' Umvermty School of
of Glasgow | Computing Science

Resource Management/Systems Programming

Advanced Operating Systems
Tutorial 3

Tutorial Outline

® Review of lectured material

® Review of exercise 1

e Discussion of papers

e \Why systems programmers still use C
e Singularity

Review of Lectured Material

e Resource management protocols

Priority inheritance protocol — simple, but transitive blocking and potential
deadlock

Priority ceiling protocol — reduced blocking and no transitive blocking, but
requires a-priori knowledge of resource usage; must track system priority
ceiling; avoidance blocking prevents deadlock

Stack-based priority ceiling protocol — further reduction in blocking if jobs
never self-suspend; blocks jobs from starting until resources available

Maximum duration of blocking; operation in dynamic priority systems

® Real-time and embedded systems programming

Ensuring predictable timing
Device drivers — hardware interactions; options for improving robustness

System longevity; desire to improve robustness through alternate system
implementation techniques

Key Learning Outcomes

e Understand operation of resource management
protocols; trade off between different algorithms

e Understand differences between embedded and
real-time systems and traditional desktop systems

® Interactions with hardware
e Desire for predictability rather than raw performance
e Limitations of the traditional C-based programming model

Review of Exercise 1 — Question 1

e (Consider the following two systems of independent
preemptable periodic tasks that are scheduled on a
single processor. Can these systems be scheduled
using the Rate Monotonic algorithm or the Earliest
Deadline First algorithm? Explain your answers.

o Ti1=(,1),T>=3,1),and 75 = (15, 3)
o T71=(572),T»=(41), T:=(10, 1), and Ts= (20, 3)

Review of Exercise 1 — Question 2

e A system contains three independent, preemptable,
periodic tasks:
e T1=(3,1)
o T2=(52)
o T3=(8,3)

e \Nant to reduce execution time of T3 so system can
be scheduled using EDF.

e \What is minimum amount of reduction necessary if
the system is to be correctly scheduled (tasks may
execute for a fraction of a time unit)?

Review of Exercise 1 — Question 3

® How does the maximum utilisation test for earliest
deadline first scheduling change if the relative
deadline of a task differs from that task's period?

10

Review of Exercise 1 — Question 4

® \Ne considered several priority-driven scheduling
algorithms for real-time systems. These algorithms
make locally optimal decisions about which job to
run, based on the priorities of the runnable tasks
when a scheduling decision is to be made, but the
resulting schedules are often not globally optimal.

Discuss why the resulting schedules are often not
globally optimal.

12

Review of Exercise 1 — Question 5

® Periodictasks 71'=(3,1), 7= (4, 2), and T3 = (6, 1)
are scheduled in a pre-emptive manner using RM
on a single processor. Draw a graph of the time-
demand function for each of the three tasks. Can
these tasks be scheduled? Justify your answer.

14

Discussion of Papers

J. Shapiro, “Programming language challenges in
systems codes: why systems programmers still use C,
and what to do about it”, Proc. PLOS 2006, San Jose,
CA, Oct. 2006. DOI:10.1145/1215995.1216004

e Systems programming: constrained memory, I/O performance, data
representation, state matters

e Fallacies: factors of 1.5-2 don’t matter; boxed representation can be
optimised; the optimiser can fix it; legacy issues insurmountable

e Suggests: annotating code to check application constraints

e Suggests: manual but automatically checked storage management;
explicit control over data representation

e The BitC project wasn’t a success, but are the ideas valid?

16

Programming Language Challenges in Systems Codes
Why Systems Programmers Still Use C, and What to Do About It

Jonathan Shapiro, Ph.D.

Systems Research Laboratory
Department of Computer Science

Johns Hopkins Univers
shap@cs jhu.edu

Abstract
Ther

have been major advances in programming languages
over the last 20 years. Give ms appropriate to
ask why systems programmers continue to largely ignore
these languages. What are the deficiencies in the cyes of
the systems programmers? How have the efforts of the
programming language community been misdirected (from
their perspective)? What can/should the PL community do
address this?

As someone whose research stradds

n this, it se

hese areas, T was
PLOS workshop. What
follows are my thoughts on this subject, which may or not
represent those of other systems programmers

asked to give a talk at this ye:

1. Introduction

Modern programming languages such as ML [16] or
Haskell [17] provide newer, stronger, and more expressive
type systems than systems programming languages such as
C[15, 13] or Ada [12]. Why have they been of so little in-
terest to systems developers, and what can/should we do
about it?

As the primary author of the EROS system [18] and its
successor Coyotos [20], both of which are high

ty

advocate of C++ for so long this entails a certain degree
of chutzpah.' There is hope. Microkernel developers seem to
have abandoned C++ in favor of C. The book is out of print
in most countries, and no longer encourages deviant coding
practices among susceptible young programmers.

A Word About BitC

Brewer et al’s cry that Thirty
Years is Long Enough (6] resonates. It really is a bit dis-
turbing that we are still trying to use a high-level assembly
language created in the early 19705 for critical production
code 35 years later. But Brewer's lament begs the question:
why has no viable replacement for C emerged from the pro-
? In trying to answer this.
my group at Johns Hopkins has started work on a new pro-
gramming language: BitC. In talking about this work, we
have encountered a curious blindness from the PL commu-
nity.

gramming languages community

We are often asked “Why are you building BitC?” The tacit
assumption scems to be that if there is nothing fundamen-
tally new in the language it isn’t interesting. The BitC goal
isi't to invent a new language or any new language con-
cepts. It is to integrate cxisting concepts with advances in
prover technology, and reify them in a language that allows
us 1o build stateful low-le
son about in varying me
fecling s

ol systems codes that we can rea-
ure using antomated tools. The
erything we are doing is straight-

ms to be that e

microkernels, it seems fair to characterize myself primarily
as a hardcore systems programmer and security architect
skeletons in my closet. In the mid-1980s,
my group at Bell Labs developed one of the first large
commercial applications - perhaps the first. My early
vement with C++ includes the first book on ¢
C-++ programming |2
has been graciously dis:

However, there

invol

sable
], which is either not well known or
rded by my colleague

In this audience I am tempted to plead for mercy on the
grounds of youth and ignorance, but having been an active

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit o commercial advantage and
ar this notice and the full citation on the first page. To
to republish, to post on servers or to redistribute to
lists, requires prior specific permission and /or a fec.
PLOS 2006, Oct. 22, 2006, San Jose,
Copyright © 2006 ACM 1-59503-

lifornia, United States
0/10/2006. ... $5.00

forward (read:). Would that it were so.
Systen
about engineering rather than programming languages. In
the 19805, when compiler writers still struggled with inad-
equate machine resources, engincerin
respected eriteria for language and compiler design, and a
sense of “transparency” was still regarded as important.*
By the time I left the PL community in 1990, respect for
engineering and pragmatics was fast fading, and today it
is all but gone. The concrete syntax of Standard ML [16]
and Haskell [17] are every bit as bad as C-+. It s a curi-

programming — and BitC — are fundamentally

& considerations were

of the programming language community that
nobody eares. In our pursuit of type theory and semantics,

Chutzpah is best defined b
person murders both of the
for mercy on the gro

example. Chutzpah is when a
ks the court

ads that they ar

ssparent,” 1 mean implementations in which the pro-
has a relatively direct understanding of machine-lovel

Discussion of Papers

e G. Hunt and J. Larus. “Singularity: Rethinking the
software stack”, ACM SIGOPS OS Review, 41(2),
April 2007. DOI:10.1145/1243418.1243424

e Use of strongly-typed languages to build an operating system;
software isolated processes; message passing — is this a sound
basis for the system?

e Type-safe message passing through channels; checked state
machines for communication protocols (e.g., to control device
driver state) — useful tool to help ensure correctness, or over-
complex and stifling?

e Small unsafe microkernel, with type-safe system layered above —
can the microkernel be written in a safe language?

e Threads and exchange heap; garbage collection — overheads?
e |s the idea of running everything in a virtual machine reasonable?

17

Singularity: Rethinking the Software Stack

Galen C. Hunt and James R. Larus
Microsoft Research Redmond

galenh@microsoft.com

ABG’I"RAC'I"

tem embodies a collection of design decisions.
Many of the decaions behind today's most populr operating
s hardware and

ystems form the foundation of
stack, so inadequacies in present systems
have a pervasive impact. This paper describes the efforts of the
Singularity project to re-examine these design choices in light of
advances in programming langy
Singularity systems incorp:
software-isolated proc:

anifes-based programs for verheation of sstem propertis. We
deseibe his Toundation in detal and sketch the ongoing rsearch
in experimental systems that build upon it

Keywords
Operating systems, safe programming languages, program

1! rocess architecture,
(SIPs), hardware
protection dormains, manifest-based programs (MBP), unsafe
code tax.

1. INTRODUCTION

Every operating system embodies a_collection of design

model, the security model, the system abstractions, and many
oth

Contemporary ope stems—Windows, Linux, Mac 08 X
and BSD—share a large number of des
commonality is not entirely accidental,

rooted in OS architectures and development tools of the late
I960s and ewly 1570 Gven the common operaing
envitonments, the same programming langu d s
expectations, it is not surprisi

made similar decisions.
withstood the test of time,

The Singularity projec xamine the design
decisions and increasingly obvious shortcomings of existing
systems and softwa sacks. These shorcomings inclde: wid

bilities; unexpected interactions among
used by erant extensions, plug-ins, and
ived lack of robustness

We believe that many of these problems are attributable to
systems that have not evolved far beyond the computer
architectures and programming lan; of the 1960's and
1970°s. The computing environment of that period was very
Computrs were exiromely limied in speed
ity. They were used only by a small group o
e technica i nd were rrely nesworked cd
o physical devices. None of these requirements sill hold. but

modem operating systems have not evolved to accommodate the
enormous shift in how computers are used

1.1 A Journey, not a Dcs!ins!ion

rehite ur
programming la is an extension of C# that
provides verisbe, firsclass support for OS communic
pmmum as well as strong support for systems programmi
le factoring. The sound verification tools detect programmer
errors carly in !Ivuh\dopmuvu) e

From the begin bty bas been driven by the followig

queston: what would & Software platform Todk 1 if i

ad from sertch, with the primary gosl of improved

by and tmstvorhiness? To this e

e pervasive use of safe

s eliminates many preventable defects.

h as buffer overruns. Second, the use of sound program

ation tools further guarantees that entire classes of
mmer errors are removed from the system early

Third, an improved system archi

of runtime errors at

making it easir o achieve robustand correct system

ce has convinced us of the practic
new technologies and des

lead to more robust and dependable systems in the future.

decisions, which

Singularity is a laboratory for experimentation in new design
ideas, not a design solution. While we like to think our current
code base reprsens sgnificant step orvard rom prio wark,
we do not see it as tem or an end in itself. A
research proospe uch a5 Singlariy is intentionally a work in
ich we continue to_explore

pro
plementations and ade.ofs
In the senminder of i paper, we describe the common
architectural fo ed by all Singularity systems. Section
3 deseibes the implomentation of the

s our work over the last thres
to explore new opportunit
Finally, in Section 5, we summarize our work to date and
discuss arcas of future work.

2. AR(H]TECTURAL FOU]\DATIOV

onsists of three k features:
contract-based Almmuh and
Software isolaed processes provide an
ram exccution protected from external
based channels enable fast, verifiable
ased communication between processes. Ma

environment for pi
interferen

ife:

