
Resource Management/Systems Programming

Advanced Operating Systems
Tutorial 3

Tutorial Outline

• Review of lectured material

• Review of exercise 1

• Discussion of papers
• Why systems programmers still use C

• Singularity

2

Review of Lectured Material

• Resource management protocols
• Priority inheritance protocol – simple, but transitive blocking and potential

deadlock

• Priority ceiling protocol – reduced blocking and no transitive blocking, but
requires a-priori knowledge of resource usage; must track system priority
ceiling; avoidance blocking prevents deadlock

• Stack-based priority ceiling protocol – further reduction in blocking if jobs
never self-suspend; blocks jobs from starting until resources available

• Maximum duration of blocking; operation in dynamic priority systems

• Real-time and embedded systems programming
• Ensuring predictable timing

• Device drivers – hardware interactions; options for improving robustness

• System longevity; desire to improve robustness through alternate system
implementation techniques

3

Key Learning Outcomes

• Understand operation of resource management
protocols; trade off between different algorithms

• Understand differences between embedded and
real-time systems and traditional desktop systems
• Interactions with hardware

• Desire for predictability rather than raw performance

• Limitations of the traditional C-based programming model

4

Review of Exercise 1 – Question 1

• Consider the following two systems of independent
preemptable periodic tasks that are scheduled on a
single processor. Can these systems be scheduled
using the Rate Monotonic algorithm or the Earliest
Deadline First algorithm? Explain your answers.
• T1 = (5, 1), T2 = (3, 1), and T3 = (15, 3)

• T1 = (5, 2), T2 = (4, 1), T3 = (10, 1), and T4 = (20, 3)

5

Review of Exercise 1 – Question 2

• A system contains three independent, preemptable,
periodic tasks:
• T1 = (3, 1)

• T2 = (5, 2)

• T3 = (8, 3)

• Want to reduce execution time of T3 so system can
be scheduled using EDF.

• What is minimum amount of reduction necessary if
the system is to be correctly scheduled (tasks may
execute for a fraction of a time unit)?

8

Review of Exercise 1 – Question 3

• How does the maximum utilisation test for earliest
deadline first scheduling change if the relative
deadline of a task differs from that task's period?

10

Review of Exercise 1 – Question 4

• We considered several priority-driven scheduling
algorithms for real-time systems. These algorithms
make locally optimal decisions about which job to
run, based on the priorities of the runnable tasks
when a scheduling decision is to be made, but the
resulting schedules are often not globally optimal.
Discuss why the resulting schedules are often not
globally optimal.

12

Review of Exercise 1 – Question 5

• Periodic tasks T1 = (3, 1), T2 = (4, 2), and T3 = (6, 1)
are scheduled in a pre-emptive manner using RM
on a single processor. Draw a graph of the time-
demand function for each of the three tasks. Can
these tasks be scheduled? Justify your answer.

14

Discussion of Papers

• J. Shapiro, “Programming language challenges in
systems codes: why systems programmers still use C,
and what to do about it”, Proc. PLOS 2006, San Jose,
CA, Oct. 2006. DOI:10.1145/1215995.1216004
• Systems programming: constrained memory, I/O performance, data

representation, state matters

• Fallacies: factors of 1.5–2 don’t matter; boxed representation can be
optimised; the optimiser can fix it; legacy issues insurmountable

• Suggests: annotating code to check application constraints

• Suggests: manual but automatically checked storage management;
explicit control over data representation

• The BitC project wasn’t a success, but are the ideas valid?

16

Programming Language Challenges in Systems Codes

Why Systems Programmers Still Use C, and What to Do About It

Jonathan Shapiro, Ph.D.

Systems Research Laboratory
Department of Computer Science

Johns Hopkins University

shap@cs.jhu.edu

Abstract
There have been major advances in programming languages
over the last 20 years. Given this, it seems appropriate to
ask why systems programmers continue to largely ignore
these languages. What are the deficiencies in the eyes of
the systems programmers? How have the e�orts of the
programming language community been misdirected (from
their perspective)? What can/should the PL community do
address this?

As someone whose research straddles these areas, I was
asked to give a talk at this year’s PLOS workshop. What
follows are my thoughts on this subject, which may or not
represent those of other systems programmers.

1. Introduction

Modern programming languages such as ML [16] or
Haskell [17] provide newer, stronger, and more expressive
type systems than systems programming languages such as
C [15, 13] or Ada [12]. Why have they been of so little in-
terest to systems developers, and what can/should we do
about it?

As the primary author of the EROS system [18] and its
successor Coyotos [20], both of which are high-performance
microkernels, it seems fair to characterize myself primarily
as a hardcore systems programmer and security architect.
However, there are skeletons in my closet. In the mid-1980s,
my group at Bell Labs developed one of the first large
commercial C++ applications — perhaps the first. My early
involvement with C++ includes the first book on reusable
C++ programming [21], which is either not well known or
has been graciously disregarded by my colleagues.

In this audience I am tempted to plead for mercy on the
grounds of youth and ignorance, but having been an active

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and
that copies bear this notice and the full citation on the first page. To
copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee.

PLOS 2006, Oct. 22, 2006, San Jose, California, United States
Copyright c� 2006 ACM 1-59593-577-0/10/2006. . . $5.00

advocate of C++ for so long this entails a certain degree
of chutzpah.1 There is hope. Microkernel developers seem to
have abandoned C++ in favor of C. The book is out of print
in most countries, and no longer encourages deviant coding
practices among susceptible young programmers.

A Word About BitC Brewer et al.’s cry that Thirty
Years is Long Enough [6] resonates. It really is a bit dis-
turbing that we are still trying to use a high-level assembly
language created in the early 1970s for critical production
code 35 years later. But Brewer’s lament begs the question:
why has no viable replacement for C emerged from the pro-
gramming languages community? In trying to answer this,
my group at Johns Hopkins has started work on a new pro-
gramming language: BitC. In talking about this work, we
have encountered a curious blindness from the PL commu-
nity.

We are often asked “Why are you building BitC?” The tacit
assumption seems to be that if there is nothing fundamen-
tally new in the language it isn’t interesting. The BitC goal
isn’t to invent a new language or any new language con-
cepts. It is to integrate existing concepts with advances in
prover technology, and reify them in a language that allows
us to build stateful low-level systems codes that we can rea-
son about in varying measure using automated tools. The
feeling seems to be that everything we are doing is straight-
forward (read: uninteresting). Would that it were so.

Systems programming — and BitC — are fundamentally
about engineering rather than programming languages. In
the 1980s, when compiler writers still struggled with inad-
equate machine resources, engineering considerations were
respected criteria for language and compiler design, and a
sense of “transparency” was still regarded as important.2

By the time I left the PL community in 1990, respect for
engineering and pragmatics was fast fading, and today it
is all but gone. The concrete syntax of Standard ML [16]
and Haskell [17] are every bit as bad as C++. It is a curi-
ous measure of the programming language community that
nobody cares. In our pursuit of type theory and semantics,

1 Chutzpah is best defined by example. Chutzpah is when a
person murders both of their parents and then asks the court
for mercy on the grounds that they are an orphan.

2 By “transparent,” I mean implementations in which the pro-
grammer has a relatively direct understanding of machine-level
behavior.

Discussion of Papers

• G. Hunt and J. Larus. “Singularity: Rethinking the
software stack”, ACM SIGOPS OS Review, 41(2),
April 2007. DOI:10.1145/1243418.1243424
• Use of strongly-typed languages to build an operating system;

software isolated processes; message passing – is this a sound
basis for the system?

• Type-safe message passing through channels; checked state
machines for communication protocols (e.g., to control device
driver state) – useful tool to help ensure correctness, or over-
complex and stifling?

• Small unsafe microkernel, with type-safe system layered above –
can the microkernel be written in a safe language?

• Threads and exchange heap; garbage collection – overheads?

• Is the idea of running everything in a virtual machine reasonable?

17

Singularity: Rethinking the Software Stack
Galen C. Hunt and James R. Larus

Microsoft Research Redmond
galenh@microsoft.com

ABSTRACT
Every operating system embodies a collection of design decisions.
Many of the decisions behind
systems have remained unchanged, even as hardware and
software have evolved. Operating systems form the foundation of
almost every software stack, so inadequacies in present systems
have a pervasive impact. This paper describes the efforts of the
Singularity project to re-examine these design choices in light of
advances in programming languages and verification tools.
Singularity systems incorporate three key architectural features:
software-isolated processes for protection of programs and system
services, contract-based channels for communication, and
manifest-based programs for verification of system properties. We
describe this foundation in detail and sketch the ongoing research
in experimental systems that build upon it.

Keywords
Operating systems, safe programming languages, program
verification, program specification, sealed process architecture,
sealed kernel, software-isolated processes (SIPs), hardware
protection domains, manifest-based programs (MBPs), unsafe
code tax.

1. INTRODUCTION
Every operating system embodies a collection of design
decisions some explicit, some implicit. These decisions include
the choice of implementation language, the program protection
model, the security model, the system abstractions, and many
others.
Contemporary operating systems Windows, Linux, Mac OS X,
and BSD share a large number of design decisions. This
commonality is not entirely accidental, as these systems are all
rooted in OS architectures and development tools of the late

early . Given the common operating
environments, the same programming language, and similar user
expectations, it is not surprising that designers of these systems
made similar decisions. While some design decisions have
withstood the test of time, others have aged less gracefully.
The Singularity project started in 2003 to re-examine the design
decisions and increasingly obvious shortcomings of existing
systems and software stacks. These shortcomings include: wide-
spread security vulnerabilities; unexpected interactions among
applications; failures caused by errant extensions, plug-ins, and
drivers, and a perceived lack of robustness.
We believe that many of these problems are attributable to
systems that have not evolved far beyond the computer
architectures

different from today. Computers were extremely limited in speed
and memory capacity. They were used only by a small group of
benign technical literati and were rarely networked or connected
to physical devices. None of these requirements still hold, but

modern operating systems have not evolved to accommodate the
enormous shift in how computers are used.

1.1 A Journey, not a Destination
In the Singularity project, we have built a new operating system, a
new programming language, and new software verification tools.
The Singularity operating system incorporates a new software
architecture based on software isolation of processes. Our
programming language, Sing# [8], is an extension of C# that
provides verifiable, first-class support for OS communication
primitives as well as strong support for systems programming and
code factoring. The sound verification tools detect programmer
errors early in the development cycle.
From the beginning, Singularity has been driven by the following
question: what would a software platform look like if it was
designed from scratch, with the primary goal of improved
dependability and trustworthiness? To this end, we have
championed three strategies. First, the pervasive use of safe
programming languages eliminates many preventable defects,
such as buffer overruns. Second, the use of sound program
verification tools further guarantees that entire classes of
programmer errors are removed from the system early in the
development cycle. Third, an improved system architecture stops
the propagation of runtime errors at well-defined boundaries,
making it easier to achieve robust and correct system behavior.
Although dependability is difficult to measure in a research
prototype, our experience has convinced us of the practicality of
new technologies and design decisions, which we believe will
lead to more robust and dependable systems in the future.
Singularity is a laboratory for experimentation in new design
ideas, not a design solution. While we like to think our current
code base represents a significant step forward from prior work,
we do not or an end in itself. A
research prototype such as Singularity is intentionally a work in
progress; it is a laboratory in which we continue to explore
implementations and trade-offs.
In the remainder of this paper, we describe the common
architectural foundation shared by all Singularity systems. Section
3 describes the implementation of the Singularity kernel which
provides the base implementation of that foundation. Section 4
surveys our work over the last three years within the Singularity
project to explore new opportunities in the OS and system design
space. Finally, in Section 5, we summarize our work to date and
discuss areas of future work.

2. ARCHITECTURAL FOUNDATION
The Singularity system consists of three key architectural features:
software-isolated processes, contract-based channels, and
manifest-based programs. Software-isolated processes provide an
environment for program execution protected from external
interference. Contract-based channels enable fast, verifiable
message-based communication between processes. Manifest-

37

