representation

• The BitC project wasn’t a success, but are the ideas valid?
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Abstract
There have been major advances in programming languages
over the last 20 years. Given this, it seems appropriate to
ask why systems programmers continue to largely ignore
these languages. What are the deficiencies in the eyes of
the systems programmers? How have the e�orts of the
programming language community been misdirected (from
their perspective)? What can/should the PL community do
address this?

As someone whose research straddles these areas, I was
asked to give a talk at this year’s PLOS workshop. What
follows are my thoughts on this subject, which may or not
represent those of other systems programmers.

1. Introduction

Modern programming languages such as ML [16] or
Haskell [17] provide newer, stronger, and more expressive
type systems than systems programming languages such as
C [15, 13] or Ada [12]. Why have they been of so little in-
terest to systems developers, and what can/should we do
about it?

As the primary author of the EROS system [18] and its
successor Coyotos [20], both of which are high-performance
microkernels, it seems fair to characterize myself primarily
as a hardcore systems programmer and security architect.
However, there are skeletons in my closet. In the mid-1980s,
my group at Bell Labs developed one of the first large
commercial C++ applications — perhaps the first. My early
involvement with C++ includes the first book on reusable
C++ programming [21], which is either not well known or
has been graciously disregarded by my colleagues.

In this audience I am tempted to plead for mercy on the
grounds of youth and ignorance, but having been an active
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advocate of C++ for so long this entails a certain degree
of chutzpah.1 There is hope. Microkernel developers seem to
have abandoned C++ in favor of C. The book is out of print
in most countries, and no longer encourages deviant coding
practices among susceptible young programmers.

A Word About BitC Brewer et al.’s cry that Thirty
Years is Long Enough [6] resonates. It really is a bit dis-
turbing that we are still trying to use a high-level assembly
language created in the early 1970s for critical production
code 35 years later. But Brewer’s lament begs the question:
why has no viable replacement for C emerged from the pro-
gramming languages community? In trying to answer this,
my group at Johns Hopkins has started work on a new pro-
gramming language: BitC. In talking about this work, we
have encountered a curious blindness from the PL commu-
nity.

We are often asked “Why are you building BitC?” The tacit
assumption seems to be that if there is nothing fundamen-
tally new in the language it isn’t interesting. The BitC goal
isn’t to invent a new language or any new language con-
cepts. It is to integrate existing concepts with advances in
prover technology, and reify them in a language that allows
us to build stateful low-level systems codes that we can rea-
son about in varying measure using automated tools. The
feeling seems to be that everything we are doing is straight-
forward (read: uninteresting). Would that it were so.

Systems programming — and BitC — are fundamentally
about engineering rather than programming languages. In
the 1980s, when compiler writers still struggled with inad-
equate machine resources, engineering considerations were
respected criteria for language and compiler design, and a
sense of “transparency” was still regarded as important.2

By the time I left the PL community in 1990, respect for
engineering and pragmatics was fast fading, and today it
is all but gone. The concrete syntax of Standard ML [16]
and Haskell [17] are every bit as bad as C++. It is a curi-
ous measure of the programming language community that
nobody cares. In our pursuit of type theory and semantics,

1 Chutzpah is best defined by example. Chutzpah is when a
person murders both of their parents and then asks the court
for mercy on the grounds that they are an orphan.

2 By “transparent,” I mean implementations in which the pro-
grammer has a relatively direct understanding of machine-level
behavior.



Discussion of Papers

• G. Hunt and J. Larus. “Singularity: Rethinking the 
software stack”, ACM SIGOPS OS Review, 41(2), 
April 2007. DOI:10.1145/1243418.1243424
• Use of strongly-typed languages to build an operating system; 

software isolated processes; message passing – is this a sound 
basis for the system?

• Type-safe message passing through channels; checked state 
machines for communication protocols (e.g., to control device 
driver state) – useful tool to help ensure correctness, or over-
complex and stifling?

• Small unsafe microkernel, with type-safe system layered above – 
can the microkernel be written in a safe language?

• Threads and exchange heap; garbage collection – overheads?

• Is the idea of running everything in a virtual machine reasonable?

17

Singularity: Rethinking the Software Stack
Galen C. Hunt and James R. Larus 

Microsoft Research Redmond
galenh@microsoft.com

ABSTRACT
Every operating system embodies a collection of design decisions. 
Many of the decisions behind 
systems have remained unchanged, even as hardware and 
software have evolved. Operating systems form the foundation of 
almost every software stack, so inadequacies in present systems 
have a pervasive impact. This paper describes the efforts of the 
Singularity project to re-examine these design choices in light of 
advances in programming languages and verification tools. 
Singularity systems incorporate three key architectural features: 
software-isolated processes for protection of programs and system 
services, contract-based channels for communication, and 
manifest-based programs for verification of system properties. We 
describe this foundation in detail and sketch the ongoing research 
in experimental systems that build upon it.  

Keywords
Operating systems, safe programming languages, program 
verification, program specification, sealed process architecture, 
sealed kernel, software-isolated processes (SIPs), hardware 
protection domains, manifest-based programs (MBPs), unsafe 
code tax. 

1. INTRODUCTION
Every operating system embodies a collection of design 
decisions some explicit, some implicit. These decisions include 
the choice of implementation language, the program protection 
model, the security model, the system abstractions, and many 
others. 
Contemporary operating systems Windows, Linux, Mac OS X, 
and BSD share a large number of design decisions. This 
commonality is not entirely accidental, as these systems are all 
rooted in OS architectures and development tools of the late 

early . Given the common operating 
environments, the same programming language, and similar user 
expectations, it is not surprising that designers of these systems 
made similar decisions. While some design decisions have 
withstood the test of time, others have aged less gracefully.  
The Singularity project started in 2003 to re-examine the design 
decisions and increasingly obvious shortcomings of existing 
systems and software stacks. These shortcomings include: wide-
spread security vulnerabilities; unexpected interactions among 
applications; failures caused by errant extensions, plug-ins, and 
drivers, and a perceived lack of robustness.  
We believe that many of these problems are attributable to 
systems that have not evolved far beyond the computer 
architectures 

different from today. Computers were extremely limited in speed 
and memory capacity. They were used only by a small group of 
benign technical literati and were rarely networked or connected 
to physical devices. None of these requirements still hold, but 

modern operating systems have not evolved to accommodate the 
enormous shift in how computers are used. 

1.1 A Journey, not a Destination 
In the Singularity project, we have built a new operating system, a 
new programming language, and new software verification tools. 
The Singularity operating system incorporates a new software 
architecture based on software isolation of processes. Our 
programming language, Sing# [8], is an extension of C# that 
provides verifiable, first-class support for OS communication 
primitives as well as strong support for systems programming and 
code factoring. The sound verification tools detect programmer 
errors early in the development cycle. 
From the beginning, Singularity has been driven by the following 
question: what would a software platform look like if it was 
designed from scratch, with the primary goal of improved 
dependability and trustworthiness? To this end, we have 
championed three strategies. First, the pervasive use of safe 
programming languages eliminates many preventable defects, 
such as buffer overruns. Second, the use of sound program 
verification tools further guarantees that entire classes of 
programmer errors are removed from the system early in the 
development cycle. Third, an improved system architecture stops 
the propagation of runtime errors at well-defined boundaries, 
making it easier to achieve robust and correct system behavior. 
Although dependability is difficult to measure in a research 
prototype, our experience has convinced us of the practicality of 
new technologies and design decisions, which we believe will 
lead to more robust and dependable systems in the future.  
Singularity is a laboratory for experimentation in new design 
ideas, not a design solution. While we like to think our current 
code base represents a significant step forward from prior work, 
we do not  or an end in itself. A 
research prototype such as Singularity is intentionally a work in 
progress; it is a laboratory in which we continue to explore 
implementations and trade-offs. 
In the remainder of this paper, we describe the common 
architectural foundation shared by all Singularity systems. Section 
3 describes the implementation of the Singularity kernel which 
provides the base implementation of that foundation. Section 4 
surveys our work over the last three years within the Singularity 
project to explore new opportunities in the OS and system design 
space. Finally, in Section 5, we summarize our work to date and 
discuss areas of future work. 

2. ARCHITECTURAL FOUNDATION 
The Singularity system consists of three key architectural features: 
software-isolated processes, contract-based channels, and 
manifest-based programs. Software-isolated processes provide an 
environment for program execution protected from external 
interference. Contract-based channels enable fast, verifiable 
message-based communication between processes. Manifest-
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