P Unaversity | School of
of Glasgow | Computing Science

Message Passing

Advanced Operating Systems
Tutorial 5



Tutorial Outline

® Review of Lectured Material
® Discussion: Barrelfish and multi-kernel systems

® Programming exercise



Review of Lectured Material

e |mplications of multicore systems

e Hardware trends; NUMA and heterogeneity in multicore systems
e (Challenges of NUMA systems — is a shared memory model appropriate?

e Multi-kernel systems — distributed operating systems for multicore

® Message passing systems

e [imitations of threads and lock-based concurrency
e Multicore memory models; composition of lock-based code

e (Concepts of message passing systems

° Interaction models; communication and the type system; naming communications
° Message handling; immutability; linear types; use of an exchange heap

° Pattern matching and state machines

° Error handling; let-it-crash philosophy; supervision hierarchies; case study

e Erlang and Scala+Akka as examples



Key Points

e Understand problems of scaling multicore systems
while maintaining a shared memory programming
model

® The multi-kernel operating system model

® The message passing programming model

e Reflect on the suitability of message passing as a
concurrency primitive for future systems

e Advantages and disadvantages compared to lock-based concurrency with
shared mutable state



Discussion: Barrelfish

A. Baumann ef al, “The Multikernel: A new OS
architecture for scalable multicore systems”, Proc.
ACM SOSP 2009. DOI:10.1145/1629575.1629579

Is the premise that messages are more suitable than
shared memory for future systems reasonable?

Does it make sense to run a distributed operating
system on the cores of a single hardware device?

Where is the boundary for a Barrelfish-like system?

° Distinction between a distributed multi-kernel and a distributed
system of networked computers?

Barrelfish is clearly an extreme: a shared-nothing
system implemented on a hardware platform that
permits some efficient sharing

° Is it a desirable extreme?

e Current systems sit at the opposite extreme — shared everything,
despite increasingly separate hardware resources

The Multikernel: A new OS architecture for scalable multicore systems

Andrew Baumann; Paul Barham Pierre-Evariste Dagan

*Tim Harris] Rebecca Isaacs]

Simon Peter; Timothy Roscoe; Adrian Schiipbach; and Akhilesh Singhania*
“Systems Group, ETH Zurich

"Microsoft Research, Cambridge

Abstract

Commodity computer systems contain more and more
processor cores and exhibit increasingly diverse archi-
tectural tradeoffs, including memory hierarchies, inter-
connects, instruction sets and variants, and IO configu-
rations. Previous high-performance computing systems
have scaled in specific cases, but the dynamic nature of
modern client and server workloads, coupled with the
impossibility of statically optimizing an OS for all work-
loads and hardware variants pose serious challenges for
operating system structures.

We argue that the challenge of future multicore hard-
ware is best met by embracing the networked nature of
the machine, rethinking OS architecture using ideas from
distributed systems. We investigate a new OS structure,
the multikernel, that treats the machine as a network of
independent cores, assumes no inter-core sharing at the
lowest level, and moves traditional OS functionality to
a distributed system of processes that communicate via
message-passing.

We have implemented a multikernel OS to show that
the approach is promising, and we describe how tradi-
tional scalability problems for operating systems (such
as memory management) can be effectively recast using
messages and can exploit insights from distributed sys-
tems and networking. An evaluation of our prototype on
multicore systems shows that, even on present-day ma-
chines, the performance of a multikernel is comparable
with a conventional OS, and can scale better to support
future hardware.

1 Introduction

Computer hardware is changing and diversifying faster
than system software. A diverse mix of cores, caches, in-
terconnect links, IO devices and accelerators, combined
with increasing core counts, leads to substantial scalabil-
ity and correctness challenges for OS designers.

fENS Cachan Bretagne

Agreement
algorithms

Archrspecifc
code

Figure 1: The multikernel model.

Such hardware, while in some regards similar to ear-
lier parallel systems, is new in the general-purpose com-
puting domain. We increasingly find multicore systems
in a variety of environments ranging from personal com-
puting platforms to data centers, with workloads that are
less predictable, and often more OS-intensive, than tradi-
tional high-performance computing applications. It is no
longer acceptable (or useful) to tune a general-purpose
OS design for a particular hardware model: the deployed
hardware varies wildly, and optimizations become obso-
lete after a few years when new hardware arrives.

Moreover, these optimizations involve tradeoffs spe-
cific to hardware parameters such as the cache hierarchy,
the memory consistency model, and relative costs of lo-
cal and remote cache access, and so are not portable be-
tween different hardware types. Often, they are not even

to future g of the same
Typically, because of these difficulties, a scalability prob-
lem must affect a substantial group of users before it will
receive developer attention.

‘We attribute these engineering difficulties to the ba-
sic structure of a shared-memory kernel with data struc-
tures protected by locks, and in this paper we argue for
rethinking the structure of the OS as a distributed sys-
tem of functional units communicating via explicit mes-



http://dx.doi.org/10.1145/1629575.1629579
http://dx.doi.org/10.1145/1629575.1629579

Programming Exercise

® EXxercise 3 now available

® Aim — to explore the ease of use of message passing programming for
non-expert programmers

® No AOS(M) lectures tomorrow or next week, to give
time to work on the programming exercise

e Next lecture on 26 February 2013

e (Questions about the exercise can be sent to me by email, or make an
appointment to talk with me



